Fenton氧化法—吸附—离子交换联合工艺处理PTA精制废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在芳香族羧酸的生产过程中会产生大量高浓度有机废水,这种废水它具有污染物浓度高、水质水量变化大、污染物种类多及pH值波动范围大等特点,是较难处理的石油化工废水之一,如果将其直接排放,将会对水生生态造成破坏,所以必须予以处理。
     本文采用Fenton氧化法对PTA精制废水1进行研究,考察了pH值、FeSO4·7H2O投加量、过氧化氢投加量、过氧化氢投加方式和反应时间等条件对处理效果的影响,结合正交试验,并且考虑生产实际,得到了较佳的操作条件:pH为3.0,过氧化氢一次性投加量为20mL/L, FeSO4·7H2O加入量1.5g/L,曝气时间3h,操作温度55℃,在该条件下PTA精制废水1的COD去除率达到65.5%。
     对比各种型号大孔树脂对预处理后PTA精制废水2的处理效果,选用HPD-950型大孔树脂。考察了树脂加入量、吸附温度、吸附pH值及振荡强度对大孔树脂吸附过程的影响,发现温度降低、pH值降低、振荡强度增加对吸附处理过程有利;得到了大孔树脂处理废水的较佳操作条件:树脂加入量为8g/L、振荡时间为2.5h、吸附温度为25℃、振荡强度为200rpm和pH值为4。通过动态实验考察了工业化所关注的停留时间,运行时间和再生时间对树脂吸附效果的影响,得出了最佳的操作条件为:停留时间为30min,运行时间为50h,再生时间为30min, PTA精制废水2中COD去除率可达到90%以上。
     在此基础上采用离子交换法对PTA精制废水3进行深化处理,使PTA精制废水3中金属离子含量达标。通过树脂的筛选实验,发现LS101较为合适PTA废水的处理,当树脂的加入量为5mL/L废水时,废水中金属离子的去除达到了89.7%。随着温度的升高,离子交换反应速度加快,交换容量变化也加快,达到平衡所需时间减少,温度过高时树脂结构会发生微小变化,从而影响了交换能力,所以体系温度超过45℃以后,树脂的效率明显降低。我们选择45℃为最优温度。通过盐酸再生可以恢复饱和树脂的活性,使用静态浸泡方式,再生剂用量:LS101树脂用量仅为90mL:60mL。
The process of producing PTA produces large amount of organic waste water, which contain high concentration of various organic pollutants (acidic aromatic organic compounds) with wide range of pH values. The organic pollutants with benzene ring structure in waste water are stable, so they are difficult to biodegradate. Photocatalytic degradation has been developed for degradation of molecule-structure complex contaminants recently. Meanwhile, photocatalytic reaction sensitized by TiO2 has attracted extensive interests as a potential way to treat wastewater due to its high photocatalytic stability and efficiency, and non-toxic to the health of human livings:
     The treatment of PTA wastewater one by Fenton oxidation has been investigated. The influence of pH, the dosage of FeSO4·7H2O and H2O2, the dosing method of H2O2 and reaction time on treatment efficiency have been studied. With orthogonal experiments and considering of the actual production, the optimized operating conditions had been obtained: pH 3.0, one-time dosage of H2O2 20mL/L, dosage of FeSO4·7H2O 1.5g/L, reaction time 3h, 55℃, COD removal efficiency of the PTA wastewater was 65.5%.
     The HPD-950 macroporous resin was ultimately chosen to reduce COD of PTA wastewater two further. The influences of the usage of HPD-950, temperature of adsorption, pH value, and oscillation intensity had been investigated. The results showed that with the decrease of temperature and pH, and increase of oscillation intension, adsorption efficiency increased. The obtained optimum adsorption conditions were:pH value 4, temperature 25℃, usage of macroporous resin 8g, and the oscillation intention 200rpm. The effects of residence time, running time and regeneration time on resin adsorption efficiency had been investigated through dynamic experiments. The optimum operating conditions:residence time was 30min, running time was 50h, regeneration time was 30min, COD removal efficiency of the PTA wastewater was above 90%.
     Handle the wastewater with ion exchange method to make the metal ion reach the standard. Through screening experiment, the resin LS101 was suitable for PTA wastewater three treatment relatively. When the resin addition amount was 5mL/L wastewater, the metal ions removal reached 89.7%. As the temperature increases, ion exchange reaction speed-up, the exchange capacity change also accelerates, the time needed for balance decreases. Resin structure will happen small changes at high temperature, which affects the exchange capacity, so when the temperature system over 45℃, resin efficiency decreased obviously. we choose 45℃for the best temperture.The hydrochloric acid regeneration can restore the activity of saturated resin. Using a static immersion method, the rate of regeneration agent and the resin LS101 is only 90mL:60mL.
引文
[1]解莉,齐萌.工业废水综合回用的实验研究[J].环境工程,2008,26:86-88.
    [2]李世忠,高冠道,张爱勇.化学絮凝法处理制药废水应用研究进展[J].工业用水与废水,2008,39(6):6-10.
    [3]Yang Y W, Zhou T L. Experimental study of wastewater treatment of reactive dye by phys-chemistry method [J]. J China Univ Mining & Technol,2007,17(1):96-100.
    [4]Huseyin T A, Okan B. Use of fenton oxidation to improve the biodegradability of a pharmaceutical wastewater [J]. J Hazard Mater,2004,136(2):258-265.
    [5]Karthik M K, Dafale N H. Biodegradability enhancement of purified terephthalic acid wastewater by coagulation-flocculation process as pretreatment [J]. J Hazard Mater,2008, 154(1-3):721-730.
    [6]Pophali G R, Khan R. Anaerobic-aerobic treatment of purified terephthalic acid (PTA) effluent; a techno-economic alternative to two-stage aerobic process[J]. J Environ Manag, 2007,85(4):1024-1033.
    [7]周立进,尚和顺,管国锋.用无机陶瓷膜预处理生产精对苯二甲酸过程中废水的研究[J].石油化工,2004,33(6):568-571.
    [8]祝社民,张利民,宋天顺.催化氧化预处理精对苯二甲酸废水[J].南京工业大学学报,2005,27(6):27-31.
    [9]李涛.PTA生产工艺进展及工艺技术比较[J].石油化工技术经济,2006,22(1):22-28.
    [10]宋景祯.PTA与EPTA生产工艺的发展现状及评价[J].聚酯工业,2006,19(4):1-3.
    [11]姜迎娟,况宗华.精对苯二甲酸生产工艺综述[J].应用化学,2006,35(4):300-303.
    [12]张海青,郭增山,刘成军.阿莫科OPTA生产工艺新进展[J].河南化工,1999,8(1):5-7.
    [13]赵世民.三井油化公司PTA工艺技术进展[J].合成纤维工业,2001,24(5):31-33.
    [14]高峰.EPTA工艺技术[J].浙江化工,2006,37(5):26-29.
    [15]田华,王颖.PTA废水预处理研究[J].黑龙江水专学报,2000,27(3):51-53.
    [16]刘志英,李磊,陆雪梅等.精对苯二甲酸生产废水的处理技术及其展望[J].工业水处理,2007,27(5):14-17.
    [17]谢福岭.对苯二甲酸和聚酯废水综合处理探讨[J].工业水处理,2001,21(3):40-43.
    [18]左春辉,杜俊琪,蒲彦琼.臭氧/活性氧化法预处理聚酯废水实验研究[J].北京化工大学学报,2009,36:104-108.
    [19]Park T J, Lim J S. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process [J]. J. of Supercritical Fluids,2003,26(3):201-213.
    [20]Inez H, Michael G. Optimization of ultrasonic irradiation as an advanced oxidation technology [J]. Environ. Sci. Technol,1997,31(8):2237-2243.
    [21]杨胜,刘国荣.国内精对苯二甲酸化工废水处理技术[J].化工装备技术,2008,29(5): 24-27.
    [22]王菊思,许坤,徐良才.对苯二甲酸生产废水的治理研究[J].环境科学,1987,9(4):402-405.
    [23]肖志明.PTA污水处理综述[J].聚酯工业,2005,18(5):15-17.
    [24]韩艳萍,朱元臣.洛阳石化PTA污水处理工程设计及运行[J].工业用水与废水,2002,33(4):57-59.
    [25]殷渝强,纪轩.天津石化PTA污水处理工艺流程的确定[J].河北水利水电技术,2003,1(4):47-48.
    [26]朱辉.以仪征化纤PTA废水项目为例讨论PTA废水的处理[J].广东化工,2009,8(36):148-150.
    [27]刘念曾,齐慧敏,林大泉.精对苯二甲酸生产工艺的废水处理[J].石油炼制与化工,1998,30(7):47-53.
    [28]闵志坚.UASB法处理PTA污水的设计[J].化学与生物工程,2005,4(2):47-49.
    [29]Fenton H J H. Oxidation of tartaric acid in the presence of iron [J]. J Chen Soc,1894, 65:899-910
    [30]Shen G X, Zhang Hui. Research progress of Fenton reaction [J]. Science & Technology Information,2007,34:24-25.
    [31]李金莲,金永峰,钱慧娟,等.Fenton试剂在水处理中的应用[J].化工科技市场,2006,6(6):20-24.
    [32]熊忠,林衍.Fenton氧化法在废水处理中的应用[J].新疆环境保护,2002,24(2):35-39.
    [33]Walker G M, et al. Adsorption of dyes from aqueous solution-the effect of adsorbent pore size distribution and dye aggregation [J]. Chemical Engineering Journal,2001, 83(3):201-206
    [34]Marquez M C, et al. Biomass concentration in pact process [J]. Water Research,1996, 30(9):2079-2085
    [35]Lin S H, et al. Catalytic oxidation of dye wastewater by metal oxide catalyst and granular activated carbon [J]. Environment International,1999,25(4):497-504.
    [36]张全兴,陆朝阳,沈丽丽,等.我国应用树脂吸附法处理有机废水的进展[J].化工环保,1994,14(6):344-347
    [37]朱桂琴,孙喜龙,安国民.大孔吸附树脂在有机废水处理中的应用和研究进展[J].河北北方学院学报(自然科学报),2006,22(6):19-23.
    [38]万继伟,张文玲,陈丽.吸附树脂在废水处理中的应用[J].资源开发与市场,2007,23(6):530-531.
    [39]. Zhang Q, Gao Y,. Zhai Y.A., et al. Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions [J]. Carbohydrate Polymers,2008,73(2):359-363.
    [40]许月卿,赵仁兴,白天雄等.大孔吸附树脂处理含磺胺废水的研究[J].离子交换与 吸附,2003,19(2):163-169.
    [41]王学江,张全兴,赵建夫,等.氨基修饰聚苯乙烯树脂对酚酸物质的吸附性能[J].高分子学报,2005(1):12-17
    [42]李尧,寇晓康,刘琼等.大孔吸附树脂处理有机废水的研究进展[J].河南化工,2008,25(1):11-14.
    [43]Zhang WeiMing, Xu Z W,Pan. B.Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702[J]. Journal of Colloid and Interface Science,2007,311(2):382-390.
    [44]汪洪武,刘艳清.大孔吸附树脂的应用研究进展[J].中药材,2005,22(4):353-356.
    [45]乐清华,吴凡,施云海等.大孔树脂吸附法处理含苯肼工业废水的研究[J].离子交换与吸附,2004,20(1):82-88.
    [46]杨智宽,韦进宝编著.污染控制化学[M],武汉大学出版社,1997
    [47]陈秀芳.离子交换法在废水处理中的应用[J].科技情报开发与经济,2004,14(7):148-149.
    [48]叶一芳.应用离子交换树脂法处理低浓度含汞废水[J].环境污染与防治,1989,11(3):34-35.
    [49]廖赞,朱国才,兰新哲.用强碱性阴离子交换树脂回收氰化物的研究明[J].离子交换与吸附,2005,26(3):37-42.
    [50]吴克明,石瑛,王俊,等.交换树脂处理钢铁钝化含铬废水的研究阴[J].工业安全与环保,2005,4(31):22-23.
    [51]刘宝敏,林钰,樊耀亭,等.强酸性阳离子交换树脂对焦化废水中氨氮的去除作用[J].郑州工程学院学报,2003,24(1):46-49.
    [52]Pintar A, Batista J, Levec J, Integrated ion exchange/catalytic Process for efficient removal of nitrates from drinking water[J]. Chemical Engineering Science,2001,56(2): 1551-1556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700