D-乳酸产生菌株的基因敲除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D-乳酸是众多手性物质的合成前体,广泛应用于化工、农业、食品、医药、环保等领域。目前,国际上主要采用乳酸菌发酵生产D-乳酸,发酵原料成本较高且产量较低,导致产品价格较高。与乳酸菌相比较,谷氨酸棒杆菌在厌氧条件下能够以相对简单的原料为底物,达到较高的乳酸生产效率,发酵优势明显,但目前国际上这方面的研究报道很少,本研究利用谷氨酸棒杆菌在厌氧条件下的这一发酵优势,首次在C. glutamicum Res167中进行了D-乳酸代谢途径的改造,敲除L-乳酸脱氢酶基因(L-lactate dehydrogenase , ldh)并完成优势外源D-乳酸脱氢酶表达载体的构建,为实现谷氨酸棒杆菌中高效率、低成本D-乳酸的生产奠定了基础。
     为了得到高纯度的D-乳酸,需要阻断谷氨酸棒杆菌中的L-乳酸代谢途径。因此,本文首先对D-乳酸及L-乳酸代谢途径进行分析,并对L-乳酸脱氢酶基因进行敲除研究。从C. glutamicum Res167基因组中克隆出ldh的上下游同源臂ldh1和ldh2,利用重叠PCR将其拼接成ldh1-ldh2,然后连接到C. glutamicum Res167中的自杀载体pK18mobsacB上,构建了谷氨酸棒杆菌ldh基因敲除载体pK18mobsacBΔldh。将该质粒转化至C. glutamicum Res167中,通过卡那霉素抗性正向筛选和蔗糖培养基反向筛选获得了双交换重组菌株C. gl utamicum Res167Δldh。进行固体平板培养基生长实验,结果显示,C. glutamicum Res167Δldh在以L-乳酸为唯一碳源的基本培养基上不能生长,初步证明了L-乳酸脱氢酶基因的缺失阻断了菌体中L-乳酸的代谢,完成了L-乳酸脱氢酶基因的敲除。
     为了进一步提高谷氨酸棒杆菌中D-乳酸的生产效率,本工作选择来源于保加利亚乳杆菌的D-乳酸脱氢酶(D-lactate dehydrogenase, ldhA)优势异源基因,构建了含有该基因的重组载体pXJM19-ldhA。实验首先对对谷氨酸棒杆菌-大肠杆菌中的穿梭表达载体pXJM 19在谷氨酸棒杆菌中的遗传稳定性进行了研究。经过100代传代培养,结果表明,在抗生素选择压力和无抗生素选择压力下其遗传稳定率分别为98%和94%,表明该表达载体具有较高的遗传稳定性。然后以pXJM19为载体,连入了保加利亚乳杆菌中的D-乳酸脱氢酶基因(D-lactate dehydrogenase, ldhA),完成了重组载体pXJM19-ldhA的构建工作。
D-lactate is an important precursor of many chiral compounds, which have been applied in many fields, such as chemical engineering, agriculture, food industry, pharmacy, e nvironmental pr otection. At p resent, D -lactate is m ainly p roduced b y lactobacillus with t he s hortcoming of hi gh cost and low yield. Corynebacterium glutamate shows obvi ous a dvantages of s imple f eedstock a nd hi gh production i n lactate production by anaerobic fermentation, compared with Lactobacillus. Hence, C. glutamicum was co nsidered a s an ideal hos t f or l actate p roduction. I n t his w ork, D-lactate lactate biosynthesis pathway was reconstructed in C. glutamicum Res167 for th e f irst tim e. T he L-lactate de hydrogenase gene (ldh) w as knocked out successfully. Further, D-lactate d ehydrogenase (ldhA) overexpression v ector w as contrusted. The researches above lay a solid foundation for the high-efficiency and low-cost production of D-lactate.
     In order to obtain D-lactic acid of high purity, the L-lactic acid metabolic pathway needs to be blocked in Corynebacterium gl utamicum. Firstly, th e ldh gene w as knockout in C. glutamicum Res167. The upstream homologous arm of ldh (Ldh1) and downstream homologous arm of ldh (ldh2) were cloned from C. glutamicum Res167 genome and linked by overlap PCR resulted in ldh1-ldh2. Then it was inserted in pK18mobsacB to form the knockout vector. After transformed into C. glutamicum Res167, C. glutamicum Res167Δldh recombinants were screened by positive selection of Kmr, then by reversed selection of sucrose medium. The cultures in plats showed that C. glutamicum Res167Δldh recombinants could not grow in basal medium with the sole carbon source of L-lactate, indicating that the L-lactate metabolism of the microorganism was interrupted owing to the deletion of L-lactate dehydrogenase.
     The pXJM19 is a shuttle expressed plasmid between Corynebacterium glutamate and Escherichia coli. In order to confirm its genetic stability, 100 generations were subcultured. The results showed that stability rates reached to 98% and 94% with and without the antibiotics pressure respectively, which indicated good genetic stability of pXJM19 i n C. gl utamicum Res167. Then, t he e xpression pl asmid pXJM19-ldhA containing heterogeneous ldhA from Lactobacillus bulgaricus was constructed.
引文
[1]曾炜,陈丰秋,詹晓.乳酸的生产技术及其研究进展.化工进展,2006,25(7):744-749
    [2]丁子建.芽孢乳杆菌发酵葡萄糖制备D-乳酸的研究:[硕士学位论文],南京;南京工业大学,2004
    [3] E P Schoorel, M A Gi esberts, W Blom, et al. D-lactic acidosis in a child with short bowel syndrome. Archives of Disease in Childhood, 1980, 55(10): 810-812
    [4]金其荣,金丰秋.乳酸衍生物发展应用新动向.山西食品工业,2002,3:2-5
    [5] Rajgarhia V, Dundon C A, Olson S, et al. Methods and materials for production of D-lactic acid in yeast. 2003, WO, 102201
    [6]蒋木庚,杨红,陈如东等.芳基丙酸类除草剂光学异构的研究.南京农业大学学报,2000,23(2):97-100
    [7]程蓉,钱欣.聚乳酸的改性及应用进展.化工进展,2002,21(11):824-826
    [8] Tsuji H,Horii F,Hyon S H,et al. Stereocomplex formation between enantiomeric Poly(lactic acid)s. 2. S tereocomplex f ormation i n concentrated s olutions. M acromolecules, 1991,24: 2719-2724
    [9] Rethink D. The technology and economy potential of poly (lactic acid) and its ramification. FEMS Microbiology Reviews, 1995, 16: 221-231
    [10]许婷婷,柏中中,何冰芳等.D-乳酸制备研究进展.化工进展,2009,28(6):991-996
    [11] Merrill, N. C. Max, S.D. D-lactic acid-requiring mutant of lactobacillus case. The Journal of Biological Chemistry, 1952(9): 621-628
    [12] Kithara, K. Method for producing lactic acid with Sporolactobacillus. US patent, No.3262862, 1966
    [13] Demirci A, Pometto AL. Enhanced production of D(-)-lactic acid by mutants of Lactobacillus delbrueckii ATCC 9649. Journal of Industrial Microbiology. 1992(11): 23-28
    [14] Ha rtmut V, Di eterk S. P rocess f or t he pr oduction of D -lactic a cid w ith the u se of Lactobacillus bulgaricus DSM 2129. US patent, 4467034, 1984
    [15] Hubertus V. Procedure for the preparation of D(-)-lactic acid with lactobacillus bulgaricus. US patent, 5322781, 1994
    [16] Shahbazi A, Salameh M M, Ibrahim S.A. Immobilization of Lactobacillus helveticus on a spiral-sheet bioreactor for the continuous production of lactic acid. Milchwissenschaft-Milk Science International, 2005, 60(3): 253-256
    [17] W ee YJ , Ki m J N, R yu H W. Biotechnological p roduction o f lactic aci d a nd its recent applications. Food Technology and Biotechnology, 2006, 44: 163-172
    [18] Guyot J P, Calderon M, Morlon-Guyot J. Effect of pH control on lactic acid fermentation ofstarch b y Lactobacillus manihotivorans L MG 18010T. Journal of A pplied Microbiology, 2000, 88:176-182
    [19] Kondo A. Efficient production of L-(+)-lactic acid from raw starch by Streptococcus bovis 148. Journal of Bioscience and Bioengineering, 2004, 97: 423-425
    [20] Hofvendahl K, Hahn-H?gerdal B. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 2000, 26: 87-107
    [21] Okano K, Kimura S, Narita J, et al. Improvement in lactic acid production from starch usingα-amylase-secreting L actococcus lactis cel ls a dapted to m altose o rstarch. Applied Microbiology and Biotechnology, 2007, 75: 1007-1013
    [22] Se rror P, Sasaki T, Ehrlich SD, et a l. Electrotransformation of Lactobacillus delbrueckii subsp. b ulgaricus and L.delbrueckii s ubsp. lactis with v arious p lasmids. Applied an d Environmental Microbiology, 2002, 68: 46-52
    [23] Okano K, Zhang Q, Shinkawa S, et al. Efficient production of optically pure D-lactic acid from raw corn starch by using genetically modified L-lactate dehydrogenase gene-deficient and a -amylase-secreting L actobacillusplantarum strain. Applied a nd Environmental Microbiology, 2009, 75: 462-467
    [24] Lu ZD, Lu MB, He F et al. An economical approach for D-lactic acid production utilizing unpolished rice from aging paddy as major nutrient source. Bioresource Technology. 100: 2026-2031
    [25] Adsul M, Khire J, Bastawde K et al. Production of lactic acid from cellobiose and cellot- riose by Lactobacillus delbrueckii mutant Uc-3. Applied and Environmental Microbiology, 2007,73:5055 -5057
    [26] Okano K, Zhang Q, Yoshida S et al. D-Lactic acid production from cellooligosaccharides andβ-glucan using L-LDH gene-deficient and endoglucanasesecreting Lactobacillus plantarum. Applied Microbiology and Biotechnology, (in press), 2009c
    [27] H elanto M, K iviharju K , L eisola M , et al . A Metabolic e ngineering o f Lactobacillus plantarum for production of L-ribulose. Applied and Environmental Microbiology, 2007, 73: 7083-7091
    [28] T anaka K, K omiyama A , S onomoto K , et a l. Two d ifferent p athways fo r D -xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid f ermentation b y th e la ctic acid b acterium Lactococcus la ctis IO-1. Applied Microbiology and Biotechnology, 2002, 60: 160-167
    [29] Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A. Efficient production of optically pure D-lactic acid from raw corn starch by using genetically modified L-lactate dehydrogenase g ene-deficient andα-amylase-secreting Lactobacillus p lantarum strain. Applied and Environmental Microbiology, 2009b, 75: 462-467
    [30] Okano K, Yoshida S, Tanaka T, et al. Homo D-lactic acid fermentation from arabinose by redirection of phos phoketolase pa thway t o p entose phosphate pathway i n L-lactate dehydrogenase g ene-deficient Lactobacillus pl antarum. Applied a nd Environmental Microbiology, 2009a, 75 (15): 5175-5178
    [31] Ohara H, Owaki M. Sonomoto K. Xylooligosaccharide fermentation with Leuconostoc lactis. Journal of Bioscience and Bioengineering, 2006, 101: 415-420
    [32] Zhou S, Causey TB, Hasona A, et al. Production of optically pure D-lactic acid in mineral salts m ediumby metabolically e ngineered Escherichia co li W3110. Applied a nd Environmental Microbiology, 2003, 69: 399-407
    [33] Chang DE, Jung HC, Rhee JS, et al. Homofermentative productio n of D- or L-lactate in metabolically engineered Escherichia coli RR1. Applied and Environmental Microbiology, 1999,65: 1384-1389
    [34] Po rtnoy VA, He rrgard M J, Pa lsson B O. Fe rmentation of D -Glucose by an E volved Cytochrome Oxidase-Deficient Escherichia co li Strain. Applied a nd Environmental Microbiology, 2008, 74: 7561-7569
    [35] P orro D , Br ambilla L , R anzi B M, et a l. Development o f metabolically en gineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnology Progress, 1995, 11: 294-298
    [36] A dachi E, T origoe M, S ugiyama M, et a l. Modification o f metabolic p athways o f Saccharomyces cer evisiaeby th e expression o f l actate d ehydrogenase and d eletion of pyruvate decarboxylase genes for the lactic acid fermentation atlow pH value. Journal of Fermentation and Bioengineering, 1998, 86:284-289
    [37] Ishida N, Saitoh S, Tokuhiro K, et al. Efficient production of L-lactic acid by metaboli- cally engineered Sacchromyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene. Applied and Environmental Microbiology, 2005, 71: 1964-1970
    [38] S aitoh S , I shida N , Onishi T , et a l. Genetically en gineered w ine y east producesa high concentration of L-lactic acid of extremely high opticalpurity. Applied and Environmental Microbiology, 2005, 71:2789–2792
    [39] Ishida N, Suzuki T, Tokuhiro K, et al. D-lactic acid production by metabolically engineered Sacchromyces cerevisiae. Jouanal of Bioscience and Bioengineering, 2006, 101:172-177
    [40] Ishida N, Saitoh S, Onishi T, et al. The effect of pyruvate decarboxylase gene knockout in Sacchromyces cer evisiae on L -lactic aci d production.Bioscience Biotechnology a nd Biochemistry, 2006, 70:1148-1153
    [41] Tokuhiro Tokuhiro K, Ishida N, Nagamori E, et al. Double mutation of the PDC1 and ADH1 genes improves lactate p roduction in th e yeast Saccharomyces cer evisiae expressing th e bovine l actate d ehydrogenase g ene. Applied Microbiology a nd Biotechnology, 2009, 82: 883-890
    [42] H ofvendahl K , A kerberg C, Z acchi G , et al . Simultaneous e nzymatic wheat s tarch saccharifiaction and fermentation to lactic acid by Lactococcus lactis. Applied Microbiology and Biotechnology, 1999, 52: 163-169
    [43] H ofvendahl K , H ahn-H?gerdal B. L -lactic a cid p roduction f rom w hole-wheat s tarch hydrolysate using strains of Lactobacilli and Lactococci. Enzyme and Microbial Technology, 1997, 20: 301-307
    [44] Linko Y, Javanainen P . S imultaneous li quefaction s accharification an d l actic ac id fermentation on barley starch. Enzyme and Microbial Technology, 1996, 19: 118-23
    [45] Rojan PJ, Nampoothiri KM, Nair AS, et al. L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnology Letters, 2005,27: 1685-1688
    [46] Yanez R, Alonso JL, Parajo JC. D-lactic acid production from waste cardboard. Journal of Chemical Technology & Biotechnology , 2005,80: 76-84
    [47] Oh H, Wee YJ, Yun JS, et al. Lactic acid production from agricultural resources as cheap raw materials. Bioresource Technology, 2005, 96: 1492-1498
    [48] Tokuhiro K, Ishida N, Kondo A, et al. Lactic fermentation of cellobiose by a yeast strain displayingβ-glucosidase on the cell surface. Applied Microbiology and Biotechnology, 2008, 79: 481-488
    [49] Kinoshita, S., Udaka, S., and Shimono, M. Studies of the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. Applied Microbiology, 1957, 3: 193-205
    [50] S hiio, I . Nakamori, S . Micr obial p roduction of L -threonine. Pa rt II. Pro duction byα-amino-β-hydroxyvaleric ac idresistant m utants of g lutamate producing b acteria. Agricultural Biology and Chemistry, 1970, 34: 448-456
    [51] S hohei O kino, Masayuki I nui, H ideaki Y ukawa. Production of or ganic a cids by Corynebacterium gl utamicum under oxygen de privation, Applied Microbiology a nd Biotechnology, 2005, 68: 475-480
    [52] S hohei Okino M asako S uda, K eitaro F ujikura et a l.Production of D-lactic acid b y Corynebacterium g lutamicum under oxygen de privation. Applied Microbiology a nd Biotechnology, 2008, 78: 449-454
    [53] Schgfer, Andr eas Tauch, Wolfgang Jsger, et al. Small mobilizable multi-purpose cloning vectors derived f rom t he E scherichia co li p lasmids pK18 an d p K19 selection o f d efined deletions in the chromosome of Corynebacterium glutumicum. Gene, 1994, 145: 69-73
    [54] Marc Jakoby, Carole-Estelle, Ngouoto-Nkili Andreas, et al. Construction and application of new Corynebacterium glutamicum vectors. Biotechnology Techniques, 1999, 13: 437–441
    [55] Dequin S, Baptista E, Barre P. Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains g enetically en gineered to produce l actic ac id. A merican Journal of Enology and Viticulture, 1999, 50: 45–50
    [56] Schwarzer A, Puhler A. Manipulation of Coryrnebacterium glutamicum by gene disruption and replacement. Biotechnology, 1991, 9: 84-87
    [57]沈天翔,那淑敏,肖文中等.棒状类细菌电击转化中多种条件对转化效率的影响.生物工程学报,1995,11(3):245-249
    [58] M. E.van der Rest, C.Lange , D.Molenaar. A heat shock following electroporation induces highly ef ficient tr ansformation o f Corynebacterium g lutamicum with xenogeneic p lasmid DNA. Applied Microbiology and Biotechnology, 1999, 52: 541-545
    [59] Tauch A, Kirchner O. Tools for genetic engineering in the aminoacid-producing bacterium Corynebacterium glutamicum. Journal of Biotechnology, 2003, 104: 287-299
    [60] Tauch A, Kirchner O, Loftier B, et a1. Efficient electrotransform ation of Corynebacteriumdiphtheriae w ith a m inireplicon derived f rom th e Corynebacterium g lutamicum plasmid pGA1. Current Microbiology, 2002, 45: 362-367
    [61] Bailey, C. R., J. D. Winstanley. Inhibition of restriction in Streptomyces clavuligerus by heat treatment. Journal of General Microbiology, 1986, 132: 2945-2947
    [62] Satta, G., J. G. Lorraine, A. B. Pardee. Degradation of Escherichia coli DNA: evidence for limitation in vivo by protein X, the recA gene product. Molecular and General Genetics, 1979, 168: 69-80
    [63] Andreas Schafer, Jurn Kalinowski ,Alfred Puhler. Increased Fertility of Corynebacterium glutamicum Recipients in Intergeneric Matings with Escherichia coli after Stress Exposure . Applied and Environmental Microbiology, 1994, p. 756-759
    [64] Xi-Hui S hen, C heng-Ying J iang, Yan H uang, et a l. Functional I dentification of G enes Involved in the Glutathione-Independent Gentisate Pathway in Corynebacterium glutamicum. Applied and Environmental Microbiology, July 2005, p. 3442–3452
    [65] Andreas Schafer, Jorn Kalinowski, Reinhard Simon, et al. High-Frequency Conjugal Plasmid Transfer fro m Gram-Negative E scherichia co li t o V arious G ram-Positive Co ryneform Bacteria. Journal of Bacteriology, 1990, p. 1663-1666
    [66]汪川,张朝武,杜江等.表达型质粒载体pMG36e在宿主菌中的遗传稳定性研究.卫生研究,2005,34(2):214-216
    [67]陈世和,陈建华,千上芬等.微生物生理学原理.上海:同济大学出版社,1992.273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700