低温敏感植物白银豆中三个脂肪酸去饱和酶基因的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物对低温的敏感程度与其起源地密切相关,并且起源于温带的植物经过低温冷驯化后可以获得一定的抗冷能力,而起源于热带亚热带的植物却普遍缺乏这样的能力。白银豆(Phaseolus lunatus L.)则是起源于热带美洲的豆科棉豆属植物。
     大量实验证明膜脂的不饱和度与植物的冷适应性关系密切,抗冷植物比冷敏感植物的膜脂肪酸不饱和度高。生物膜磷脂的脂肪酸组成及不饱和度直接取决于脂肪酸去饱和酶的种类和数量,通过酶的种类和活性的变化,调节膜脂的不饱和度进而改变其流动性,以适应外界温度的变化。本研究对白银豆进行抗冷性鉴定,并克隆了3个脂肪酸去饱和酶基因,分析了低温等逆境脂肪酸去饱和基因的表达情况,为进一步研究脂肪酸去饱和酶基因的功能以及在植物抵抗低温等非生物逆境中的作用打下基础。
     1.通过表型观察以及用膜相对电解质渗漏率做Arrhenius图,得到白银豆幼苗生长临界低温为8±1℃。对白银豆幼苗进行8℃低温处理,研究不同胁迫时间下叶片中各生理生化指标的应激动态变化。结果表明在临界生长低温下,白银豆幼苗的生长受到一定的影响,但是通过增加体内氧化酶活性等能在一定程度上抵御8℃低温产生的影响。
     2.利用同源序列设计简并引物,先通过RT-PCR的方法从白银豆叶片中克隆到各脂肪酸去饱和酶基因的保守区域,然后根据基因片段设计RACE引物,利用RACE技术克隆各基因末端序列,拼接得到3个脂肪酸去饱和酶基因cDNA全长序列。同时,根据全长序列设计分段引物,以基因组DNA为模板分段克隆,拼接获得各基因DNA水平全长序列。其中SAD(硬脂酰-ACP去饱和酶)cDNA全长为1777 bp,ORF为1317 bp,编码439个氨基酸,DNA全长为1939 bp,包含有一个内含子。与大豆SAD同源性为86%,但是在进化关系上,白银豆与麻疯树的SAD亲缘关系最近。FAD3 cDNA全长1510 bp,ORF为1116 bp,编码372个氨基酸,DNA全长为2663 bp,包含有7个内含子。预测为内质网FAD3,负责催化亚油酸脱氢生成油酸,与大豆中FAD3同源性达91%。白银豆FAD2 cDNA全长为1652 bp,ORF为1059 bp,编码353个氨基酸,DNA全长与cDNA一致,无内含子。预测为叶绿体FAD2,和大豆FAD2亲缘关系最近,同源性达85%。
     3.组织表达分析发现:SAD与FAD2在白银豆根和茎中几乎不表达,而在叶中表达量很高;而FAD3在根、茎、叶中均有表达,以叶中表达量最高。
     4.运用半定量RT-PCR法分析各基因在生长临界低温以及高温、盐和干旱处理下的表达情况。结果表明:四种胁迫均能诱导FAD2基因的表达,而高温和盐胁迫对SAD和FAD3基因的表达有抑制作用。随着低温处理时间的延长,3个基因呈现不同的表达模式。SAD基因的表达逐渐下调,到12h时表达量最低,经过随后的12h低温黑暗后其表达量逐渐回升直到最大。FAD3表达在低温处理3h时达最大值,一直保持到低温处理12h,但随后表达降低。FAD2在低温处理过程之初瞬间表达上调,低温处理1h和3h间表达量基本不变,随后逐渐下调。在低温条件下,白银豆体内生成多不饱和脂肪酸的去饱和酶FAD2、FAD3表达的增强,可以促进单不饱和及双不饱和脂肪酸进一步去饱和。
The sensitivity of plants to low temperature is closely related to their initial origins. Plants from temperate regions have the capacity of cold acclimatation, that is, to develop increased freezing tolerance after being exposed to low nonfreezing temperature, whereas species from tropical and subtropical areas nearly do not have it. Phaseolus lunatus L. belonging to legumes origins from tropical regions.
     Large amounts of experiments have demonstrated that the plant resistance to cold is quite related to UFAI (Unsaturated Fatty Acid Index) of cell membrane. The cell membrane of cold-resistant plant has higher UFAI than cold-sensitive ones. Fatty acid compositions and UFAI of membrane phospholipids are directly determined by the type and quantity of fatty acid desaturases (FAD). The ability to adjust membrane lipid fluidity by changing levels of unsaturated fatty acids is a feature of cold acclimating plants, which is mainly regulated by activity and categories of FADs. The growth critical temperature of cold-resistant Phaseolus lunatus L. was identified and three FAD genes were cloned from its leaf in this study to help understanding the mechanisms of cold-sensitivity. The results are summarized as follows.
     1. Seedings of Phaseolus lunatus L. could resist 8±1℃according to phenotypic observation and Arrhenius plot of REC (Relative Electric Conductivity). Dynamic changes of various indexes in leaves of plant treated under 8±1℃indicated that the seedlings could truly resist low temperature of 8±1℃through increasing activities of oxidase system.
     2. Primers were designed according to relative sequences on NCBI. Constant fragments of three FAD were isolated from leave of Phaseolus lunatus L. by RT-PCR. The full-lenth of their cDNAs were acquired by 5'and 3'RACE. The sequence of SAD, FAD3 and FAD2 had 1777 bp,1510 bp,1652 bp respectively with ORF of 1317 bp, 1116 bp and 1059 bp, encoding a 439,372 and 353 amino acid protein. Putative protein sequence alignments and phylogenetic analysis of three genes showed that three genes shared the highest identity of 86%,85% and 91% respectively with their counterpart species. The full-lenth DNAs of SAD and FAD3 contained 1 and 7 introns respectively, while FAD2 had no introns.
     3. Tissue-specific expression analysis revealed that SAD and FAD2 expressed highly in leaves, but nearly did not express in root and sterm; while FAD3 expressed in all three tissues, especially high in leaves.
     4. Expression pattern of each gene under different stresses including 8±1℃, 42℃,0.15 mmol/L NaCl and 15% PEG by RT-PCR showed that FAD2 could be induced by the stresses, while high temperature and salt somewhat inhibited the expression of SAD and FAD3. The expression patterns of three genes were different under low temperature. SAD was down-regulated in first 12 h and reached its lowest level, then returned in the following 12 h-dark till its maximum. Expression of FAD3 reached its maximum at the time point of 3 h and maintained to 12 h, then decreased. Expression of FAD2 was up-regulated from 1 h to 3 h, then decreased. To resist chilling temperature, the expression of FAD3、FAD2 in Phaseolus lunatus L. might enhance the amount of poly-unsaturated fatty acid to change the fluidity of cell membrane.
引文
[1]Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation [J]. Current Opinion in Plant Biology,2007,10:290-295
    [2]Browse J, Xin ZG. Temperature sensing and cold acclimation[J]. Current Opinion in Plant Biology,2001,4:241-246
    [3]王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究[J].园艺学报,1994,21(3):239-244
    [4]Somenrille C. Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria[J]. Proceedings of the National Academy of Sciences USA,1995,92: 6215-6218
    [5]Ganeshan S, Vitamvas P, Fowler DB, et al. Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen[J]. Journal of Experimental Botany,2008,59:2393-2402
    [6]Raison JK, Roberts JK, Berry JA. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature[J]. Biochimica et Biophysica Acta,1982,688:218-228
    [7]Levitt J. Response of plants to environmental stress[M]. San Francisco:Academic Press,1980:58-141
    [8]Pearce RS. Molecular analysis of acclimation to cold[J]. Plant Growth Regulation, 1999,29:47-76
    [9]Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes and Development, 2003,17:1043-1054
    [10]康国章,孙谷畴,王正询.植物冷害机理及冷驯化的生理与分子学基础[J].生命科学研究,2002,6(1):49-55
    [11]姚立新,朱锐,马雯彦,等.植物抗旱、抗寒性鉴定与生理生化机理研究进展[J].安徽农业科学,2009,37(25):11864-11866
    [12]马庆华.冬枣实生后代主要性状遗传变异规律及枣实生苗抗寒性研究[D].保定:河北农业大学,2004
    [13]Balasubramanian P, Vandenberg A, Hucl P, et al. Resistance of Phaseolus species to ice crystallization at subzero temperature[J]. Physiologia Plantarum,2004,120: 451-457
    [14]Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation[J]. Annual Review of Plant Physiology,1984,35:543-584
    [15]邬树桐,孙小镭,王冰.黄瓜不同品种苗期耐低温弱光特性测定初报[J].中国蔬菜,1994,(1):26-28
    [16]朱其杰,高守云,蔡诛湖.黄瓜耐冷性鉴定指标及遗传规律的研究[A].李树德编.中国主要蔬菜抗病育种进展[M].北京:科学出版社,1995:457-462
    [17]于超,于贤昌,王华森,等.不同基因型菜豆幼苗抗冷性鉴定[J].西北农业学报,2006,15(1):135-138
    [18]邹志荣,陆帼一.低温对辣椒幼苗膜脂过氧化和保护酶系统变化的影响[J].西北农业学报,1995,3(3):51-55
    [19]姚明华,徐跃进,李晓丽,等.茄子耐冷性生理生化指标的研究[J].园艺学报,2001,28(6):527-531
    [20]于贤昌.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响[J].中国农业科学,1998,31(2):41-47
    [21]王孝宣,李树德,东惠茹,等.低温胁迫对番茄苗期和花期若干性状的影响[J].园艺学报,1996,23(4):349-354
    [22]彭筱娜,易自力,蒋建雄.植物抗寒性研究进展[J].生物技术通报,2007,(4):15-18
    [23]沈洪波.杏品种抗寒性研究[D].泰安:山东农业大学,2002
    [24]郝丽娟,邵青玲.不同杏品种的抗寒性研究[J].山西果树,2006,(5):3-5
    [25]熊燕,张万民.中国野生葡萄抗寒研究利用[J].安徽农业科学,2007,35(11):3238-3239
    [26]朱根海,刘祖祺,朱培仁.应用logistics方程确定植物组织低温半致死温度的研究[J].南京农业大学学报,1986,(3):11-16
    [27]赵桂玲,刘明国,郭蕊.低温胁迫山杏花电导率和LT5o值的研究[J].辽宁林业科技,2007,(1):6-9
    [28]杨华,唐茜,黄毅,等.用电导法配合Logistic方程鉴定茶树的抗寒性[J].福建茶叶,2006,(3):30-32
    [29]Robert GU. Fatty acid unsaturation, mobilization, and regulate in the response of plants to stress[J]. Biotechnology Letters,2008,30:967-977
    [30]林善枝,张志毅,林元震.植物抗冻蛋白及抗冻性分子改良[J].植物生理与分子生物学学报,2004,30(3):251-260
    [31]李美茹,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物抗冷性的关系[J].植物生理学通讯,1995,31(5):329-334
    [32]Allen RD. Dissection of oxidative stress tolerance using transgenic plants[J]. Plant Physiology,1995,107:1049-1054
    [33]Lee YP, Kim SH, Bang JW, et al. Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts[J]. Plant Cell Reports,2007,26:591-598
    [34]刘鹏,刘庆忠,王勇,等.喜温作物的低温损伤及其抗冷性的研究进展[J].山东农业科学,2004,(2):74-79
    [35]Jiao HJ, Wang SY. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry[J]. Journal of Agricultural and Food Chemistry,2000,48:5672-5676
    [36]Ali MB, Hahn EJ, Paek KY. Effect of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis[J]. Plant Physiology and Biochemistry,2005,43:213-223
    [37]Lyons JM. Chilling injury in plants[J]. Annual Review of Plant Physiology,1973, 24:445-528
    [38]Beisson F, Li YH, Bonaventure G, et al. The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis[J]. Plant Cell, 2007,19:351-368
    [39]林多,杨延杰,范文丽,等.低温对蕃茄幼苗叶片活性氧代谢的影响[J].辽宁农业科学,2001,(5):1-4
    [40]郁松林,康喜亮,王果平.温度胁迫下果树膜系统变化及其修复机制研究进展[J].石河子大学学报,2005,23(4):477-481
    [41]Ai XZ, Guo YK, Ma XZ, et al. Photosynthetic characteristics and ultra strcture of chloroplast of cucumber under low light intensity in solar greenhouse [J]. Scientia Agricultura Sinica,2004,3:268-273
    [42]郁继华舒英杰吕军芬,等.低温弱光对茄子幼苗光合特性的影响[J].西北植物学报,2004,24(5):831-836
    [43]何洁,刘鸿先,王以柔.低温与植物的光合作用[J].植物生理学通讯,1986,(2):1-6
    [44]Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42: 313-349
    [45]刘芳,郭晶晶,龚丽丽,等.5-氨基乙酰丙酸促进水稻耐低温光抑制与抗氧化酶活性有关[J].中国水稻科学,2008,22(4):411-415
    [46]黄荣峰,杨宇红,王学臣.植物对低温胁迫响应的分子机理[J].农业生物技术学报,2001,9(1):92-96
    [47]Zemlianskikh NG, Denisova ON. Changes in erythrocyte membrane-cytoskeleton complex, induced by dimethyl sulfoxide, polyethylene glycol, and low temperature[J]. Biophysics,2009,54:693-703
    [48]李永才,安黎哲,毕阳.微管骨架在植物适应低温胁迫中的功能研究进展[J].西北植物学报,2006,26(7):1500-1504
    [49]Malerba M, Crosti P, Cerana R. Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+[J]. Biofizika,2009,54:693-703
    [50]丁元丰.植物耐低温的分子机理[J].北京农业职业学院学报,2006,20(1):16-19
    [51]Tucker EB, Allen NS. Intracellular particle motion (cytoplasmic streaming) in staminal hairs of Setcreasea purpurea:effect of azide and low temperature[J]. Cell Motility and the Cytoskeleton,1986,6:305-313
    [52]Wang QY, Nick P. Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid[J]. Plant and Cell Physiology,2001,42: 999-1005
    [53]Juniper BE, Lawton JR. The effect of caffeine, different fixation regimes and low temperature on microtubules in the cells of higher plants[J]. Planta,1979,145: 411-416
    [54]Pihakaski MK. Puhakainen T. Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry[J]. Physiologia Plantarum,1995,93:563-571
    [55]Akashi T, Shibaoka H. Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes[J]. Plant and cell physiology,1987,28:339-348
    [56]Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences,2000,57: 779-795
    [57]曹锡清.膜质过氧化对细胞与机体的作用[J].生物化学与生物物理学进展,1986,(2):17-23
    [58]O'Kane D, Gill V, Boyd P, et al. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus[J]. Planta,1996,198:371-377
    [59]Noctor G, Foyer CH. Ascorbate and glutathinone:keeping active oxgen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998,49:249-279
    [60]王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报,2003,20(6):671-679
    [61]Mckersie BD, Bowley SR, Harjanto E, et al. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase[J]. Plant Physiology,1996,111:1177-1181
    [62]李建设,耿广东,程智慧.低温胁迫对茄子幼苗生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2003,2(1):90-92
    [63]陈卫国,周冀衡,杨虹琦.烟草抗寒性生理生化研究进展[J].作物研究,2007,21(1):81-83
    [64]杨春祥,李宪利,高东升,等.低温胁迫对油桃花器官膜脂过氧化和保护酶活性的影响[J].果树学报,2005,22(1):69-71
    [65]Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants[J]. Physiologia Plantarum,1992,85:235-241
    [66]Sato Y, Murakami T, Funatsuki H, et al. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings[J]. Journal of Experimental Botany,2001,52:145-151
    [67]Yong IK, Shin JS, Nilda BR. Antioxidative enzymes offer protection from chilling damage in rice plants [J]. Crop Science,2003,43:2109-2117
    [68]秦爱国,高俊杰,于贤昌.温度胁迫对马铃薯叶片抗坏血酸代谢系统的影响[J].应用生态学报,2009,20(12):2964-2970
    [69]许楠,孙广玉.低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应[J].应用生态学报,2009,20(4):761-766
    [70]张继澍.植物生理学[M].西安:世界图书出版公司,1999:370-376
    [71]Cunningham SM, Nadeau P, Castonguay Y, et al. Raffinose and stachyoseaccumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms[J]. Crop Science,2003,43:562-570
    [72]周琳,侯秀丽,杨光字,等.低温胁迫下冬小麦叶片中某些物质的变化[J].周口师范高等专科学校学报,2001,18(2):36-38
    [73]Strand A, Foyer CH, Gustafsson P, et al. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance [J]. Plant Cell and Environment,2003,26:523-535
    [74]Kacperska A. Sensor types in signal transduction pathways in plant cells responding to abiotic stressors:Do they depend on stress intensity[J]. Physiologia Plantarum,2004,122:159-168
    [75]李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996:191-192
    [76]Bruggemann W, Dauborn B. Long term chilling of young tomato plants under low light-Leaf development as reflected by photosynthesis parameters[J]. Plant and Cell Physiology,1993,34:1251-1257
    [77]Rikin A, Atsmon D, Gitler C. Quantitation of chill-induced release of a tubulin-like factor and its prevention by abscisic acid in Gassypium hirsutum L.[J]. Plant Physiology,1983,71:747-748
    [78]丁国华,秦智伟,周秀艳.植物低温诱导蛋白和诱导基因研究新进展[J].中国农学通报,2003,19(6):33-36
    [79]Yu XM, Griffith M. Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid[J]. Physiologia Plantarum,2001,112:78-86
    [80]杨家森,张洪涛,李新国,等.拟南芥CBF冷反应通路[J].植物生理学通讯,2006,42(1):155-161
    [81]Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling[J]. Plant Cell,2002,14:401-417
    [82]Gimalov FR, Baymiev AK, Matniyazov RT, et al. Initial stages of low-temperature induction of cabbage cold shock protein gene csp5[J]. Biochemistry,2004,69:575-579
    [83]张丽丽,李景富,王傲雪.转录激活因子CBF基因在植物抗冷分子机制中的作用[J].园艺学报,2008,35(5):765-771
    [84]Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat dehydration responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,2001, 127:910-917
    [85]夏金婵,吕强,郭梅芳,等.植物冷驯化相关信号机制[J].中国生物化学与分子生物学报,2008,24(4):295-301
    [86]简令成,卢存福,李积宏,等.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础[J].作物学报,2005,31(8):971-976
    [87]Lee BH, Lee H, Xiong L, et al. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression[J]. Plant Cell,2002,14:1235-1251
    [88]Stockinger EJ, Sarah J, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences USA,1997,94:1035-1040
    [89]Chinnusamy V, Zhu JH, Zhu JK. Gene regulation during cold acclimation in plants[J]. Physiologia Plantarum,2006,126:52-61
    [90]Lee H, Xiong L, Gong ZZ, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning [J]. Genes,2001,15:912-924
    [91]张融雪,张治礼,张执金,等.植物低温信号的感知、转导与转录调[J].中国农业科技导报,2009,11(3):5-11
    [92]Artus NN, Uemura M, Steponkus PL, et al. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance[J]. Proceedings of the National Academy of Sciences USA,1996,93:13404-13409
    [93]钟克亚,叶妙水,胡新文,等.转录因子CBF在植物抗寒中的重要作用[J].遗传,2006,28(2):249-254
    [94]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000,17(6):481-490
    [95]Anastasia K, Dimitra D, Dia G, et al. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum)[J]. Journal of Experimental Botany,2008,59:2043-2056
    [96]Murata N, Los DA. Membrane fluidity and temperature perception[J]. Plant Physiology,1997,115:875-879
    [97]Zhang JT, Zhu JQ, Zhu Q, et al. Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana[J].Biochemical and Biophysical Research Communications,2009,390:469-474
    [98]林萍,齐力旺,汪阳东,等.植物抗寒工程中脂肪酸去饱和酶研究进展[J].分子植物育种,2006,4(3):404-410
    [99]Wendy C, Paolo L, Nunzia S, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Research,2008,17:769-782
    [100]Suzuki DA, Murata N. Perception and transduction of low-temperature signals to induce desaturation of fatty acids[J]. Biochemical Society Transactions,2000, 28:628-630
    [101]Somerville C. Direct tests of the membrane lipid composition in low temperature induced photoinhibition and chilling sensitivity in plants and cyanobacteria[J]. Proceedings of the National Academy of Sciences USA,1995,92:6215-6218
    [102]张羽航,鲍时翔,王延平,等.脂肪酸脱饱和酶的应用进展[J].生物工程进展,2001,21(2):46-49
    [103]石东乔,周奕华,陈正华.植物脂肪酸调控基因工程研究[J].生命科学,2002,14(5):291-317
    [104]Tasseva G, Davyde VJ, Cantrel C, et al. Changes in the endoplasmic reticulum lipid properties in response to low temperature in Brassica napus[J]. Plant Physiology and Biochemistry,2004,42:811-822
    [105]Aardra K, John S, Edward W. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Molecular Biology,2007,63:257-271
    [106]Zaborowska Z, Starzycki M, Femiak I, et al. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application[J]. Acta Biochimica Polonica,2002,49:29-42
    [107]Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis[J]. Science,1992,258: 1353-1355
    [108]Yamamoto K, Mori H, Imaseki H. Novel mRNA sequences induced by indole-3-acetic acid in sections of elongating hypocotyls of mung bean (Vigna radiata)[J]. Plant Cell Physiology,1992,33:13-20
    [109]Vande LF, Someville C. Plasmid ω-3 Fatty acid desaturase cDNA from Ricinus communis[J]. Plant Physiology,1994,105:443-444
    [110]Horiguchi G, Fuse T, Kawakami N, et al. Temperature-dependent translational regulation of the ER omega-3 fatty-acid desaturase gene in wheat root tip[J]. Plant Journal,2000,24:805-813
    [111]Murakami Y, Tsuyama M, Kobayashi Y, et al. Trienoic fatty acids and plant tolerance of high temperature [J]. Science,2000,287:476-479
    [112]Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation[J]. Plant Physiology,2002,129:876-885
    [113]Kodama H, Hamada T, Horiguchi G, et al. Genetic enhancement of cold tolerance by expression of a gene for chloroplast omega-3 fatty acid desaturase from Arabidopsis thaliana[J]. Plant Physiology,1994,105:601-605
    [114]王以柔,曾韶西,刘鸿先.冷锻炼对水稻和黄瓜幼苗SOD、GR活性及GSH、AsA含量的影响[J].植物学报,1995,37(10):776-780
    [115]Kasuga M, Mlura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant and Cell Physiology,2004,45:346-350
    [116]Kasuga M, Liu Q, Mlura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nature Biotechnology,1999,17:287-291
    [117]施宝女.温州白银豆[J].上海蔬菜,2001(3):10
    [118]徐少波,叶礼水,郑志兰.大粒利马豆高产栽培技术探讨[J].温州农业科技,1999(2):14-16
    [119]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2004:134-136
    [120]于超.温度胁迫下番茄内质网ω-3脂肪酸去饱和酶基因的表达和功能研究 [D].山东:山东农业大学,2009
    [121]王静,孙磊,张成军,等.杂交稻幼苗期对低温胁迫的生理反应[J].作物学报,2006,32(7):1049-1056
    [122]Frachebound Y, Haldimann P, Leipner J, et al. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize(Zea mays L.)[J]. Journal of Experimental Botany,1999,50:1533-1540
    [123]杨福愉,邢菁如,陈文雯.低温对耐寒与不耐寒玉米线粒体膜的影响[J].生物化学与生物物理学报,1982,14(5):521-524
    [124]杨玲,苏维埃.磷脂酰甘油的热致相变与水稻抗冷性[J].科学通报,1994,39(16):1522-1525
    [125]Raison JK, Chapman EA. Membrane phase changes in chilling-sensitive vigna radiata and their significance to growth[J]. Australian Journal of Plant Physiology,1976,3:291-299
    [126]Dolstra O, Haalstra SR, Vander P, et al. Genetic variation for resistance to low-temperature photoinhibition of photosynthesis in maize (Zea mays L.)[J]. Euphytica,1994,80:85-93
    [127]张继红,陶能国,张小云,等.三种豆科植物总DNA提取方法的比较[J].湖南农业科学,2007(2):31-33
    [128]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].黄培堂译.北京:科学出版社,2003:1688-1692
    [129]陈喜凤,祝建波,张煜新,等.大豆微粒体油酸盐脱饱和酶FAD2基因的克隆及其植物表达载体的构建[J].石河子大学学报,2008,26(2):216-219
    [130]谭晓风,陈鸿鹏,张党权,等.油茶FAD2基因全长cDNA的克隆和序列分析[J].林业科学,2008,44(3):71-75
    [131]罗通,邓骛远,张富丽.植物硬脂酰-酰基载体蛋白脱饱和酶[J].生命的化学,2006,26(2):133-136
    [132]戴晓峰,肖玲,武玉花,等.植物脂肪酸去饱和酶及其编码基因研究进展[J].植物学通报,2007,24(1):105-113
    [133]咸漠,毕颖丽,李文江,等.脂肪酸去饱和酶的结构与催化特性研究进展[J]. 分子催化,2000,14(6):473-476
    [134]罗通.麻疯树的抗冷性和SAD基因的克隆及表达研究[D].成都:四川大学,2006
    [135]李岩,李冠.光叶楮肌动蛋白基因片段的克隆及其序列分析[J].生物技术,2007,17(4):1-3
    [136]周莎莎.基因克隆与表达研究进展[J].现代农业科技,2008,26(2):280-281
    [137]Barsalobres-Cavallari CF, Severino FE, Maluf MP, et al. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions[J]. BMC Molecular Biology,2009,10:1
    [138]陈颖,王刚,赵俊霞.高等植物体内的肌动蛋白[J].生物学通报,2003,38(1):13-15
    [139]Keeler SJ, Boettger CM, Haynes JG, et al. Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean[J]. Plant Physiology,2000, 123:1121-1132
    [140]刘春香,何启伟,赵光强,等.黄瓜ω-3脂肪酸去饱和酶基因cDNA的克隆及表[J].园艺学报,2008,35(9):1357-1362
    [141]Tang S, Guan RZ, Zhang HS, et al. Cloning and expression analysis of three cDNAs encoding omega-3 fatty acid desaturases from Descurainia sophia[J]. Biotechnology Letters,2007,29:1417-1424
    [142]刘训言.番茄叶绿体ω-3脂肪酸去饱和酶(LeFAD7)的克隆及其在温度逆境下的功能分析[D].山东:山东农业大学,2006
    [143]肖钢,张宏军,彭琪,等.甘蓝型油菜油酸脱氢酶基因(fad2)多个拷贝的发现及分析[J].作物学报,2008,34(9):1563-1568
    [144]Shah S, Xin Z, Browse J. Overexpression of the FAD3 in desaturase gene in a mutant of Arabidopsis[J]. Plant Physiology,1997,114:1533-1539

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700