悬浮培养重组中国仓鼠卵巢细胞CHO-C12表达抗EGFRvⅢ嵌合抗体C12研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌合抗体C12具有对EGFRvⅢ表达阳性肝癌的潜在治疗价值。本论文对表达该C12抗体的的rCHO-C12细胞进行了无血清悬浮培养驯化,并对其在体外培养的生长代谢特性及在生物反应器中的流加补料和灌注培养工艺进行了初步研究。
     1)采用直接降血清方法对rCHO-C12细胞进行了无血清驯化。rCHO-C12细胞完全适应EX302无血清培养条件后,最大细胞密度可达到6×106cells/mL;降血清后对数生长期内抗体C12的比产率略有降低;同时对该rCHO-C12细胞在EX302(JRH),CHO-CD (Gibco), SAF-CHO-G-001(清大有为)三种培养基中的生长曲线的比较,CHO-CD (Gibco)对rCHO-C12具有更好的细胞培养性能(如细胞存活率和最大活细胞密度),但从经济和实验性能比较,EX302更适合于该CHO细胞在生物反应器内的大规模培养。
     2)比较了rCHO-C12细胞分别在摇瓶和5L生物反应器分批培养时的生长代谢及抗体表达特性。结果表明:(1)该细胞在生物反应器中培养时细胞生长最大密度为4×106cells/mL, C12抗体最高表达量达到190mg/L,其均约为摇瓶批培养细胞密度和抗体表达水平的2/3;(2)在生物反应器中批培养时葡萄糖的限制浓度在6mmol/L左右,而谷氨酰胺限制性浓度为1mmol/L左右。同时发现部分氨基酸如Asp、Glu、Asn、Cys、Thr、Met、Trp、Ser、Ile、Leu、Lys比消耗速率较大,并且Asp、Glu、Asn在细胞生长期耗竭,这可能是影响细胞在生物反应器中最大活细胞密度及抗体表达量的一个重要因素。这为建立氨基酸平衡流加培养提供了基础。
     3)建立了rCHO-C12细胞生物反应器中流加培养和灌注培养等方式高效表达C12抗体。结果表明:(1)氨基酸平衡流加培养和灌注培养有利于维持高细胞存活率,以延长培养周期;(2)与流加培养方式相比,灌注培养的底物的细胞得率((YVx/Gluc和YVx/Glun)和底物形成抗体C12的得率系数(YAb/gluc和YAb/glun)均最大,分别为13.87×108cells/g、291.94×108cells/g、44.72mg/g和721.40 mg/g,而且灌注培养获得的总抗体量最多,达到1854mg,而氨基酸平衡流加培养达到的总抗体浓度最大,为282mg/L;同时,发现灌注培养代谢副产物乳酸和氨的最大浓度仅分别为15mmol/L和3.8mmol/L,低于其它培养方式。因此,灌注培养方式是rCHO-C12细胞表达抗体C12的最佳培养方式。
The mouse-human chimeric anti-EGFRvIII antibody C12 was expressed by recombinant CHO-C12 cells, which has potentials to be used as therapeutics solely or conbination with 5-fluorouracil(5-FU) for the treatment of EGFRvIII-positive Hepatocellular carcinoma (HCC). In this thesis,the adaption of rCHO-C12 cells growth to serum-free midium was carried out and culture characterastics of rCHO-C12 cells were investigated. Additionally, three bioprocesses including batch, fed-batch and perfusion bioprocesses have been developed for antibody C12 production in suspension culture.
     1) Direct adaption of rCHO-C12 cells growth to EX302 serum-free medium was established. The peak cell density of 6×106cells/mL was achieved when rCHO-C12 cells was cultured in EX302 serum-free medium. It was observed that the specific antibody C12 formation rate of rCHO-C12 cells cultivated in serum-free medium was slighly lower than that obtained with serum medium at exponential phase. The serum-free medium CHO-CD is better for rCHO-C12 cells with higher performances in viable cell density among the three test media CHO-CD (Gibco), EX302(JRH), SAF-CHO-G-001 (Qingdayouwei,China).Economically and experimentally, EX302 were more suitable for CHO-C12 cells large-scale culture in bioreactor.
     2) Culure performances like cell growth characterization and C12 production of rCHO-C12 cells cultured in shake flasks culutre and in a 5L bioreactor were investigated. The results showed that the maximum cell density and highest antibody concentration of rCHO-C12 cells batch-cultured in a 5L bioreactor were 4×106cells/mL and 190mg/L, respectively, which were approximately 70% of the values obtained in shake flasks culture. Also, the limited glucose and glutamine concentrations in bioreactor were 6mmol/L and 1mmol/L for rCHO-C12 cells growth, respectively. Regarding metabolic by-products lactate, ammonia and alanine accumulation in bioreator were remarkably lower than that in shake flasks. In addition, the specific consumption rate of the following consuming amino acids: Asp, Glu, Asn, Cys, Thr, Met, Trp, Ser, Ile, Leu in bioreactor culture were higher than that in shake flasks except to Ile and Leu. Especially, three amino acids including Asp、Glu、Asn was consumeded to depletion at early growth phase, resulting in limitation in cell growth and antibody production. Based on these results, a balanced amino-acid fed-batch bioprocess was developed.
     3) Fed-batch and perfusion bioprocesses in bioreator were successfully developed for antibody C12 production. The results showed that (1) compared with the batch culture mode, fed-batch and perfusion culture modes could effectively maintain higher cells viability so as to extend the cell culture duration; (2) The maximum mean yield coefficients like YVx/Gluc of 13.87×108cells/g,YVx/Glun of 291.94×108cells/g, YAb/gluc of 44.72mg/g and YAb/glun of 721.40 mg/g were achieved in perfusion culture mode with the highest total amount of antibody C12 of 1854mg, however, the maximum C12 Ab concentration of 282mg/L was reached in balanced amino acid fed-batch bioprocess. Besides, it was observed that the metabolic by-products lactic acid of 15mmol/L and ammonia of 3.8 mmol/L were lowest for perfusion culture among three developed culture processes. Therefore, perfusion culture mode could be the optimum bioprocess for antibody C12 production by rCHO-C12 cells.
引文
[1]Parkin D.M., Stjernsward T., Muir C.S. Estimates of the Worldwide Frequency of Twelve Major Cancers[J]. Bull World Health Organ.1984,62:163-82.
    [2]El-Serag H.B., Andrew C. Mason, M.D. Epidemiology of Hepatocellular Carcinoma[J]. Clin Liver Dis.2001,(5):87-107
    [3]Yoo H.Y., Patt C.H., Geschwind J.F., Thuluvath P.J. The Outcome of Liver Transplantation in Patients with Hepatocellular Carcinoma in the United States between 1988 and 2001:5-year Survival has Improved Significantly with Time[J]. J Clin Oncol 2003,21:4329-4335.
    [4]Zhu A.X. Systemic Therapy of Advanced Hepatocellular Carcinoma:how Hopeful should we be[J]?]. The oncologist.2006,11(7):790-800
    [5]包国强,马永久.嵌合轻链为模板导向筛选人源性抗肝癌抗体重链Fd片段[J].中国肿瘤生物治疗杂志.2004,11(3):161-165
    [6]Hoston J.S., Levinson D., Mudgett H.M.,et al. Protein Engineering of Antibody Binding Sites:Recovery of Specific Activity in an Anti-digoxin Single-chain Fv Analogue Produced in E.coli[J]. Proc Natl Acad Sci USA.1988,85:5879-5883
    [7]Kroesen B.J., Wellenberg G.J., Bakker A., et al. The Role of Apoptosis in Bispecific Antibody-mediated T cell Cytotoxicity[J]. Br J Cancer.1996,73(6):721-727
    [8]陈志南.肝癌单克隆抗体HAb 18在人体肝癌导向诊断中的意义和作用[J].中华肿瘤杂志.1992,14(1):9-12.
    [9]胡德海,赵绍林,赵文海.肝癌患者血清P53抗体检测的临床意义[J].临床肝胆病杂志.2008,24(1),17-18
    [10]Modjtahedi D.C. theReceptor for EGF and its Ligands:Expression,Progostic Value and Target for Therapy in Cancer[J]. Int H Oncol.1994(5):277-296
    [11]Nicholson R.I., Gee J.M., Harper M.E.. EGFR and Cacer Prognosis[J].Eur H Cancer.2001,37(4):9-15
    [12]Frederick L. Eley G., Wang X.Y., James C.D., Analysis of Genomic Rearrangements Associated with EGFRvIII Expression Suggests Involvement of Alu Repeat Elements[J]. Neuro-oncology.2000(2):159-163
    [13]Olapade-Olaopa E.O., Moscatello D.K., Mackay E.H., et al. Evidence for the Differential differential Expression expression of a Variant variant EGF Receptor receptor Protein protein in Human human Prostate prostate Cancercancer[J]. British journal of cancer.2000,82:186-194
    [14]Archer G.E., Sampson J.H., Lorimer I.A., et al. Regional Treatment of Epidermal Growth Factor Recptor vⅢ-expressing Neoplasic Meningitis with a Single-chain Immunotoxin,MR-1[J].Clin Cancer.1999,(5):2646-2652
    [15]Modvsyrllo D.K., Holgado-Madruga M., Gpdwom A.K., et al. Frequent Expression expression of Amutant amutant Epidermal epidermal Growth growth Factor factor Receptor receptor in Multiple multiple Human human Tumorstumors[J].Cacer research.1995,55:5536-5529
    [16]Batra S.K., Castelino-Prabhu S., Wikstrand C.J., et al. Epidermal Growth Factor Ligand-independent,Unregulated, Cell-transforming Potential of a Naturally Occurring Human Mutant EGFRvIII Gene[J]. Cell Growth Differ.1995,(6):1251-1259
    [17]Garcia de Palazzo I.E., Adams GP., Sundareshan P., et al. Expression of Mutated Epidermal Growth Factor Receptor by Non-small Celllung Carcinomas[J].Cancer research.1993,53:3217-3220
    [18]王华茂.抗EGFRvIII单克隆抗体制备及其在肝癌治疗中的应用[D]:复旦大学,2009博士学位论文.
    [19]Hitt R., Martin P.,et al.Cetuximab Insquamous Cell Carcinoma of Thehead and Neck[J].Future oncology(london,England).2006,(2):449-457
    [20]Lynch D.H., Yang X.D.,Jherapeutic Potential of ABX-EGF:a fully Human Anti-epidermal Growth Factor Receptor Monlcoclonal Antibody for Cancer Treatment[J].seminars in oncology.2002,29:47-50
    [21]Herbst R.S., Kim E.S., Harari P.M.. IMC-C225 Anti-epidermal Growth Factor Receptor Monoclonal Antibody, for Treatment of Head and Heck Cancer[J]. Expert opinion on biological therapy.2001,(1):719-732
    [22]stragliotto G., Vega F., Stasiecki P.,et al.Multiple Infusions of Anti-epidermal Growth Factorreceptor(EGFR) Monoclonal Antibody Inpatients with Recurrent Malignant Gliomas[J].Eur J Cancer.1996,32:636-640
    [23]LeMaistre C.F., eneghettiC.M, Howes L., et al. Targeting the EGF Receptor in Breast Cancer Treatment[J].Breast cancer research and treatment.1994,32:97-103
    [24]Trill J.J., Shatzman A.R., et al. Production of Monoclonal Antibodies in COS and CHO cells[J].Current opinion in biotechnology.1995,6:553-560
    [25]刑金良,陈志南,米力等.高效表达肝癌相关抗原HAb18G的CHO细胞株的建立[J].TUMOR(Shanghai).2001,21 (1):4-7
    [26]李丙所,马龙洋.人源肝癌单链抗体(scFv)基因真核表达载体的构建和表达[J].细胞与分子免疫学杂志.2008,24(5):493-494
    [27]Barnes D.,masui H.Human Cells in Serum-free Medium[J].Biomedicine.1981,34:67-70
    [28]Sato G, Barnes D.Methods for Growth of Cultured Cells in Serum-free Medium[J]. AnalBiochem.1980,102:255-270
    [29]JaymeD., Shawn W. Smith R.. Media Formulation of Options and Manufacturing Process Controls to Safeguard against Introduction of Animal Origin Contaminants in Animal Cell Culture[J]. Cytotechnol.2000,33(1):27-36
    [30]Nguyen C.B.,Szonyi E.,Sadick M.D.,Hotaling T.E.. et al. Stability and Interactions of Recombinant Human Growth Factor in Deferent Biological Matrices in Vitro and in Vivo Studies[J]. Am Soc pharm Exp Therapy.2000,28:590-597
    [31]藤小诺.重组CHO细胞无血清培养[D]:华东理工大学.2008硕士学位论文.
    [32]刘文献,贾倩.产HBsAg CHO细胞无血清培养研究[J].中国生物工程杂 志.2002,22(4):93-96
    [33]Pohlscheidt M., Langer U., Minuth T., Bodeker B., et al.,Development and Optimisation of a Procedure for the Producion of Parapoxvirus ovis by Large-scale Microcarrier Cell Culture in a Non-animal, Non-plant-derived Medium[J].Vaccine. 2008,26:1552-1565
    [34]Kalil S. J., Maugeri F., Rodrigues M. I.. Response Surface Analysis and Simulation as a Tool for Bioprocess Design and Optimization[J]. Process Biochemistry. 2000,35:539-550
    [35]Vohra, Satyanarayana T.. Statistical Optimization of the Medium Components by Response Surface Methodology to Enhance Phytase Production by Pichia anomala[J]. Process Biochemistry.2002,37:999-1004
    [36]Sinacore N., Charlebois T., Harrison S., rennan S. B. et.al.Adamson. CHO DUKX cell Lineages Preadapted to Growth in Serum-free Suspension Culture Enable Rapid Development of Cell Culture Processes for the Manufacture of Recombinant Proteins[J]. Biotechnol. Bioeng.1996,52(4):518-528
    [37]Dee K.,. Shuler M. L, Wood. H. A. Inducing Single-cell Suspension of BTI-TN5B1-4 Insect Cells:Use of Sulfated Polyanions to Prevent Cell Aggregation and Enhance Recombinant Protein Production. Biotechnol. Bioeng.1997,54(3):191-205
    [38]Cruz, H. J.. Dias E. M, Moreira J. L., et.al. Cell-dislodging Methods under Serum-free Conditions[J]. Applied Microbiol. Biotechnol.1997,47(5):482-488
    [39]Kretzmer G.. Industrial processes with animal cells[J]. Applied Microbiology And Biotechnology.2002,59(2-3):135-142
    [40]Leclerc E., David B., Griscom L., Lepioufl B.e, et.al. Perfusion Culture of Mammalian Cells in Microfluidic Environments for Tissue Engineering Applications[J]. Houille Blanche-Revue Internationale De L Eau.2006,(3):56-63
    [41]Kretzmer G..Industrial Processes with Animal cells[J]. Applied Microbiology And Biotechnology.2002,59(2-3):135-142
    [42]Bibila T.A., Robinson D.K.In pursuit of the Optimal Fed-batch Process for Monoclonal Antibody Production[J].Biotechnol.Prog.1995,11:1-13
    [43]Bibila,T.A., Ranucci, C.S., Glazomitsky K., et al.,Monocloal Antibody Process Development using Medium Concentrates[J].Biotechnol.Prog.1994,(10):87-96
    [44]Xie,L. Wang DIC,et al.,High Cell Density and High Monoclonal Antibody Production through Medium Desigh and Rational Control in a Bioreactor[J].Biotechnol.Bioeng. 1996,51:725-729
    [45]DeZengotita,V.M. Phosphate Feeding Improves High-cell-concentration NSOmyeloma Culture Performance for Monoclonal Antibody Production.Biotechnol[J].Bioeng. 2000,69:566-576
    [46]高量,游磊rCHO细胞在葡萄糖限制流加培养过程中的生长与代谢特性[J].高校化学工程学报,2006.2,20(1):74-79
    [47]Chu L.,Robinson,D.K. Industrial Choices for Protein Production by Large-scale Cell Culture. Curr.Opin.Biotechnol.2001,(1)2:180-187
    [48]Yang J.D., Angelillo Y., Chaudhry M., Goldenberg C.,Goldenberg D.M., Achievement of High Cell Density and High Aantibody Productivity by a Controlled-fed Perfusion Bioreactor Process. Biotechnol. Bioeng.2000,69(1):74-82.
    [49]Konstantinov K.B., Tsai Y, Moles D., Matanguihan, R., Control of Long-Term Perfusion Chinese Hamster Ovary Cell Culture by Glucose Auxostat. Biotechnol.1996, 12:100-109.
    [50]Castilho L.R., Anspach F.B., Deckwer W.D., Comparison of Affinity Membranes for the Purification of Immunoglobulins. Biotechnol.2002,18:776-781.
    [51]Ryll T., Dutina G., Reyes A., Gunson J., Krummen L.,EtcheverryT., Performance of Small-scale CHO Perfusion Cultures Uusing an Acoustic Cell Filtration Device for Cell Retention:Characterization of Separation Efficiency and Impact of Perfusion on Product Quality. Biotechnol. Bioeng.2000,69:440-449.
    [52]Garber K., rFactor VIII Deficit Questioned. Biotechnol.2000,18:1133.
    [53]孙明波,李卫东等,生物反应器培养CHO细胞的生长与代谢研究[J].云南大学学报(自然科学版).2002,24(5):388-392
    [54]Mancuso S. T., Sharfsfein S.,Tucker N.. Examination of Primary Metabolic Pathways in a Murine Hybridoma with C13 Nuclear Magnetic Resonance Spectroscopy[J]. Biotechnol. Bioeng.1994,44:563-585
    [55]Siegwart P., Cote J., Male K., Luong J. H. T., Perrier M., Kamen A.. Adaptive Control at Low Glucose Concentration of HEK-293 Cell Serum-free Cultures[J]. Biotechnology Progress.1999,15(4):608-616
    [56]Elias C. B., Carpentier E., Durocher Y., Bisson L., Wagner R., Kamen A.. Improving Glucose and Gluamiue Metabolism of Human HEK 293 and Trchoplusia ni Insect Cells Engineered to Express a Cytosolic Pyruvate Carboxylase Enzyme[J]. Biotechnology Progress.2003,19(1):90-97
    [57]Lee Y Y, Yap M. G. S., Hu W. S., Wong K. T. K.. Low-glutamine Fed-batch Cultures of 293-HEK Serum-free Suspension Cells for Adenovirus Production[J]. Biotechnology Progress.2003,19(2):501-509
    [58]Law M. S.. Effect of Ammonium and Lactate on Growth and Metabolism of a Recombinant CHO Cell Culture[J]. Biotechnol. Prog.1997,13:688-691
    [59]Ryll T.. Biochemistry of Growth Inhibition by Ammonium ions in Mammalian Cells[J]. Bioctechnol. Bioeng.1994,44:184-193
    [60]Liu S. J., Carroll M., Iverson R., Valera C., Vennari J., Turco K., Piper R., Kiss R., Lutz. H. Development and Qualification of a Novel Virus Removal Filter for Cell Culture Applications. Biotechnology Progress.2000,16(3):425-434
    [61]Dowd J. E., Jubb A., Kwok K. E., Piret J. M.. Optimization and Control of Perfusion Cultures using a Viable Cell Probe and Cell Specific Perfusion Rates. Cytotechnology. 2003,42(1):35-45
    [62]Hwang E. Y., Pappas D., Jeevarajan A. S., Anderson M. M.. Evaluation of the Paratrend Multi-analyte Sensor for Potential Utilization in Long-duration Automated Cell Culture Monitoring. Biomedical Microdevices.2004,6(3):241-249
    [63]Shinobu Kuwae,Toyoo Ohda,et al.,Development of a Fed-Batch Culture Process for Enhanced Production of Recombinant Human Antithrombin by Chinese Hamster Ovary Cells[J].Journal of Bioscience and Bioengineering.Vol.100,No.5,502-510.2005
    [64]Yoon,S.K.,Choi,S.L.,et al.,Effect of Culture pH on Erythroprotein Production by Chinese Hamster Ovary Cells Grown in Suspension at 32.5 and 37.0℃[J].Biotechnol.Bioeng.2005,89:345-356
    [65]冯磊,人胚胎肾细胞(HEK-293)悬浮培养及瞬时转染制备重组腺相关病毒(rAAV)的初步研究(D):华东理工大学,2007博士学位论文
    [66]Fabiana R.X.Batista,et al.,Influence of Culture Conditions on Recombinant Drosophila melanogaster S2 Cells Producing Rabies virus Glycoprotein Cultivated in Serum-free Medium[J].Biological.2009,37:108-118
    [67]Soo Hean Gary Khoo,Mohamed Al-Rubeai.,Metabolic Characterization of a Hyper-productive State in an Antibody Producing NSO Myeloma Cell Line[J]. Metabolic Eingineering.2009,11:199-211
    [68]Kooistra T., Den Berg J, et al.Butyrate Stimite Tissue Type Plasminogen-activator Synthesis in Cultured Human Endothetla CelIs[J]. Biochem J.1987,247:605-612.
    [69]Andrew J.D., Louise C.W., Randal J.K. Increased Synthesis of Secreted Proteins Induces Expression of Glucose-regulated Proteins in Butyrate Treated CHO cells:[J]. J Biol Chem.1989,264:20602-20607
    [70]周玲,孙详明.丁酸钠对重组CHO细胞生长及产物EPO表达的影响[J].华东理工大学学报,2001.06,27(3):310-314
    [71]马军,董艳秋等.丁酸钠和丙酸钠对工程CHO细胞生长代谢和嵌合抗体表达的影响[J].中国生物工程杂志China Biotechnology.2005,25(10):12-16
    [72]黄剑锋,张元兴等,柠檬酸对CHO细胞生长和代谢的影响[J].华东理工大学学报(自然科学版),2006.05,32(5):556-560
    [73]黄珍玉,李军辉等DMSO处理后中国仓鼠卵巢细胞的蛋白质组变化分析[J]。复旦学报(自然科学版),2005,22(04):607-613
    [74]Dinnis D. M., James D. C.. Engineering Mammalian Cell Factories for Improved Recombinant Monoclonal Antibody Production:Lessons from Nature[J]? Biotechnol. Bioeng.2005,91(2):180-189
    [75]Kalyanpur M.. Downstream Processing in the Biotechnology Industry[J]. Molecular Biotechnology.2002,22(1):87-98
    [76]Sinacore M. S., Drapeau D., Adamson S. R.. Adaptation of Mammalian Cells to Growth in Serum-free Media[J]. Molecular Biotechnology.2000,15(3):249-257
    [77]高红亮,丛威,欧阳藩.Vero细胞批式培养中的氨基酸代谢[J].生物工程学报,2001,1(2):176-179
    [78]Ozturk S.S, Palsson R.M.BO, Effects of Ammonia and Llactate on Hybridoma Growth, Metabolism, and Antibody Production[J]. Biotechnol Bioeng, 1992,39:234-239
    [79]Ljunggren J., Haggstrom L. Glutamine Limited Fed-batch Culture Reduces Ammoniumion Production in Animal Cells[J] Biotechnol Lett,1990,12:705-710.
    [80]华平,王建超,周燕,邹勇,谭文松.体外培养方式对猪睾丸细胞代谢的影响[J].中国兽医科技.2007,39(6):34-35
    [81]Dai M. S., Liu T.Q..A Study of the Metabolism Parameters of NSCs[J].Tissue Engineering,2002,12 (4):101-110
    [82]辛艳,杨艳,李强,孔健,曹竹安.谷氨酞胺在杂交瘤细胞培养中的降解与代谢[J].生物工程学报,2001,17(4):478-480
    [83]梁实.U937,K562白血病细胞的氨基酸代谢[J],解放军医学杂志.1995,20(2):127-128
    [84]Cruz H J,Ferrelre A S, et al.,Metabolic Response to Different Glucose and Glutamine Levels in Baby Hamster Kinsney Cell Culture[J].Appl, microbiol biotechnol.1999,51: 579-595
    [85]Zielke H.R,Orznd P.T.,Titdon J., et al.,Reciprocal Regulation of Glucose and Glutamine Utilization by Cultured Human Diploid Fibroblasts[J]. Cell Physical.1978, 95:41-48
    [86]Hu W.S.,Oberg M. G.. Monitoring and Control of Animal Cell Bioreactors:Biochemical Engineering Considerations[J].Bioprol Technol.1990,10:451-481
    [87]孙详明,张元兴等.氨对重组CHO细胞培养时细胞代谢的影响[J].生物工程学报,2001,17(3):304-309
    [88]Cruz H.J., Freitas C.M., Alves P.M.,et al. Efects of Ammonia and Lactate on Growth, Metabolism, and Productivity of BHK Cells[J]. EnzymeMicrobiol Technol,2000,27: 43-52
    [89]Hassell T., Gleave S., Bufer M.. Growth Inhibition in Animal Cell Culture:The Effect of Ammonia and Lactate[J]. Appl Biochem Biotechnol,1991,30:29-41
    [90]张芳,易小萍.重组CHO-GS细胞降低氨毒副作用的代谢研究[J].生物工程学报,2006,22(1):94-102
    [91]Chotteau V., Wahlgren C. Contents Virus Production in Vero Cells with Serum-free Medium[J]. Biotechnology Progress.1995,11(1):1-13
    [92]Chang Y.D.,Grodzinsky A.J.,Wang DIC. In-situ Removal of Ammonium and Lactate through Electrical Means for Hybridoma Ccultures [J]. Biotechnol Bioeng,1995,47(3): 308-318
    [93]Jeong Y.H., Wang S.S. In-situ Removal of Ammnonium ions from Hybridoms Cell Culture Media:Selection of Adsorbent[J]. Blotechnol Technol,1992,6:341-346
    [94]Chen P.F., Harcum Sarah W. Efiects of Amino Acid Additions on Ammonium Stressed CHO cells[J]. Biotechnol,2005,117:277-286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700