有机生产系统中甜瓜氮素营养生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来国内外有机农业生产和有机食品消费迅猛发展。氮素的供应状况对有机农业的生产性能和产品品质具有重要影响。本研究从分析土壤氮素转化入手,深入分析甜瓜氮素营养生理,并进一步研究有机和常规处理对甜瓜的生长发育、产量品质形成和氮素吸收利用的影响。研究结果有助于揭示土壤有机氮的矿化规律,阐明甜瓜对可溶性有机氮和无机氮的吸收利用能力,进一步丰富植物氮素营养理论,并为甜瓜合理施肥及有机农业生产提供技术支撑和科学依据。
     本研究利用室内通气培养技术研究了有机和常规生产系统中土壤氮素矿化动态;运用盆栽和水培试验体系,研究了甜瓜对有机氮和无机氮的吸收利用能力;在有机和常规两种田间生产系统中,研究了不同施肥水平对甜瓜生长发育、产量和品质形成及氮素吸收的影响。主要研究结果如下:
     1有机和常规生产系统中土壤氮素分析
     分析了上海两个有机农场的土壤氮素性状,结果表明有机生产管理改变了土壤的氮素营养性状,在总氮含量相同或略高的条件下,其无机氮含量比常规生产系统中土壤低22.4%~36.8%。
     利用室内通气培养和~(14)C标记技术研究了有机、转换期和常规生产系统中土壤的氮素矿化动态及三种土壤对添加氨基酸和多肽矿化的影响。土壤矿化培养过程中不同生产系统土壤的无机氮(SIN)含量均明显增加,游离氨基酸含量呈先升高后下降的趋势,可溶性有机氮(SON)持续增加,不同生产系统中土壤间表现为有机土壤(OS) >常规土壤(CS) >转换期土壤(TS),但SON与SIN的比值大幅下降。三种土壤氮素的矿化势、矿化速率和铵化速率均表现为OS > CS > TS,而其硝化速率没有显著差异。土壤对外源添加的~(14)C-氨基酸、多肽的矿化速率的响应表现为OS > TS > CS,培养24 h后~(14)C-氨基酸、多肽被微生物利用量均超过50%。低分子量的SON在土壤中的周转迅速,培养24h后土壤中~(14)C-氨基酸的分解率达到起始值的56.3%~95.4%,残留在不同土壤中的~(14)C-氨基酸的含量均表现为CS > TS > OS。在矿化过程中,影响SON含量的瓶颈不是微生物利用低分子量SON的速率,而是SON从生物体释放进入土壤的速率。
     在盆栽模拟试验条件下,以空白施肥为对照(CK),研究了有机氮(ON)和无机氮(IN)处理中土壤氮素的矿化及其对甜瓜生长和氮素吸收的影响。结果表明无植株的空白土壤SIN和SON含量都呈单峰曲线增长模式。无机氮(IN)处理土壤的SIN含量显著高于有机氮(ON)和对照(CK)处理。CK和ON处理土壤SON与SIN的比值在0.34~0.59之间,大于IN处理的0.25~0.35。
     种植甜瓜种苗的土壤中SON和SIN含量持续下降,两者的比值呈上升趋势。施肥显著促进了甜瓜植株的生长、氮素含量和氮素吸收量,IN处理效果尤其显著。虽然单位时间内甜瓜伤流液中可溶性氮总量表现为IN > ON > CK,但CK和ON处理从土壤中吸收了较高比例的SON。土壤中矿化出的SON含量较高,甜瓜能直接吸收,其贡献不容忽视。尽管甜瓜仍以吸收SIN为主,但在SIN含量低的情况下也能吸收SON作为补充。
     2甜瓜对不同形态氮素的吸收——甜瓜氮素营养生理分析
     开放水培条件下研究了相同氮浓度(3.0 mmol·L~(-1))的氨基酸态氮(Gly-N)和无机氮(NO_3~--N、NH_4~+-N)对甜瓜幼苗生长和氮素吸收的影响。与NO_3~--N处理相比,NH_4~+-N和Gly-N处理都显著抑制了甜瓜幼苗根系和地上部的生长。不同氮素形态处理的甜瓜植株根长、根体积和根表面积均表现为NO_3~--N > Gly-N > NH_4~+-N (p < 0.05),甜瓜的叶绿素含量、植株平均氮含量和氮吸收量也表现为相同的规律。NH_4~+-N处理甜瓜出现明显的氨毒害症状。与NO_3~--N处理相比,NH_4~+-N和Gly-N处理提高了甜瓜根系的氮素分配比例。NH_4~+-N处理显著降低了营养液的pH值,而Gly-N处理提高了营养液的pH值。不同氮素形态处理营养液pH值的变化是影响甜瓜幼苗生长和氮素吸收的重要因素。虽然甜瓜是喜硝作物,氨基酸态氮也可以成为其良好的氮源。
     采用无菌水培方法研究了甜瓜对氨基酸态氮和无机氮的吸收动力学特性。结果表明,在氮素浓度为0.1~2mmol·L~(-1)的范围内,甜瓜对氨基酸态氮和无机氮的吸收都符合米氏方程,最大吸收速率(Vmax)和亲和力(1/Km)均表现为NO_3~--N > NH_4~+-N > Gly-N,高的最大吸收速率和高的亲和力相统一。NH_4~+-N (1mmol·L~(-1))的存在促进了甜瓜吸收NO_3~--N的能力,在提高吸收速率的同时提高了离子亲和力。
     3有机生产系统中甜瓜对氮素的吸收利用及其产量、品质形成
     在有机和常规两种生产系统中,研究了土壤中速效氮的变化和甜瓜对氮素的吸收。在甜瓜的生长发育过程中有机肥料向土壤中提供了与常规处理相同水平的速效氮。甜瓜植株的氮素含量在生育过程中逐渐降低,氮素吸收量逐渐增加,常规处理显著高于有机处理,而生产系统内部不同的施肥水平之间差异不显著。常规处理中甜瓜的氮素吸收速率显著高于有机处理,同时植株体内积累了较多的硝态氮,但氮素利用效率较低。在有机和常规生产系统中,甜瓜都是以吸收无机氮为主;吸收的有机氮中蛋白质态氮含量显著高于氨基酸态氮,在有机系统中吸收了高比例的有机氮。
     在有机和常规两种生产系统中,研究了不同施肥水平对春秋两季甜瓜生长发育、产量和品质形成的影响。有机和常规两种生产系统中甜瓜植株生物量和经济产量没有显著差异;在同一生产系统内,施肥量对植株生物量和产量均无显著影响,春秋两季规律一致。春季植株的总生物量和经济产量大于秋季,这是由春季生长期间高的积温所决定的。甜瓜的干物质分配在伸蔓期以叶片为主,中后期以果实为主,不同的生产系统和施肥水平都未影响干物质在各器官的分配比例。
     有机和常规生产系统以及施肥水平都未改变甜瓜果实发育和糖分积累规律。甜瓜果实在进入成熟期前,以葡萄糖和果糖积累为主,进入成熟期,蔗糖积累迅速,总糖含量持续上升。生产系统和施肥水平对果实TSS和糖分含量都没有影响。与常规生产处理相比,有机生产显著提高了甜瓜果实Vc含量,春季和秋季分别平均提高16%和21%;有机生产降低了甜瓜果实的硝酸盐含量,春季和秋季分别平均降低12%和16%,这与低的果实氮素含量显著相关。有机甜瓜在一定程度上提高了果实品质,但不受有机施肥水平的影响。
     综上所述,土壤培养过程中矿化出的SON含量较高,影响其含量的瓶颈是SON从微生物体释放进入土壤的速率。甜瓜对氨基酸态氮和无机氮的吸收均符合米氏方程,氨基酸态氮也可以成为甜瓜良好的氮源。虽然甜瓜仍以吸收SIN为主,但在SIN含量低的情况下也能吸收SON作为补充。常规生产系统中甜瓜的氮素积累量显著高于有机处理,但氮素利用效率较低。在有机生产系统中甜瓜获得了与常规生产系统相同的植株生物量和产量,并在一定程度上提高了果实品质。研究结果揭示了土壤有机氮的矿化规律和甜瓜氮素营养生理,阐明了甜瓜对SON的吸收潜力,丰富了植物氮素营养理论,为有机农业生产合理施肥提供了科学依据。
Over the last decade, organic farming production and organic food consumption developed rapidly all over the world. The supply of nitrogen is of fundamental impact for the production in organic farming and the product quality. In this study, muskmelon nitrogen nutrition physiology was thoroughly analyzed based on the investigation of soil nitrogen transformation. We also carried out further work about the effect of organic and conventional treatments on muskmelon growth, yield and quality formation and N absorption. The findings of the present study may reveal the rule of soil organic nitrogen (ON) mineralization, and clarify the absorption and utilization capacity of ON and inorganic nitrogen by muskmelon, also enrich the theory of plant nitrogen nutrition further. The results can also provide technical support on a scientific basis for reasonable organic fertilizer application for muskmelon and for organic farming production.
     In this study, laboratory aerobic incubation technique was used to determine the dynamics of soils N mineralization in organic and conventional production systems. Potted and hydroponics cultures were used to investigate the absorption and utilization capacity of ON and inorganic nitrogen by muskmelon. The effect of different fertilization level on muskmelon growth, yield and quality formation along with N uptake in both organic and conventional production systems were also studied. The main results were indicated as follows:
     1 Analysis of soil nitrogen in organic and conventional production systems
     Soil nitrogen characteristics in two organic farms in Shanghai were analyzed. The results showed that organic production management changed soil nitrogen characteristics, and in the situation of same or a little higher level of total N, plant available N in organic system reduced by 22.4%~36.8%, compared with conventional system.
     Dynamics of N mineralization in soils from organic, transitional and conventional production systems were studied. Mineralization of extra ~(14)C-labled amino acids and peptides affected by different kinds of soils was also investigated. The results showed that nitrate and ammonium of soils in different production systems increased distinctly during the incubation period, and the increase extent of nitrate was much higher than ammonium. The content of free amino acid in soils from different production systems first increased and then decreased. Soluble organic N (SON) of different soils increased gradually during the incubation period, and the amount of SON showed organic soil (OS) > conventional soil (CS) > transitional soil (TS). The ratio of SON to soluble inorganic soil (SIN) decreased clearly, and it showed OS > TS≈CS. Mineralization potential, mineralization rate and ammonification rate in three different soils showed OS > CS > TS, while there was no difference in nitrification rate. The effect on mineralization of extra ~(14)C-labled amino acids and peptides by different kinds of soils showed OS > TS > CS, and after 24 hours incubation, more than 50 percent of ~(14)C-labled amino acids and peptides were absorbed by microorganism. Turnover rate of low molecular weight SON (LMW-SON) in soil was fast, and after 24 hours incubation the decompose rate of ~(14)C-labled amino acids in soil took up 56.3%~95.4% compared with the initial amount added to the soil. The residue of ~(14)C-labled amino acids in different kinds soils showed CS > TS > OS. When evaluate the characteristics of N mineralization in soil, both SIN and SON should be considered. During the incubation period, the bottleneck which affected the content of SON was not the absorption rate of LMW-SON by microorganism, but the rate of SON released from soil by organism.
     Under pot experiment conditions, soil N mineralization and its effect on muskmelon growth and N uptake were studied, with organic N (ON) and inorganic N (IN) treatments along with blank N (CK) as the contrast. The results showed that, SIN and SON content in the soil without plant indicated single peak curve. SIN content was significantly higher for IN treatment than for ON and CK treatments. The SON/SIN ratio of CK and ON treatments was 0.34~0.59, which was higher than 0.25~0.35 of IN treatment. The SON and SIN content in soil with muskmelon seedlings decreased steadily during incubation, and the ratio of SON/SIN showed rising tendency. Fertilization boosted muskmelon plant growth, N content and N uptake amount, and IN treatment was remarkable significant compared with the other two treatments. Though the total soluble N in the xylem sap per time showed IN > ON > CK, plants in CK and ON treatments took up higher ratio of SON from soil. SON amount mineralized from soil was high and it could be taken up by muskmelon plant directly. Although muskmelon mainly took up SIN it also took up SON as a supplement when SIN content in soil was low.
     2 Uptake of different forms of N by muskmelon——analysis on nutritional physiology of nitrogen in muskmelon
     The effect of inorganic nitrogen (NO_3~--N, NH_4~+-N) and amino acid nitrogen (Gly-N) on plant growth and nitrogen accumulation of muskmelon seedling were studied in hydroponic cultivation. Results showed that the effect of NO_3~--N, NH_4~+-N and Gly-N were significant on plant growth, root morphology and nitrogen accumulation of muskmelon seedling. Compared with NO_3~--N, NH_4~+-N and Gly-N significantly inhibited the growth of root and aerial parts of the seedling. The treatment of different types of nitrogen affected root length, volume and surface area as the following tendency: NO_3~--N > Gly-N > NH_4~+-N (p < 0.05). Also the chlorophyll content, average nitrogen content and nitrogen accumulation amount showed the same tendency. Compared with the NO_3~--N treatment, NH_4~+-N and Gly-N treatments increased nitrogen partitioning to muskmelon root. NH_4~+-N treatment decreased the pH of nutrient solution significantly, and Gly-N treatment increased the pH of nutrient solution, while in the NO_3~--N treatment, it remained the same as the initial. The changes of pH value in nutrient solution for different types of nitrogen treatments affected plant growth and nitrogen accumulation of muskmelon seedling significantly as was proven by the experiment. Though muskmelon prefer to uptake NO_3~--N, amino acid nitrogen also could be a good nitrogen source.
     Uptake kinetics of different forms of nitrogen (NO_3~--N, NH_4~+-N and Gly-N) by muskmelon, also the effect of NH_4~+ compared to NO_3~- uptake, were studied under aseptic hydroponic conditions. The results indicated that uptake kinetics of different forms of nitrogen by muskmelon accorded with the Michaelis-Menten equation. Both the maximum uptake rate (Vmax) and the affinity (1/Km) followed the tendency NO_3~- > NH_4~+ > Gly. NH_4~+ boost the uptake ability of NO_3~- by muskmelon, by enhancing both the uptake rate and the affinity with the uptake site.
     3 Uptake and utilization of N by muskmelon in organic production and the formation of yield and fruit quality
     The transformation of available N in soil and its uptake by muskmelon were analyzed in both organic and conventional farming systems. The results indicated that the organic fertilizer mineralized the same level of available N to the soil during muskmelon plant development, compared with conventional treatment. Though N content in plant tissue reduced gradually during muskmelon plant development, total accumulated N amount increased gradually. The conventional treatments were significantly higher than the organic on N content and its accumulation amount in plant, though there was no significant difference caused by fertilization level within each production system. N uptake rate of conventional treatments was much higher than that of organic, also nitrate N accumulated in muskmelon plant was higher, but their N utilization efficiency was lower. In both organic and conventional farming systems, muskmelon mainly took up inorganic N, and the protein N was significantly higher than amino acid N, also muskmelon could took a higher ration of organic N in organic system.
     Effects of fertilizer level on plant development, yield and quality formation of muskmelon in spring and autumn were studied under organic and conventional production systems. The results indicated that there were no significant difference in plant biomass and yield in the two farming systems, and fertilization level within each farming system had no significant effect. Plant biomass and fruit yield in spring were larger than in autumn, due to higher growing degree days. Dry mass partitioning of muskmelon mainly went into leaf in stem growth period and to fruit in later period. Production system and fertilizer level had no effect on the rate of dry mass partitioning in different muskmelon organs.
     Both organic and conventional farming production systems and fertilizer amount did not change the tendency of fruit growth and sugar accumulation. The fruit mainly accumulated glucose and fructose before entering mature stage and later sucrose accumulated remarkably, thus total sugar content rose continuously. Both the production system and fertilization amount had no effects on fruit TSS and sugar content. Fruit vitamin C content was significantly increased in organic farming system than that of conventional, by 16% in spring and 21% in autumn on average, respectively. Fruit nitrate content was significantly decreased in organic farming system compared with that of conventional system, by 12% in spring and 16% in autumn on average, respectively, and this was related to lower nitrogen content in fruit pulp. All this indicated that fruit growth of muskmelon was not affected by organic and conventional farming systems, and organic fruit quality was increased in a certain extent, but it was not affected by fertilization amount.
     From all above, we can draw conclusions that the SON content was increased during soil aerobic incubation, and the bottleneck which affected the content of SON was the rate of SON released from soil organism. Uptake kinetics of Gly-N and inorganic N by muskmelon accorded with Michaelis-Menten equation. Compared with NH_4~+-N, Gly-N also could be a good nitrogen source. Though muskmelon mainly took up SIN, it also could uptake SON as a supplement when SIN content in soil was low. N uptake rate of muskmelon in conventional system was much higher than that of organic, but their N utilization efficiency was lower. Muskmelon grown in organic system gained the same plant biomass and yield as in conventional system, and increased fruit quality to a certain extent. The results of the study claryfied the mineralization of organic N in soil and the nutritional physiology of N in muskmelon. It also clarified the potential ability of SON uptake by muskmelon. All these findings enriched the theory of plant N nutrition, and provided the scientific base of reasonable fertilization for organic farming.
引文
[1]陈声明,林海萍等.有机农业及其源头产品[M].北京,中国环境科学出版社, 2004:8.
    [2] Wander M. M., Traina S. J., Stinner B. R., et al. Organic and conventional management effects on biologically active soil organic matter pools[J]. Soil Science Society of America Journal. 1994, 58(4): 1130-1139.
    [3] FAO. FAO Expert Consultation on Food Safety: Science and Ethics. Rome, Italy. 2002.
    [4]中华人民共和国环境保护行业标准.有机食品技术规范[S]. HJ/T 80-2001. 2001.
    [5] IFOAM. IFOAM norms for organic production and processing: IFOAM basic standards and IFOAM accreditation criteria 2002. International Federation of Organic Agriculture Movements. http://www.ifoam.org/index.html. 2003.
    [6] Limon-Ortega A., Sayre K. D., Francis C. A. Wheat and maize yields in response to straw management and nitrogen under a bed planting system[J]. Agronomy Journal. 2000, 92(2): 295-302.
    [7]吴苏燕.世界有机食品发展趋势及我国面临的机遇[J].国际技术经济研究. 2004, 7(4): 22-27.
    [8]贾乃新,刘海凤.对有机食品,绿色食品和无公害食品发展问题的探讨[J].中国农业资源与区划. 2002, 23(5): 60-62.
    [9] SOEL, FiBL, Survey. Minou Yussefi, SOEL & Helga Willer, FiBL. The World of Organic Agriculture. Statistics and Emerging Trends. 2007.
    [10]国家环境保护总局生态司.首届中国有机食品发展论坛.北京, 2005.
    [11]王瑜.有机食品越来越壮大[N].农民日报, 2007-11-01,第8版.
    [12]方华.有机食品产业:新的经济增长点[N].金融时报, 2005-08-04,第C11版.
    [13] Hartl W. Influence of undersown clovers on weeds and on the yield of winter wheat in organic farming[J]. Agriculture, Ecosystems & Environment. 1989, 27(1): 389-396.
    [14] Paulsen H M, Volkgenannt U, Schnug E. Contribution of organic farming to marine environmental protection[J]. Landbauforschung Volkenrode. 2002, 52(4): 211-218.
    [15] Rembialkowska E, Tijskens L.M.M, Vollebregt H.M. Organic farming as a system to provide better vegetable quality [J]. Acta Horticulturae. 2003, 604: 473-479.
    [16] Cavero J., Plant R. E., Shennan C., et al. The effect of nitrogen source and crop rotation on the growth and yield of processing tomatoes[J]. Nutrient Cycling in Agroecosystems. 1996, 47(3): 271-282.
    [17] Haraldsen T. K., Asdal A., Grasdalen C., et al. Nutrient balances and yields during conversion from conventional to organic cropping systems on silt loam and clay soils in Norway[J]. Biological Agriculture & Horticulture. 2000, 17(3): 229-246.
    [18] Mad?er P., Hahn D., Dubois D., et al. Wheat quality in organic and conventional farming: results of a 21 year field experiment[J]. Journal of the Science of Food and Agriculture 2007, 87(10): 1826-1835.
    [19]席运官,李正方,邰崇妹,等.蔬菜有机与无机生产系统能流、经济流的比较研究[J].中国生态农业学报. 1999, 7(2): 39-42.
    [20]席运官,邰崇妹,王秋华,等.草莓有机与无机种植系统能流和经济流的比较研究[J].农村生态环境. 1997, 13(3): 37-41.
    [21] Curuk S., Sermenli T., Mavi K., et al. Yield and fruit quality of watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai.) and melon (Cucumis melo L.) under protected organic and conventional farming systems in a Mediterranean region of Turkey[J]. Biological Agriculture & Horticulture. 2004, 22(2): 173-183.
    [22] Tamaki M., Itani T., Nakano H. Effect of continuous organic farming on the growth and yield of rice[J]. Japanese Journal of Crop Science. 2002, 71(4): 439-445.
    [23] Poudel D. D., Horwath W. R., Lanini W. T., et al. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California[J]. Agriculture, Ecosystems and Environment. 2002, 90(2): 125-137.
    [24] Drinkwater L. E., Wagoner P., Sarrantonio M. Legume-based cropping systems have reduced carbon and nitrogen losses[J]. Nature. 1998, 396(6708): 262-265.
    [25] Sarkar S., Singh S. R., Singh R. P. The effect of organic and inorganic fertilizers on soil physical condition and the productivity of a rice-lentil cropping sequence in India [J]. The Journal of Agricultural Science. 2003, 140(4): 419-425.
    [26] King L. D., Buchanan M. Reduced chemical input cropping systems in the southeastern United States. I. Effect of rotations, green manure crops and nitrogen fertilizer on crop yields[J]. American Journal of Alternative Agriculture. 1993, 8(2): 58-77.
    [27] Kamimura Y., Furue K., Nishizono N. Improvement of paddy soil derived from glassy volcanic ash (shirasu) by successive applications of organic and inorganic amendments[J]. Soil Science and Plant Nutrition. 1994, 40(1): 39-48.
    [28] Drinkwater L. E., Letourneau D. K., Workneh F., et al. Fundamental differences between conventional and organic tomato agroecosystems in California[J]. Ecological Applications. 1995, 5(4): 1098-1112.
    [29] McGuire A. M., Bryant D. C., Denison R. F. Wheat yields, nitrogen uptake, and soil moisture following winter legume cover crop vs. fallow[J]. Agronomy journal. 1998, 90(3): 404-410.
    [30] Reganold J. P., Glover J. D., Andrews P. K., et al. Sustainability of three apple production systems[J]. Nature. 2001, 410(6831): 926-930.
    [31] Halweil B. Can organic farming feed us all?[J] World Watch. 2006, 19(3): 18-24.
    [32] Nelson L., Giles J., Macilwain C., et al. Organic FAQs[J]. Nature. 2004, 428: 796-798.
    [33] Pretty J. Can sustainable agriculture feed africa? New evidence on progress, processes and impacts[J]. Environment, Development and Sustainability. 1999, 1(3): 253-274.
    [34] Kitchen J. L., McDonald G. K., Shepherd K. W., et al. Comparing wheat grown in South Australian organic and conventional farming systems. 1. Growth and grain yield[J]. Australian Journal of Agricultural Research. 2003, 54(9): 889-901.
    [35] Maggio A., Carillo P., Bulmetti G. S., et al. Potato yield and metabolic profiling under conventional and organic farming[J]. European Journal of Agronomy. 2008, 28(3): 343-350.
    [36] Mendoza T. C. Evaluating the benefits of organic farming in rice agroecosystems in the Philippines[J]. Journal of Sustainable Agriculture. 2004, 24(2): 93-115.
    [37] Kleb D. S., Walia S. S. Organic, integrated and chemical farming in wheat (Triticum aestivum) under maize (Zea mays)-wheat cropping system[J]. Indian Journal of Agronomy. 2006, 51(1): 6-9.
    [38] Kouba M. Quality of organic animal products[J]. Livestock Production Science. 2003, 80(1-2): 33-40.
    [39] Heaton S. Organic farming, food quality and human health: a review of the evidence[M]. Soil Association, Bristol, UK.; 2001.
    [40] Baker B. P., Benbrook C. M., Groth E., et al. Pesticide residues in conventional, integrated pest management (IPM)-grown and organic foods: insights from three US data sets[J]. Food Additives & Contaminants. 2002, 19(5): 427-446.
    [41] Worthington V. Nutritional quality of organic versus conventional fruits, vegetables, and grains[J]. Journal of Alternative and Complementary Medicine. 2001, 7(2): 161-173.
    [42] Bourn D., Prescott J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods[J]. Critical Reviews in Food Science and Nutrition. 2002, 42(1): 1-34.
    [43] Williams C. M. Nutritional quality of organic food: shades of grey or shades of green?[J]. Proceedings of the Nutrition Society. 2002, 61(1): 19-24.
    [44] Woese K., Lange D., Boess C., et al. A comparison of organically and conventionally grown foods: Results of a review of the relevant literature[J]. Journal of the Science of Food and Agriculture. 1997, 74(3): 281-293.
    [45] Hajslova J., Schulzova V., Slanina P., et al. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties[J]. Food Additives and Contaminants. 2005, 22(6): 514-534.
    [46] Trewavas A. Urban myths of organic farming[J]. Nature. 2001, 410(6827): 409-410.
    [47] Asami D. K., Hong Y. J., Barrett D. M., et al. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices[J]. Journal of Agricultural and Food Chemistry. 2003, 51(5): 1237-1241.
    [48] Caris-Veyrat C., Amiot M. J., Tyssandier V., et al. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans[J]. Journal of Agricultural and Food Chemistry. 2004, 52(21): 6503-6509.
    [49] Sorensen J. N., Thorup-Kristensen K. Undersowing legume crops for green manuring of lettuce[J]. Biological Agriculture & Horticulture. 2003, 21(4): 399-414.
    [50] Baxter G. J., Graham A. B., Lawrence J. R., et al. Salicylic acid in soups prepared from organically and non-organically grown vegetables[J]. European Journal of Nutrition. 2001, 40(6): 289-292.
    [51] Young J. E., Zhao X., Carey E. E., et al. Phytochemical phenolics in organically grown vegetables[J]. Molecular Nutrition & Food Research. 2005, 49(12): 1136-1142.
    [52] Carbonaro M., Mattera M. Polyphenoloxidase activity and polyphenol levels in organically and conventionally grown peach (Prunus persica L., cv. Regina bianca) and pear (Pyrus communis L., cv. Williams)[J]. Food Chemistry. 2001, 72(4): 419-424.
    [53] Carbonaro M., Mattera M., Nicoli S., et al. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.)[J]. Journal of Agricultural and Food Chemistry. 2002, 50(19): 5458-5462.
    [54] Veberic R., Trobec M., Herbinger K., et al. Phenolic compounds in some apple (Malus domestica Borkh) cultivars of organic and integrated production[J]. Journal of the Science of Food and Agriculture. 2005, 85(10): 1687-1694.
    [55] Nunez-Delicado E., Sanchez-Ferrer A., Garcia-Carmona F. F., et al. Effect of organic farming practices on the level of latent polyphenol oxidase in grapes[J]. Journal of Food Science. 2005, 70(1): C74-C78.
    [56] Mikkonen T. P., Maatta K. R., Hukkanen A. T., et al. Flavonol content varies among black currant cultivars[J]. Journal of Agriculture and Food Chemistry. 2001, 49(7): 3274-3277.
    [57] Hakkinen S. H., Torronen A. R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: influence of cultivar, cultivation site and technique[J]. Food Research International. 2000, 33(6): 517-524.
    [58] Cameron K. C., Wild A. Potential aquifer pollution from nitrate leaching following the plowing of temporary grassland[J]. Journal of Environmental Quality. 1984, 13(2): 274-278.
    [59] Bonde T. A., Rosswall T. Seasonal variation of potentially mineralizable nitrogen in four cropping systems[J]. Soil Science Society of America journal. 1987, 51(6): 1508-1514.
    [60] Colla G., Mitchell J. P., Joyce B. A., et al. Soil physical properties and tomato yield and quality inalternative cropping systems[J]. Agronomy Journal. 2000, 92(5): 924-932.
    [61] Evers A. M. Effects of different fertilization practices on the glucose, fructose, sucrose, taste and texture of carrot[J]. Journal of Agricultural Science in Finland. 1989, 61: 113-122.
    [62] Rimal A. P., Moon W., Balasubramanian S. Agro-biotechnology and organic food purchase in the United Kingdom[J]. British Food Journal. 2005, 107(2): 84-97.
    [63] Wandel M., Bugge A. Environmental concern in consumer evaluation of food quality[J]. Food Quality and Preference. 1997, 8(1): 19-26.
    [64] Lampkin N. H., Midmore P. Written and oral evidence on organic farming to the House of Lords Select Committee on the European Communities[J]. Organic Farming and the European Union London: Stationary Office. 1999: 42-64.
    [65] Clark S., Klonsky K., Livingston P., et al. Crop-yield and economic comparisons of organic, low-input, and conventional farming systems in California's Sacramento Valley[J]. American Journal of Alternative Agriculture. 1999, 14(3): 109-121.
    [66] Weymes E. The market for organic food: A Canada-wide survey[M]. Faculty of Administration Saskatchewan : University of Regina, 1990: 1-315.
    [67] MacRae R. J., Hill S. B., Mehuys G. R., et al. Farm-scale agronomic and economic conversion from conventional to sustainable agriculture[J]. Advances in Agronomy. 1990, 43: 155-198.
    [68] Poudel D. D., Ferris H., Klonsky K., et al. The sustainable agriculture farming system project in California's Sacramento Valley[J]. Outlook on Agriculture. 2001, 30(2): 109-116.
    [69] Clark M. S., Horwath W. R., Shennan C., et al. Changes in soil chemical properties resulting from organic and low-input farming practices[J]. Agronomy Journal. 1998, 90(5): 662-671.
    [70]李志芳.有机农业土壤氮素流失与防止措施[J].农业环境保护. 2002, 21(1): 90-92.
    [71]袁新民,同延安.有机肥对土壤NO3--N累积的影响[J].土壤与环境. 2000, 9(3): 197-200.
    [72] Kirchmann H., Thorvaldsson G. Challenging targets for future agriculture[J]. European Journal of Agronomy. 2000, 12(3-4): 145-161.
    [73] Pretty J. N. Regenerating Agriculture: Policies and Practice for Sustainability and Self-Reliance[M]. Joseph Henry Press; 1995.
    [74] Judais V., Rinaldi S. Organic fertilizers in melon: the dynamics of nitrogen[J]. PHM Revue Horticole. 2001, 431: 17-20.
    [75] Macilwain C. Organic: is it the future of farming?[J]. Nature. 2004, 428(6985): 792-793.
    [76]潘瑞炽主编.植物生理学(第四版) [M].北京:高等教育出版社, 2001: 29.
    [77]武维华主编.植物生理学[M].北京:科学出版社, 2003: 105-110.
    [78] Wang Z. H., Li S. X., Malhi S. Effects of fertilization and other agronomic measures on nutritional quality of crops[J]. Journal of the Science of Food and Agriculture. 2008, 88(1): 7-23.
    [79] Boddey R. M., De Moraes SáJ. C., Alves B. J. R., et al. The contribution of biological nitrogen fixation for sustainable agricultural systems in the tropics[J]. Soil Biology and Biochemistry. 1997, 29(5-6): 787-799.
    [80] Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways[J]. Plant and Soil. 2002, 247(1): 3-24.
    [81]上官周平,李世清.旱地作物氮素营养生理生态[M].北京,科学出版社,2004, 5.
    [82]陆欣主编.土壤肥料学[M].北京,中国农业大学出版社,2002,188-199.
    [83]文启孝,程励励.土壤中有机氮的稳定性机理和生物有效性[M].见李振声,朱兆良,章申,等编著.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环.北京:中国农业大学出版社, 2004: 217-249.
    [84] Jarvis S. C., Stockdale E. A., Shepherd M. A., et al. Nitrogen mineralization in temperate agricultural soils: processes and measurement[J]. Advances in Agronomy. 1996, 57: 187-235.
    [85]南京农业大学主编.土壤农化分析(第二版)[M].北京,农业出版社,1998,40.
    [86]廖红,严小龙.高级植物营养学[M].北京,科学出版社,2003,114.
    [87]曾广文,蒋德安主编.植物生理学[M].北京,中国农业科技出版社,2000, 36.
    [88] Hageman R. H. Nitrification inhibitors-potentials and limitations[M]. American Society of Agronomy and Soil Science Society, Madison, Wisconsin, USA, 1980: 47-62.
    [89]郭世荣主编.无土栽培学[M].北京:中国农业出版社, 2003: 103.
    [90] Miller A. J., Smith S. J. Nitrate transport and compartmentation in cereal root cells[J]. Journal of Experimental Botany. 1996, 47(7): 843-854.
    [91] Wang M. Y., Glass A. D. M., Shaff J. E., et al. Ammonium Uptake by Rice Roots. III. Electrophysiology[J]. Plant Physiology. 1994, 104(3): 899-906.
    [92] Mengel K., Robin P., Salsac L. Nitrate Reductase Activity in Shoots and Roots of Maize Seedlings as Affected by the Form of Nitrogen Nutrition and the pH of the Nutrient Solution[J]. Plant Physiology. 1983, 71(3): 618-622.
    [93] Hirel B., Miao G. H., Verma D. P. S. Metabolic and developmental control of glutamine synthetase genes in legume and non legume plants[M]. In: Verma D.P.S, ed. Control of Plant Gene Expression. Boca Raton, FL,USA: CRC Press, 1993: 443-458.
    [94] Britto D. T., Kronzucker H. J. NH4+ toxicity in higher plants: a critical review[J]. Journal of Plant Physiology. 2002, 159(6): 567-584.
    [95]曹翠玲,李生秀.氮素形态对玉米幼苗碳水化合物及养分累积的影响[J].华中农业大学学报. 2003, 22(5): 457-461.
    [96]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报. 2007, 27(8): 3501-3513.
    [97] Zhong Z. K., Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology & Biochemistry. 2003, 35(2): 333-338.
    [98] Chen C. R., Xu Z. H., Zhang S. L. et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant and Soil. 2005, 277(1-2): 285-297.
    [99] Matsumoto S., Ae N., Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.)[J]. Soil Biology & Biochemistry. 2000, 32(8): 1301-1310.
    [100] Bhogal A., Murphy D. V., Fortune S., et al. Distribution of nitrogen pools in the soil profile of undisturbed and reseeded grasslands[J]. Biology and Fertility of Soils. 2000, 30(4): 356-362.
    [101] Murphy D. V., Macdonald A. J., Stockdale E. A., et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils. 2000, 30(5): 374-387.
    [102] Owen A.G., Jones D.L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition[J]. Soil Biology and Biochemistry. 2001, 33(4-5): 651-657.
    [103] Qualls R. G., Haines B. L., Swank W. T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology. 1991, 72(1): 254-266.
    [104] Perakis S. S., Hedin L. O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds[J]. Nature. 2002, 415(6870): 416-419.
    [105] van Breemen N. Natural organic tendency[J]. Nature. 2002, 415(6870): 381-382.
    [106] Chapin III F. S., Bloom A. J., Field C. B., et al. Plant responses to multiple environmental factors[J].Bioscience. 1987, 37(1): 49-57.
    [107] Lipson D. A., Monson R. K. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freeze-thaw and dry-rewet events[J]. Oecologia. 1998, 113(3): 406-414.
    [108] Raab T. K., Terry N. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L.[J]. Plant Physiology. 1994, 105(1): 1159-1166.
    [109] Schimel J. P., Chapin III F. S. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants complete well for amino acid N[J]. Ecology. 1996, 77(7): 2142-2147.
    [110] Schobert C., K?ckenberger W., Komor E. Uptake of amino acids by plants from the soil: A comparative study with castor bean seedlings grown under natural and axenic soil conditions[J]. Plant and Soil. 1988, 109(2): 181-188.
    [111] Nasholm T., Ekblad A., Nordin A., et al. Boreal forest plants take up organic nitrogen[J]. Nature. 1998, 392(6679): 914-916.
    [112] Nasholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [113] Bajwa R., Read D. J. The biology of mycorrhiza in the ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants[J]. New Phytologist. 1985, 101(3): 459-467.
    [114] Okamoto M., Okada K. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops[J]. Journal of Experimental Botany. 2004, 55(402): 1577-1585.
    [115] Okamoto M., Okada K., Watanabe T., et al. Growth responses of cereal crops to organic nitrogen in the field[J]. Soil Science and Plant Nutrition. 2003, 49(3): 445-452.
    [116]张夫道,孙羲.氨基酸对水稻营养作用的研究[J].中国农业科学. 1984, 5: 61-66.
    [117]王忠强,吴良欢,刘婷婷,等.供氮水平对爬山虎(Parthenocissus tricuspidata Planch)生物量及养分分配的影响[J].生态学报. 2007, 27(8): 3435-3441.
    [118] Thornton B. Uptake of glycine by non-mycorrhizal Lolium perenne[J]. Journal of Experimental Botany. 2001, 52(359): 1315-1322.
    [119] Bush D. R. Proton-coupled sugar and amino acid transporters in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology. 1993, 44(1): 513-542.
    [120] Fischer W. N., AndréB., Rentsch D., et al. Amino acid transport in plants[J]. Trends in Plant Science. 1998, 3(5): 188-195.
    [121] Kielland K. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling[J]. Ecology. 1994, 75(8): 2373-2383.
    [122]罗安程,吴平.稻苗对氨基酸吸收特性的研究[J].浙江农业学报. 1997, 9(2): 62-65.
    [123] Lipson D., Nasholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia. 2001, 128(3): 305-316.
    [124] Hellio C., Veron B., Le Gal Y. Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine[J]. Plant Physiology & Biochemistry. 2004, 42(3): 257-264.
    [125]吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究[J].土壤学报. 2000, 37(4): 464-473.
    [126]莫良玉.高等植物氨基酸态氮营养效应研究[D].浙江大学博士学位论文, 2001: 67-75.
    [127] FAO. (Food and agriculture organization of the United Nations). Statistical Database. 2006. http://www.fao.org/
    [128]马双武,刘君璞等编著.甜瓜种质资源描述规范和数据标准[M].北京:中国农业出版社, 2006: 1.
    [129]马跃.我国甜瓜设施栽培生产的现状与发展[J].中国西瓜甜瓜. 2001, (2): 38-40.
    [130]牛庆良.基于生理分析和生长模拟的网纹甜瓜薄层基质栽培体系构建[D].上海:上海交通大学博士学位论文, 2008: 9-10.
    [131]中国农业科学院郑州果树研究所主编.中国西瓜甜瓜[M].北京:农业出版社, 2000.
    [132]孙晓法,丁长命.网纹甜瓜的品种类型与栽培特性[J].中国西瓜甜瓜. 2000, (3): 28-30.
    [133]范红伟,黄丹枫.西瓜、甜瓜安全生产实用技术[M].上海:上海科学技术出版社, 2004, 176-179.
    [134] Sanchez R.L., Sironi J.S., Crespo J.A.P., et al. Growth and nutrient absorption by muskmelon crop under greenhouse conditions[J]. Acta Horticulturae. 1998, 458: 153-159.
    [135]黄庆,孙映波,谢汝升,等.不同氮素水平对厚皮甜瓜品质和产量的影响[J].广东农业科学. 2000, (3): 34-35.
    [136] Kirnak H., Higgs D., Kaya C., et al. Effects of Irrigation and Nitrogen Rates on Growth, Yield, and Quality of Muskmelon in Semiarid Regions[J]. Journal of Plant Nutrition. 2005, 28(4): 621-638.
    [137] Dasgan H. Y., Kirda C., Baytorun N., et al. Water and nitrogen relationships in fertigated greenhouse grown melon (Cucumis melo, L.) [J]. Acta Horticulturae. 1999, 492: 233-236.
    [138] Hansen B., Alroc H. F., Kristensen E. S. Approaches to assess the environmental impact of organic farming with particular regard to Denmark[J]. Agriculture, Ecosystems and Environment. 2001, 83(1-2): 11-26.
    [139] Pacini C., Wossink A., Giesen G., et al. Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis[J]. Agriculture, Ecosystems and Environment. 2003, 95(1): 273-288.
    [1] Limon-Ortega A., Sayre K. D., Francis C. A. Wheat and maize yields in response to straw management and nitrogen under a bed planting system[J]. Agronomy Journal. 2000, 92(2): 295-302.
    [2] Haraldsen T. K., Asdal A., Grasdalen C., et al. Nutrient balances and yields during conversion from conventional to organic cropping systems on silt loam and clay soils in Norway[J]. Biological Agriculture & Horticulture. 2000, 17(3): 229-246.
    [3] Owen A. G., Jones D. L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition[J]. Soil Biology and Biochemistry. 2001, 33(4-5): 651-657.
    [4] Qualls R. G., Haines B. L., Swank W. T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology. 1991, 72: 254-266.
    [5]杨绒,严德翼,周建斌,等.黄土区不同类型土壤可溶性有机氮的含量及特性[J].生态学报. 2007, 27(4): 1397-1403.
    [6] Zhong Z. K., Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology & Biochemistry. 2003, 35(2): 333-338.
    [7] Chen C. R., Xu Z. H., Zhang S. L., et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant and Soil. 2005a, 277(1-2): 285-297.
    [8]巨晓棠,边秀举,刘学军,等.旱地土壤氮素矿化参数与氮素形态的关系[J].植物营养与肥料学报. 2000, 6(3): 251-259.
    [9] Downes M. T. An Improved Hydrazine Reduction Method for the Automated Determination of Low Nitrate Levels in Freshwater[J]. Water Research. 1978, 12(9): 673-675.
    [10] Mulvaney R.L. Nitrogen-Inorganic forms. In:Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3. SSSA Book Series 5[M]. Soil Science Society of America and American Society of Agronomy. 1996, Madison, WI,USA: 1123-1184.
    [11] Chen C. R., Xu Z. H., Keay P., et al. Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation[J]. Australian Journal of Soil Research. 2005b, 43(4): 515-523.
    [12] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry. 1976, 72(1-2): 248-254.
    [13] Stanford G., Smith S. J. Nitrogen mineralization potential of soil[J]. Soil Science Society of America Process. 1972, 36: 465-472.
    [14] Christou M., Avramides E. J., Jones D. L. Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil[J]. Soil Biology & Biochemistry. 2006, 38(8): 2265-2277.
    [15] Poudel D. D., Horwath W. R., Lanini W. T., et al. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California[J]. Agriculture, Ecosystems and Environment. 2002, 90(2): 125-137.
    [16] Schmidt I. K., Jonasson S., Michelsen A. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment[J]. Applied Soil Ecology. 1999, 11(2-3): 147-160.
    [17] Chantigny M.H. Dissolved and water-extractable organic matter in soils:a review on the influence of land use and management practices[J]. Geoderma. 2003, 113: 357-380.
    [18]卢萍,单玉华,杨林章,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报. 2006, 43(5): 736-741.
    [19] Bonkowski M., Griffiths B., Scrimgeour C. Substrate heterogeneity and microfauna in soil organic 'hotspots' as determinants of nitrogen capture and growth of ryegrass[J]. Applied Soil Ecology. 2000, 14(1): 37-53.
    [20] Neff J. C., Chapin F. S., Vitousek P. M. Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems[J]. Frontiers in Ecology and the Environment. 2003, 1(4): 205-211.
    [21] Yu Z., Zhang Q., Kraus T. E. C., et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry. 2002, 61(2): 173-198.
    [1]朱兆良.土壤氮素[M].见:熊毅、李庆逵编,中国土壤(第二版),北京:科学出版社, 1987: 464-486.
    [2] Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways[J]. Plant and Soil. 2002, 247(1): 3-24.
    [3] Snapp S. S., Mafongoya P. L., Waddington S. Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa[J]. Agriculture, Ecosystems and Environment. 1998, 71(1-3): 185-200.
    [4] Sorensen J. N., Thorup-Kristensen K. Undersowing legume crops for green manuring of lettuce[J].Biological Agriculture & Horticulture. 2003, 21(4): 399-414.
    [5] Haraldsen T. K., Asdal A., Grasdalen C., et al. Nutrient balances and yields during conversion from conventional to organic cropping systems on silt loam and clay soils in Norway[J]. Biological Agriculture & Horticulture. 2000, 17(3): 229-246.
    [6] Wang Y. P., Huang S. N., Chao C. C. Evaluation of nutrients uptake and left over in organic farming[J]. Journal of the Agricultural Association of China. 1996, 173: 116-119.
    [7] Nasholm T., Ekblad A., Nordin A., et al. Boreal forest plants take up organic nitrogen[J]. Nature. 1998, 392(6679): 914-916.
    [8] Nasholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [9] Okamoto M., Okada K. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops[J]. Journal of Experimental Botany. 2004, 55(402): 1577-1585.
    [10] Okamoto M., Okada K., Watanabe T., et al. Growth responses of cereal crops to organic nitrogen in the field[J]. Soil Science and Plant Nutrition. 2003, 49(3): 445-452.
    [11] Bhogal A., Murphy D. V., Fortune S., et al. Distribution of nitrogen pools in the soil profile of undisturbed and reseeded grasslands[J]. Biology and Fertility of Soils. 2000, 30(4): 356-362.
    [12] Murphy D. V., Macdonald A. J., Stockdale E. A., et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils. 2000, 30(5-6): 374-387.
    [13] Matsumoto S., Ae N., Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.)[J]. Soil Biology & Biochemistry. 2000, 32(8-9): 1301-1310.
    [14] Watanabe T., Okamoto M., Misawa S., et al. Different characteristics of nitrogen utilization between lupin and soybean: can lupin utilize organic nitrogen in soils?[J]. Canadian Journal of Botany. 2006, 84: 20-27.
    [15] Fisher F. M., Gosz J. R. Effects of plants on net mineralization of nitrogen in forest soil microcosms[J]. Biology and Fertility of Soils. 1986, 2(1): 43-50.
    [16]鲍士旦.土壤农化分析(第三版) [M].北京:中国农业出版社. 2005: 54-56, 264-268.
    [17] Downes M. T. An Improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater[J]. Water Research. 1978, 12(9): 673-675.
    [18] Lehne P. Yield formation, nutrient and toxic element fluxes in stands of fiber nettle (Urtica dioica L.) as influenced by fertilization under organic farming conditions[D]. PhD Dissertation, Cuvillier Verlag, G?ttingen (In German with English Abstract). 2005.
    [19]赵明,陈雪辉,赵征宇,等.鸡粪等有机肥料的养分释放及土壤有效铜,锌,铁,锰含量的影响[J].中国生态农业学报. 2007, 15(2): 47-50.
    [20] Berger T. W., Glatzel G. Response of quercus petraea seedlings to nitrogen fertilization[J]. Forest Ecology and Management. 2001, 149(1): 1-14.
    [21] Walker L. R. Soil nitrogen changes during primary succession on a floodplain in Alaska, USA[J]. Arctic & Alpine Research. 1989, 21(4): 341-349.
    [22] Kielland K. Amino acid absorption by Arctic plants: Implications for plant nutrition and nitrogen cycling[J]. Ecology. 1994, 75(8): 2373-2383.
    [23] Marschner H. Long-distance transport in the xylem and phloem and its regulation[M]. In Mineral Nutrition of Higher Plants, eds. H. Marschner, Academic Press, London: 2nd Ed. 1995: 79-115.
    [1] Marschnmer H., Kirkby E. A, Cakmak I. Effect of mineral nutritional status on shoot-root partioning of photoassimilates and cycling of mineral nutrients[J]. Journal of Experimental Botany. 1996, 47: 1255-1263.
    [2] Meziane D., Shipley B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply[J]. Functional Ecology. 1999, 13(5): 611-622.
    [3] Hageman R. H. Nitrification inhibitors-potentials and limitations[M]. American Society of Agronomy and Soil Science Society, Madison, Wisconsin, USA, 1980, 47-62.
    [4] Britto D. T., Kronzucker H. J. NH4+ toxicity in higher plants: a critical review[J]. Journal of Plant Physiology. 2002, 159(6): 567-584.
    [5]曹翠玲,李生秀.氮素形态对玉米幼苗碳水化合物及养分累积的影响[J].华中农业大学学报. 2003, 22(5): 457-461.
    [6] Nasholm T., Ekblad A., Nordin A., et al. Boreal forest plants take up organic nitrogen[J]. Nature. 1998, 392(6679): 914-916.
    [7] Nasholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [8] Wu L. H., Mo L. Y., Fan Z. L., et al. Absorption of glycine by three agricultural species under sterile sand culture conditions[J]. Pedosphere. 2005, 15(3): 286-292.
    [9]武雪萍,刘国顺,朱凯,等.外源氨基酸对烟叶氨基酸含量的影响[J].中国农业科学. 2004, 37(3): 357-361.
    [10] Gunes A., Inal A., Aktas M. Reducing nitrate content of NFT grown winter onion plants (Allium cepa L.) by partial replacement of NO3 with amino acid in nutrient solution[J]. Scientia Horticulturae. 1996, 65(2): 203-208.
    [11]陈贵林,高秀瑞.氨基酸和尿素替代硝态氮对水培不结球白菜和生菜硝酸盐含量的影响[J].中国农业科学. 2002, 35(2): 187-191.
    [12]王华静,吴良欢,陶勤南.有机营养肥料研究进展[J].生态环境, 2003, 12(1): 110-114.
    [13]鲍士旦.土壤农化分析(第三版) [M].北京:中国农业出版社, 2005: 264-268.
    [14]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯. 1988, 3: 62-64.
    [15] Sattelmacher B., Gerendas J., Thoms K., et al. Interaction between root growth and mineral nutrition[J]. Environmental and Experimental Botany. 1993, 33(1): 63-73.
    [16] Raab T. K., Terry N. Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L.[J]. Plant Physiology. 1994, 105(1): 1159-1166.
    [17]邹春琴,王晓凤,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨[J].植物营养与肥料学报. 2004, 10(1): 82-85.
    [18]吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究[J].土壤学报. 2000, 37(4): 464-473.
    [19] Bolan N.S., Hedley M.J., White R.E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures[J]. Plant and Soil. 1991, 134(1): 53-63.
    [20] Raven J.A., Franco A.A., de Jesus E.L., et al. H+ extrusion and organic-acid synthesis in N2-fixing symbioses involving vascular plants[J]. New Phytologist. 1990, 114(3): 369-389.
    [21]葛体达,唐东梅,芦波,等.番茄根系分泌物、木质部和韧皮部汁液组分对矿质氮、有机氮的响应研究[J].园艺学报. 2008, 35(1): 39-46.
    [22] Padgett P.E., Leonard R.T. Regulation of nitrate uptake by amino acids in maize cell suspension culture and intact roots[J]. Plant and Soil. 1993, 155(1): 159-161.
    [23]刘伟.氨基酸态氮对蔬菜的营养效应及有机营养液对蔬菜产量和品质影响研究[D].南京农业大学博士论文,2002: 48-59.
    [24]彭勇,彭福田,周鹏,等.冬枣对不同形态氮素的吸收与利用[J].应用生态学报. 2007, 18(6): 1265-1269.
    [25]张青,彭福田,姜远茂,等.草莓对不同形态氮素的吸收与分配[J].园艺学报. 2005, 32(6): 1070-1072.
    [1]郭世荣主编.无土栽培学[M].北京,中国农业出版社, 2003: 323-324.
    [2]袁四清,师长俭.无土栽培甜瓜营养液配方试验[J].中国蔬菜. 1999, (3): 33-34.
    [3] Rao T. P., Ito O., Matsunga R. Differences in uptake kinetics of ammonium and nitrate in legumes and cereals[J]. Plant and Soil. 1993, 154(1): 67-72.
    [4] Kronzucker H. J., Siddiqi M. Y., Glass A. D. M., et al. Nitrate-ammonium synergism in rice. A Subcellular flux analysis[J]. Plant Physiology. 1999, 119(3): 1041-1045.
    [5]张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报. 2004, 41(6): 918-923.
    [6] Bhogal A., Murphy D. V., Fortune S., et al. Distribution of nitrogen pools in the soil profile of undisturbed and reseeded grasslands[J]. Biology and Fertility of Soils. 2000, 30(4): 356-362.
    [7] Murphy D. V., Macdonald A. J., Stockdale E. A. et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils. 2000, 30(5-6): 374-387.
    [8]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报. 2007, 27(8): 3500-3512.
    [9] Nasholm T., Ekblad A., Nordin A. et al. Boreal forest plants take up organic nitrogen[J]. Nature. 1998, 392(6679): 914-916.
    [10] Nasholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [11]朱兆良,文启孝主编.中国土壤氮素[M].南京,江苏科学技术出版社, 1992: 12-26.
    [12]吴良欢,陶勤南.水稻氨基酸态氮营养效应及其机理研究[J].土壤学报. 2000, 37(4): 464-473.
    [13]罗安程,吴平.稻苗对氨基酸吸收特性的研究[J].浙江农业学报. 1997, 9(2): 62-65.
    [14]杨肖娥,孙羲.不同水稻品种NH4+和NO3-吸收的动力学[J].土壤通报. 1991, 22(5): 222-224.
    [15] Okamoto M., Okada K. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops[J]. Journal of Experimental Botany. 2004, 55(402): 1577-1585.
    [16] Downes M. T. An Improved Hydrazine Reduction Method for the Automated Determination of Low Nitrate Levels in Freshwater[J]. Water Research. 1978, 12(9): 673-675.
    [17]鲍士旦.土壤农化分析(第三版) [M].北京,中国农业出版社, 2005: 54-56.
    [18]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社. 2000: 192-197.
    [19] Kamminga-Van W C., Prins H. B. A. The kinetics of NH4+ and NO3- uptake by Douglas fir from single N-solutions and from solutions containing both NH4+ and NO3-[J]. Plant and Soil. 1993, 151(1): 91-96.
    [20] Malagoli M., Dal Canal A., Quaggiotti S. et al. Differences in nitrate and ammonium uptake between Scots pine and European larch[J]. Plant and Soil. 2000, 221(1): 1-3.
    [21]田霄鸿,王朝辉.不同氮素形态及配比对蔬菜生长和品质的影响[J].西北农业大学学报. 1999, 27(2): 6-10.
    [22]张春兰,高祖明.氮素形态和NO3--N与NH4+-N配比对菠菜生长和品质的影响[J].南京农业大学学报. 1990, 13(3): 70-74.
    [23]许如意.氮素营养对网纹甜瓜生长和品质的影响[D].武汉:华中农业大学硕士学位论文. 2006.
    [24] Youngdahl L.J., Pacheco R., Street J.J. et al. The kinetics of ammonium and nitrate uptake by young rice plants.[J]. Plant and Soil. 1982, 69(2): 225 - 232.
    [25]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期吸铵和生长的影响[J].土壤学报. 2005, 42(2): 260-265.
    [26]彭勇,彭福田,周鹏,等.冬枣对不同形态氮素的吸收与利用[J].应用生态学报. 2007, 18(6): 1265-1269.
    [1] IFOAM. International Federation of Organic Agriculture Movements. Hhttp://www.ifoam.org/sub/faq.htmlH. 2007.
    [2] Nakano A., Uehara Y. Effects of corn steep liquor (CSL) and methane fermented liquid cattle waste (MFC) application in fertigation soil culture on growth and yield of muskmelon (Cucumis melo L.) fruit[J]. Horticultural Research (Japan). 2003, 2(3): 175-178.
    [3] Curuk S., Sermenli T., Mavi K., et al. Yield and fruit quality of watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai.) and melon (Cucumis melo L.) under protected organic and conventional farming systems in a Mediterranean region of Turkey[J]. Biological Agriculture & Horticulture. 2004, 22(2): 173-183.
    [4] Sorensen J. N., Thorup-Kristensen K. Undersowing legume crops for green manuring of lettuce[J]. Biological Agriculture & Horticulture. 2003, 21(4): 399-414.
    [5] Haraldsen T. K., Asdal A., Grasdalen C., et al. Nutrient balances and yields during conversion from conventional to organic cropping systems on silt loam and clay soils in Norway[J]. Biological Agriculture & Horticulture. 2000, 17(3): 229-246.
    [6] Poudel D. D., Horwath W. R., Lanini W. T. et al. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California[J]. Agriculture, Ecosystems & Environment. 2002, 90(2): 125-137.
    [7] Wang Y. P., Huang S. N., Chao C. C. Evaluation of nutrients uptake and left over in organic farming[J]. Journal of the Agricultural Association of China. 1996, 173: 116-119.
    [8] Berntsen J., Grant R., Olesen J. E., et al. Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops[J]. Soil Use and Management. 2006, 22(2): 197-208.
    [9] Pang X. P., Letey J. Organic Farming: challenge of timing nitrogen availability to crop nitrogen requirements[J]. Soil Science Society of America Journal. 2000, 64(1): 247-253.
    [10] Nasholm T., Huss-Danell K., Hogberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology. 2000, 81(4): 1155-1161.
    [11] Matsumoto S., Ae N., Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.)[J]. Soil Biology & Biochemistry. 2000, 32(8): 1301-1310.
    [12] Yamagata M., Ae N. Direct acquisition of organic nitrogen by crops[J]. Japan Agricultural Research Quarterly. 1999, 33(1): 15-21.
    [13] Okamoto M., Okada K., Watanabe T., et al. Growth responses of cereal crops to organic nitrogen in the field[J]. Soil Science and Plant Nutrition. 2003, 49(3): 445-452.
    [14] Matsumoto S., Ae N., Yamagata M. Extraction of mineralizable organic nitrogen from soils by a neutral phosphate buffer solution[J]. Soil Biology & Biochemistry. 2000, 32(8): 1293-1299.
    [15] Sanchez R. L., Sironi, S. J., Crespo, P.J.A., et al. Growth and nutrient absorption by muskmelon crop under greenhouse conditions[J]. Acta Horticulturae. 1998, 458: 153-159.
    [16]林多,黄丹枫.基质栽培甜瓜矿质营养吸收规律的研究[J].植物营养与肥料学报. 2003, 9(1): 112-116.
    [17]中华人民共和国国家标准. GB/T 19630-2005.有机产品[S]. 2005.
    [18] Finck A. Fertilizers and Fertilization: Introduction and practical guide to crop fertilization[M]. VCH Publishers Inc New York, 1994.
    [19] Lehne P. Yield formation, nutrient and toxic element fluxes in stands of fiber nettle (Urtica dioica L.) as influenced by fertilization under organic farming conditions[D]. PhD Dissertation, Cuvillier Verlag, G?ttingen (In German with English Abstract). 2005.
    [20] Carlson R. M., Cabrera R.I., Paul J.L., et al. Rapid direct determination of ammonium and nitrate in soil and plant tissue extracts[J]. Communication in Soil Science and Plant Analysis. 1990, 21(13-16): 1519–1530.
    [21]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社, 2005: 54-56, 264-268.
    [22] Downes M. T. An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater[J]. Water Research. 1978, 12(9): 673-675.
    [23]李合生主编.植株生理生化实验原理和技术[M].北京:高等教育出版社, 2000: 184-185; 192-194.
    [24] Eckstein R. L., Karlsson P. S. Variation in nitrogen-use efficiency among and within subarctic graminoids and herbs[J]. New Phytologist. 2001, 150(3): 641-651.
    [25] Walker R. L., Burns I. G., Moorby J. Responses of plant growth rate to nitrogen supply: a comparison of relative addition and N interruption treatments[J]. Journal of Experimental Botany. 2001, 52(355): 309-317.
    [26] Schurr U. Xylem sap sampling - New approaches to an old topic[J]. Trends in Plant Science. 1998, 3(8): 293-298.
    [27] Aronsson H., Torstensson G., Bergstrom L. Leaching and crop uptake of N, P and K from organic and conventional cropping systems on a clay soil[J]. Soil Use and Management. 2007, 23(1): 71-81.
    [28] Aerts R., de Caluwe H. Nitrogen use efficiency of Carex species in relation to nitrogen supply[J]. Ecology. 1994, 75(8): 2362-2372.
    [29]王忠强,吴良欢,刘婷婷,等.供氮水平对爬山虎(Parthenocissus tricuspidata Planch)生物量及养分分配的影响[J].生态学报. 2007, 27(8): 3435-3441.
    [30] Chapin III F.S., Bloom A.J., Field C.B., et al. Plant responses to multiple environmental factors[J]. Bioscience. 1987, 37(1): 49-57.
    [31] Kielland K. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen ccling[J]. Ecology. 1994, 75(8): 2373-2383.
    [32] Lipson D., Nasholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia. 2001, 128(3): 305-316.
    [33] Marschner H. Long-distance transport in the xylem and phloem and its regulation[M]. In Mineral nutrition of higher plants, eds. H. Marschner, Academic Press, London: 2nd Ed. 199579-115.
    [34] Watanabe T., Okamoto M., Misawa S., et al. Different characteristics of nitrogen utilization between lupin and soybean: can lupin utilize organic nitrogen in soils?[J]. Canadian Journal of Botany. 2006, 84: 20-27.
    [35]赵明,陈雪辉,赵征宇,等.鸡粪等有机肥料的养分释放及土壤有效铜,锌,铁,锰含量的影响[J].中国生态农业学报. 2007, 15(2): 47-50.
    [36] Judais V Rinaldi S. Organic fertilizers in melon: the dynamics of nitrogen[J]. PHM Revue Horticole. 2001, 431: 17-20.
    [1] Hansen B., Alroc H. F., Kristensen E. S. Approaches to assess the environmental impact of organic farming with particular regard to Denmark[J]. Agriculture, Ecosystems and Environment. 2001, 83(1-2): 11-26.
    [2] Pacini C., Wossink A., Giesen G., et al. Evaluation of sustainability of organic, integrated andconventional farming systems: a farm and field-scale analysis[J]. Agriculture, Ecosystems and Environment. 2003, 95(1): 273-288.
    [3]方华.有机食品产业:新的经济增长点[N].金融时报, 2005-08-04,第C11版.
    [4]郑惊鸿.尽快与国际接轨做大有机农业[N].农民日报, 2005-07-05,第2版.
    [5] Malusa E., Laurenti E., Ghibaudi E., et al. Influence of organic and conventional management on yield and composition of grape cv. 'Grignolino'[J]. Acta Horticulturae. 2004, 640: 135-141.
    [6] Devrajan K., Seenivasan N., Selvaraj N. Bio-management of root-knot nematode, Meloidogyne hapla, in carrot (Daucus carota L.)[J]. Indian Journal of Nematology. 2003, 33(1): 6-8.
    [7] Colla G., Mitchell J. P., Joyce B. A., et al. Soil physical properties and tomato yield and quality in alternative cropping systems[J]. Agronomy Journal. 2000, 92(5): 924-932.
    [8] Reganold J. P., Glover J. D., Andrews P. K., et al. Sustainability of three apple production systems[J]. Nature. 2001, 410(6831): 926-930.
    [9] Rippy J. F. M., Peet M. M., Louws F. J., et al. Plant development and harvest yields of greenhouse tomatoes in six organic growing systems[J]. HortScience. 2004, 39(2): 223-229.
    [10] Swezey S.L., Goldman P., Jergens R., et al. Preliminary studies show yield and quality potential of organic cotton[J]. California Agriculture. 1999, 53(4): 9-16.
    [11] Nakano A., Uehara Y. Effects of corn steep liquor (CSL) and methane fermented liquid cattle waste (MFC) application in fertigation soil culture on growth and yield of muskmelon (Cucumis melo L.) fruit[J]. Horticultural Research (Japan). 2003, 2(3): 175-178.
    [12] Curuk S., Sermenli T., Mavi K., et al. Yield and fruit quality of watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai.) and melon (Cucumis melo L.) under protected organic and conventional farming systems in a Mediterranean region of Turkey[J]. Biological Agriculture & Horticulture. 2004, 22(2): 173-183.
    [13]许如意,别之龙,黄丹枫.不同氮素形态配比对网纹甜瓜干物质分配和氮代谢的影响[J].农业工程学报. 2005, 21(z2): 147-150.
    [14]陈声明,林海萍主编.有机农业及其源头产品[M].北京:中国环境科学出版社, 2004: 67, 75.
    [15] Finck A. Fertilizers and Fertilization: Introduction and practical guide to crop fertilization[M]. VCH Publishers Inc New York, 1994.
    [16] Lehne P. Yield formation, nutrient and toxic element fluxes in stands of fiber nettle (Urtica dioica L.) as influenced by fertilization under organic farming conditions[D]. PhD Dissertation, Cuvillier Verlag, G?ttingen (In German with English Abstract). 2005.
    [17] Bulluck III L. R., Brosius M., Evanylo G. K., et al. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms[J]. Applied Soil Ecology. 2002, 19(2): 147-160.
    [18] Poudel D.D, Horwath W.R, Lanini W.T., et al. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California[J]. Agriculture, Ecosystems and Environment. 2002, 90(2): 125–137.
    [19]张银锁,宇振荣, Driessen P. M.环境条件和栽培管理对夏玉米干物质积累,分配及转移的试验研究[J].作物学报, 2002, 28(1): 104-109.
    [20]范红伟,黄丹枫.西瓜、甜瓜安全生产实用技术[M].上海:上海科学技术出版社, 2004: 176-179.
    [1] Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways[J]. Plant and Soil. 2002, 247(1): 3-24.
    [2] Hansen B., Alroc H. F., Kristensen E. S. Approaches to assess the environmental impact of organic farming with particular regard to Denmark[J]. Agriculture, Ecosystems and Environment. 2001, 83(1-2): 11-26.
    [3] Pacini C., Wossink A., Giesen G., et al. Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis[J]. Agriculture, Ecosystems and Environment. 2003, 95(1): 273-288.
    [4] Rembialkowska E., Tijskens L. M. M., Vollebregt H.M. Organic farming as a system to provide better vegetable quality [J]. Acta Horticulturae. 2003, 604: 473-479.
    [5] Singh S.R. Effect of organic farming on productivity and quality of French bean (Phaseolus vulgaris L.) var. contender[J]. Legume Research. 2002, 25: 124-126.
    [6] Colla G., Mitchell J. P., Joyce B. A., et al. Soil physical properties and tomato yield and wuality in alternative cropping systems[J]. Agronomy Journal. 2000, 92(5): 924.
    [7] Villanueva M. J., Tenorio M. D., Esteban M. A., et al. Compositional changes during ripening of two cultivars of muskmelon fruits[J]. Food Chemistry. 2004, 87(2): 179-185.
    [8] Wang Y., Wyllie S. G., Leach D. N. Chemical changes during the development and ripening of the fruit of cucumis melo (cv. Makdimon)[J]. Journal of Agricultural and Food Chemistry. 1996, 44(1): 210-216.
    [9] McCollum T. G., Huber D. J., Cantliffe D. J. Soluble sugar accumulation and activity of related enzymes during muskmelon fruit development[J]. Journal of the American Society for Horticultural Science. 1988, 113(3): 399-403.
    [10] Lingle S.E., Dunlap J.R. Sucrose metabolism in netted muskmelon fruit during development[J]. Plant Physiology. 1987, 84: 386-389.
    [11] Lin D., Huang D., Wang S. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture[J]. Scientia Horticulturae. 2004, 102(1): 53-60.
    [12] Bulluck III L. R., Brosius M., Evanylo G. K., et al. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms[J]. Applied SoilEcology. 2002, 19(2): 147-160.
    [13] Morra L., Bilotto M., Magnifico V. Long term effects of soil organic amendment or mineral fertilization on vegetable crops productivity in tunnel.[J]. Acta Horticulturae. 2003, (614): 781-785.
    [14] Curuk S., Sermenli T., Mavi K., et al. Yield and fruit quality of watermelon (Citrullus lanatus (Thumb.) Matsum. & Nakai.) and melon (Cucumis melo L.) under protected organic and conventional farming systems in a Mediterranean region of Turkey[J]. Biological Agriculture & Horticulture. 2004, 22(2): 173-183.
    [15] Fernandes A. L. T., Rodrigues G. P., Testezlaf R. Mineral and organomineral fertirrigation in relation to quality of greenhouse cultivated melon[J]. Scientia Agricola. 2003, 60: 149-154.
    [16] Melero S., Porras J. C. R., Herencia J. F., et al. Chemical and biochemical properties in a silty loam soil under conventional and organic management[J]. Soil and Tillage Research. 2006, 90(1-2): 162-170.
    [17]张国红,袁丽萍,郭英华,等.不同施肥水平对日光温室番茄生长发育的影响[J].农业工程学报. 2005, 21(增刊): 151-154.
    [18]叶景学,吴春燕,沈凌凌,等.有机肥与化肥配施对结球白菜产量和品质的影响[J].吉林农业大学学报. 2004, 26(2): 155-157.
    [19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000: 192-197.
    [20]鲍士旦.土壤农化分析(第三版) [M].北京:中国农业出版社, 2005: 54-56.
    [21] Baker J. T., Reddy V. R. Temperature effects on phenological development and yield of muskmelon[J]. Annals of Botany. 2001, 87(5): 605-613.
    [22]齐三魁,吴大康,林德佩主编.中国甜瓜[M].北京:科学普及出版社, 1991: 47-50.
    [23]许传强,李天来,齐红岩,等.嫁接对网纹甜瓜果实发育和糖含量的影响[J].沈阳农业大学学报. 2006, 37(3): 378-381.
    [24] Lester G. E., Dunlap J. R. Physiological changes during the development and ripening of Perlita muskmelon fruits[J]. Scientia Horticulturae. 1985, 26: 323-331.
    [25] Hubbard N. L., Huber S. C., Pharr D. M. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits[J]. Plant Physiology. 1989, 91(4): 1527-1534.
    [26] De Koning A. N. M. Long-term temperature integration of tomato. Growth and development under alternating temperature regimes[J]. Scientia Horticulturae. 1990, 45(1-2): 117-127.
    [27] Long R.L. Improving fruit soluble solids content in melon (Cucumis melo L.) (reticulatus group) in the Australian production system[D]. PhD Dissertation. Central Queensland University, Rockhampton, Australia. 2005.
    [28] Caris-Veyrat C., Amiot M. J., Tyssandier V., et al. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans[J]. Journal of Agricultural and Food Chemistry. 2004, 52(21): 6503-6509.
    [29] Herencia J. F., Ruiz-Porras J. C., Melero S., et al. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations, and yield[J]. Agronomy Journal. 2007, 99(4): 973-983.
    [30]陈振德,程炳嵩.蔬菜中的硝酸盐及其与人体健康[J].中国蔬菜. 1988, (1): 40-42.
    [31] Worthington V. Nutritional quality of organic versus conventional fruits, vegetables, and grains[J]. Journal of Alternative and Complementary Medicine. 2001, 7(2): 161-173.
    [32] Hajslova J., Schulzova V., Slanina P., et al. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organolepticproperties[J]. Food Additives and Contaminants. 2005, 22(6): 514-534.
    [33] Nakano A., Uehara Y. Effects of corn steep liquor (CSL) and methane fermented liquid cattle waste (MFC) application in fertigation soil culture on growth and yield of muskmelon (Cucumis melo L.) fruit[J]. Horticultural Research (Japan). 2003, 2(3): 175-178.
    [34] Xu H. L., Wang R., Mridha M. A. U. Effects of organic fertilizers and a microbial inoculant on leaf photosynthesis and fruit yield and quality of tomato plants[J]. Journal of Crop Production. 2000, 3(1): 173-182.
    [35]尤彩霞,陈清,张福墁,等.有机肥对日光温室黄瓜产量和品质影响研究[J].北方园艺. 2005, (5): 48-49.
    [36] Maynard D.N., Barker A.V., Minotti P.L., et al. Nitrate accumulation in vegetables[J]. Advances in Agronomy. 1976, 28: 71-118.
    [37] Pavlou G. C., Ehaliotis C. D., Kavvadias V. A. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce[J]. Scientia Horticulturae. 2007, 111(4): 319-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700