壳聚糖衍生物非病毒基因载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种天然的阳离子多糖,具有良好的生物相容性,生物降解性,低免疫原性以及无毒性的优点。壳聚糖通过静电作用可以与DNA形成聚电解质复合物,保护DNA免受核酸酶的降解,从而促使DNA顺利的进入细胞,因此壳聚糖作为非病毒基因载体具有广泛的应用前景。
     本文制备了两种新型的壳聚糖非病毒载体,精氨酸修饰的壳聚糖(Arg-CS)和N-亚甲基磷酸化壳聚糖(NMPCS),探讨其物理化学性质及其与DNA之间的相互作用及基因转染行为,对壳聚糖载基因纳米粒子荧光标记条件进行了优化,探讨了精氨酸修饰壳聚糖载基因血管支架体内局部释放基因的可行性,具体内容主要包括以下几个方面:
     1、精氨酸修饰的壳聚糖的制备及其与DNA相互作用的研究。通过红外光谱和核磁共振图谱分析,可以确认精氨酸已经共价连接到壳聚糖上。圆二色谱结果表明DNA与壳聚糖作用形成纳米尺寸的复合物后仍然保持着典型的B型构象。用透射电镜,原子力显微镜和光子相关光谱检测复合物的表面形态和尺寸大小分布,结果表明,精氨酸修饰的壳聚糖/DNA纳米复合物(N/P=2:1)呈现不规则的球形,复合物的直径分布大多在80~150nm之间,有利于基因转染。
     2、精氨酸修饰的壳聚糖介导的基因转染研究。精氨酸修饰的壳聚糖介导荧光素酶质粒的表达较未修饰的壳聚糖介导的荧光素酶质粒的表达提高了大约100倍,在整个实验浓度范围内,精氨酸修饰的壳聚糖及其与DNA的复合物对HeLa细胞的毒性非常小。
     3、N-亚甲基磷酸化壳聚糖的制备及其与DNA相互作用的研究。以红外光谱(FTIR)分析表明改性后的壳聚糖的特征基团有显著变化;13C NMR检测进一步证明了亚甲基磷酸基团的引入。通过复凝聚的方法,制备了纳米尺寸的NMPCS/DNA聚电解质复合物。考察了共聚物与DNA的相互作用情况,复合物中DNA的构象变化和复合物的形态和粒径。圆二色谱结果表明DNA与壳聚糖作用形成纳米尺寸的复合物后仍然保持着典型的B型构象。透射电镜,原子力显微镜检测结果表明,不同N/P下的N-亚甲基磷酸化修饰的壳聚糖/DNA纳米复合物呈现较规则的球形,且在高电荷比时可形成尺寸较小的纳米尺度颗粒。
     4、以人宫颈癌细胞HeLa为宿主细胞,尝试了以NMPCS为载体介导含荧光素酶的pGL3质粒的体外转染,重点研究了pH值和N/P比对转染效率的影响。实验结果表明,载体可有效将质粒转染HeLa细胞,获得的最佳转染效率远高于裸DNA和CS,与PEI相当。基于磷酸基团对钙离子有良好的鳌合能力制备了聚合物盐型NMPCS-Ca载体,并用于介导基因转染,其转染过程类似于传统的P-Ca载体,并认为Ca~(2+)离子通道促进了转染过程。
     5、壳聚糖载基因纳米粒子荧光标记的优化研究。考察了FITC与壳聚糖反应的主要影响因素,观察了荧光标记对纳米粒子表征和转染效率的影响,建立一种快速、稳定并且适宜壳聚糖纳米载体示踪的荧光标记方法。壳聚糖纳米粒子表征和转染效率实验显示最佳的壳聚糖标记条件是反应物壳聚糖与FITC的添加比例为25:1,在pH值7.5室温25℃反应4小时。
     6、精氨酸修饰壳聚糖载基因支架血管内基因转运的研究。细胞转染实验显示,支架表面细胞及支架邻近细胞大量转染,远离支架细胞未见转染。动物实验结果显示,支架植入部位荧光素酶高表达,同时有2只动物肝脏标本有微量表达,其他部位未见表达。精氨酸修饰壳聚糖质粒DNA支架有望成为一种新型有效的血管内基因转运体系。
Chitosan is a naturally occurring cationic polysaccharide with good biocompatibility, biodegradation, low immunogenicity and non-cytotoxicity. Chitosan is considered to be a good candidate for non-viral vector, since cationically charged chitosan can efficiently condense negatively charged DNA to form polyelectrolyte complexes via electrostatic interaction, facilitating the transport of therapeutic genes across the cell membrane.
     In this thesis, two novel non-viral vectors, arginine-modified chitosan (Arg-CS) and N-methylene phosphonic chitosan (NMPCS), were developed. The physicochemical properties of the vectors,the interactions between the vectors and plasmid DNA and gene tranfection activities were investigated. The parameters of labeling chitosan-DNA nanoparticles with fluorescein isothiocyanate were optimized. The potential application of Arg-CS/DNA nanoprticles (ACDNPs) coated stent in endovascular gene delivery was studied. The work mainly focus on the following parts:
     1. Synthesis of Arg-CS and interactions between Arg-CS and DNA.. The formation of Arg-CS and the properties of Arg-CS/DNA complexes were investigated. FTIR and 13C NMR spectra results showed that arginine was chemically coupled to chitosan to form arginine-modified chitosan conjugates. CD spectra indicated that the interaction of DNA with chitosan merely caused a slight perturbation of DNA bonds and DNA still remained B-conformation within the complexes. TEM, AFM and DLS results revealed that the complexes were nearly spheres with mean diameter about 80-150nm, which is very suitable for gene delivery.
     2. Gene transfection mediated by Arg-CS. Luciferase expression mediated by Arg-CS was greatly enhanced to about 100 folds compared with the luciferase expression mediated by chitosan. MTT assay indicated that Arg-CS was a safe non viral vector.
     3. Synthesis of NMPCS and interactions between NMPCS and DNA. FTIR and 13C NMR spectra were used to study the structure of NMPCS. NMPCS/DNA complexes were obtained using a complex coacervation process, characterized by agarose gel electrophoresis retardation assay for their stabilities, atomic force microscopy (AFM), transmission electron microscopy (TEM) and laser size analysizer observation for morphology and size, results showed that at charge ratio 2:1 or above, DNA could be completely entrapped and spherical complexes with mean size of 80~210nm were formed.
     4. Gene transfection mediated by NMPCS. The results indicated that the transfection efficiencies were strongly dependent on the charge ratio and pH value of culture medium, for HeLa cells, the highest efficiency obtained at ratio of 4:1 and pH 6.2 was greatly higher than that from CS/DNA complexes or naked DNA and approximate to that from PEI/DNA complexes. Polymer-inorganic salt type NMPCS-Ca vector showed some similarities with traditional Ca-P, giving high efficiencies probably owe to positive role of Ca2+ ion channel.
     5. Optimization of the assay for labeling chitosan-DNA nanoparticles with fluorescein isothiocyanate. To achieve the appropriate nanoparticle size and cell transfection efficacy, the FCNP should be prepared with the FITC-chitosan labeled by incubating the FITC and chitosan in a pH 7.5 solution at 25℃for 4 hours with the molar ratio of chitosan to FITC being 25:1.
     6. Study on Arg-CS/DNA nanoprticles (ACDNPs) coated stent in endovascular gene delivery. In A10 cell culture, the ACDNP-stents with plasmid pIRES-EGFP induced high level of GFP expression in cells grown on the stent surface and along the adjacent area. In animal studies, luciferase activity was observed only in the region of the artery in contact with the ACDNP-stents(high expression) but not in adjacent arterial segments or at the distal organs(2 liver samples showed low luciferase activity). Arg-CS/DNA nanoprticles (ACDNPs) coated stents demonstrate great potential as a novel and effective endovascular gene delivery system.
引文
[1] Anderson WF, Human gene therapy, Science, 1992, 256(5058):808-813
    [2] Anderson WF, Human gene therapy, Nature, 1998, 392(6679 Suppl):25-30
    [3] Blau H, Khavari P, Gene therapy: progress, problems, prospects, Nat Med, 1997, 3(6):612-613
    [4] Gill DR, Southern KW, Mofford KA, et al., A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis, Gene Ther, 1997, 4(3):199-209
    [5] Dodabalapur A, Torsi L, Katz HE, Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics, Science, 1995, 268(5208):270-271
    [6] Curiel DT, Gerritsen WR, Krul MR, Progress in cancer gene therapy, Cancer Gene Ther, 2000, 7(8):1197-1199
    [7] Walther W, Stein U, Therapeutic genes for cancer gene therapy, Mol Biotechnol, 1999, 13(1):21-28
    [8] Culver KW, Berger M, Miller AD, Lymphocyte gene therapy for adenosine deaminase deficiency, Pediatric Research, 1992, 31:149-154
    [9] Wolff JA, Lederberg J, An early history of gene transfer and therapy, Hum Gene Ther, 1994, 5(4):469-480
    [10]彭朝晖,基因治疗------基础与临床.北京:中国科技出版社, 1994, 1-36
    [11]卢大儒,基因治疗,北京:化学工业出版社, 2003, 1-16
    [12]顾健人,曹雪涛,基因治疗,北京:科技出版社, 2000, 1-3
    [13]唐镇生,应其龙,田新华,分子外科与基因治疗,上海:上海医科大学出版社, 1998, 2-7
    [14] Bally MB, Harvie P, Wong FM, et al., Biological barriers to cellular delivery of lipid-based DNA carriers, Adv Drug Deliv Rev, 1999, 38(3):291-315
    [15] Kabanov AV, Taking polycation gene delivery systems from in vitro to in vivo, Pharm Sci Technolo Today, 1999, 2(9):365-372
    [16] Pouton CW, Seymour LW, Key issues in non-viral gene delivery, Adv Drug Deliv Rev, 2001, 46(1-3):187-203
    [17] Gao S, Chen J, Xu X, et al., Galactosylated low molecular weight chitosan asDNA carrier for hepatocyte-targeting, Int J Pharm, 2003, 255(1-2):57-68
    [18] MacLaughlin FC, Mumper RJ, Wang J, et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery, J Control Release, 1998, 56(1-3):259-272
    [19] Thanou M, Florea BI, Geldof M, et al., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines, Biomaterials, 2002, 23(1):153-159
    [20] Kichler A, Gene transfer with modified polyethylenimines, J Gene Med, 2004, 6 Suppl 1:S3-10
    [21] Hwa Kim S, Hoon Jeong J, Joe CO, et al., Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate, J Control Release, 2005, 103(3):625-634
    [22] Ogris M, Brunner S, Schuller S, et al., PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery, Gene Ther, 1999, 6(4):595-605
    [23] Kircheis R, Kichler A, Wallner G, et al., Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery, Gene Ther, 1997, 4(5):409-418
    [24] Blessing T, Kursa M, Holzhauser R, et al., Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery, Bioconjug Chem, 2001, 12(4):529-537
    [25] Kichler A, Mechtler K, Behr JP, et al., Influence of membrane-active peptides on lipospermine/DNA complex mediated gene transfer, Bioconjug Chem, 1997, 8(2):213-221
    [26] Baru M, Nahum O, Jaaro H, et al., Lysosome-disrupting peptide increases the efficiency of in-vivo gene transfer by liposome-encapsulated DNA, J Drug Target, 1998, 6(3):191-199
    [27] Zhang X, Sawyer GJ, Dong X, et al., The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct, J Gene Med, 2003, 5(3):209-218
    [28] Capecchi MR, High efficiency transformation by direct microinjection of DNA into cultured mammalian cells, Cell, 1980, 22(2 Pt 2):479-488
    [29] Lechardeur D, Sohn KJ, Haardt M, et al., Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer, Gene Ther, 1999,6(4):482-497
    [30] Bianco P, Robey PG, Stem cells in tissue engineering, Nature, 2001, 414(6859):118-121
    [31] Kawai K, Suzuki S, Tabata Y, et al., Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis, Biomaterials, 2000, 21(5):489-499
    [32] Agrawal CM, Best J, Heckman JD, et al., Protein release kinetics of a biodegradable implant for fracture non-unions, Biomaterials, 1995, 16(16):1255-1260
    [33] Elcin YM, Dixit V, Gitnick G, Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing, Artif Organs, 2001, 25(7):558-565
    [34] Lieberman JR, Daluiski A, Stevenson S, et al., The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats, J Bone Joint Surg Am, 1999, 81(7):905-917
    [35] Shea LD, Smiley E, Bonadio J, et al., DNA delivery from polymer matrices for tissue engineering, Nat Biotechnol, 1999, 17(6):551-554
    [36] Service RF, Tissue engineers build new bone, Science, 2000, 289(5484):1498-1500
    [37] Rosenberg SA, Aebersold P, Cornetta K, et al., Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction, N Engl J Med, 1990, 323(9):570-578
    [38] Kiang T, Bright C, Cheung CY, et al., Formulation of chitosan-DNA nanoparticles with poly(propyl acrylic acid) enhances gene expression, J Biomater Sci Polym Ed, 2004, 15(11):1405-1421
    [39] Flotte TR, Solow R, Owens RA, et al., Gene expression from adeno-associated virus vectors in airway epithelial cells, Am J Respir Cell Mol Biol, 1992, 7(3):349-356
    [40] Dachs GU, Dougherty GJ, Stratford IJ, et al., Targeting gene therapy to cancer: a review, Oncol Res, 1997, 9(6-7):313-325
    [41] Simon RH, Engelhardt JF, Yang Y, et al., Adenovirus-mediated transfer of theCFTR gene to lung of nonhuman primates: toxicity study, Hum Gene Ther, 1993, 4(6):771-780
    [42] Xiang ZQ, Yang Y, Wilson JM, et al., A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier, Virology, 1996, 219(1):220-227
    [43] Knowles MR, Hohneker KW, Zhou Z, et al., A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis, N Engl J Med, 1995, 333(13):823-831
    [44] Wolff JA, Malone RW, Williams P, et al., Direct gene transfer into mouse muscle in vivo, Science, 1990, 247(4949 Pt 1):1465-1468
    [45] Horn NA, Meek JA, Budahazi G, et al., Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials, Hum Gene Ther, 1995, 6(5):565-573
    [46] Hartikka J, Sawdey M, Cornefert-Jensen F, et al., An improved plasmid DNA expression vector for direct injection into skeletal muscle, Hum Gene Ther, 1996, 7(10):1205-1217
    [47] Schultz J, Pavlovic J, Strack B, et al., Long-lasting anti-metastatic efficiency of interleukin 12-encoding plasmid DNA, Hum Gene Ther, 1999, 10(3):407-417
    [48] Losordo DW, Vale PR, Isner JM, Gene therapy for myocardial angiogenesis, Am Heart J, 1999, 138:132-141
    [49] Budker V, Zhang G, Danko I, et al., The efficient expression of intravascularly delivered DNA in rat muscle, Gene Ther, 1998, 5(2):272-276
    [50] Rizzuto G, Cappelletti M, Maione D, et al., Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation, Proc Natl Acad Sci U S A, 1999, 96(11):6417-6422
    [51] Li S, Rizzo MA, Bhattacharya S, et al., Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery, Gene Ther, 1998, 5(7):930-937
    [52] Liu F, Qi H, Huang L, et al., Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration, Gene Ther, 1997, 4(6):517-523
    [53] Anwer K, Kao G, Proctor B, et al., Optimization of cationic lipid/DNA complexes for systemic gene transfer to tumor lesions, J Drug Target, 2000,8(2):125-135
    [54] Tan Y, Li S, Pitt BR, et al., The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo, Hum Gene Ther, 1999, 10(13):2153-2161
    [55] Kouraklis G, Progress in cancer gene therapy, Acta Oncol, 1999, 38(6):675-683
    [56] Cristiano RJ, Viral and non-viral vectors for cancer gene therapy, Anticancer Res, 1998, 18(5A):3241-3245
    [57] Midoux P, Monsigny M, Efficient gene transfer by histidylated polylysine/pDNA complexes, Bioconjug Chem, 1999, 10(3):406-411
    [58] McKenzie DL, Kwok KY, Rice KG, A potent new class of reductively activated peptide gene delivery agents, J Biol Chem, 2000, 275(14):9970-9977
    [59] Chemin I, Moradpour D, Wieland S, et al., Liver-directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo, J Viral Hepat, 1998, 5(6):369-375
    [60] Godbey WT, Wu KK, Mikos AG, Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle, J Biomed Mater Res, 1999, 45(3):268-275
    [61] Choi JH, Choi JS, Suh H, Effect of poly(ethylene glycol) grafting on polyethylenimine as a gene transfer vector in vitro, Bull Korean Chem Soc, 1999, 22:46
    [62] Toth I, Sakthivel T, Wilderspin AF, Novel cationic lipidic peptide dendrimer vectors in vitro gene delivery, S TP Pharma Sci, 1999, 9:93
    [63] Zhang X, Yu C, Xushi, et al., Direct chitosan-mediated gene delivery to the rabbit knee joints in vitro and in vivo, Biochem Biophys Res Commun, 2006, 341(1):202-208
    [64] Turunen MP, Hiltunen MO, Ruponen M, et al., Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes, Gene Ther, 1999, 6(1):6-11
    [65] Leong KW, Mao HQ, Truong-Le VL, et al., DNA-polycation nanospheres as non-viral gene delivery vehicles, J Control Release, 1998, 53(1-3):183-193
    [66] Cohen H, Levy RJ, Gao J, et al., Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles, Gene Ther, 2000, 7(22):1896-1905
    [67]李拥军,管珩,刘昌伟, et al.,纳米粒子介导特异基因转染的实验研究,中华医学杂志, 2002, 82(5):341-344
    [68] Goetting N, Fritz H, Maier M, et al., Effects of oligonucleotide adsorption on the physicochemical characteristics of a nanoparticle-based model delivery system for antisense drugs Colloid Polym Sci, 1999, 277(2-3):145-152
    [69] Corsi K, Chellat F, Yahia L, et al., Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles, Biomaterials, 2003, 24(7):1255-1264
    [70] Prabha S, Zhou WZ, Panyam J, et al., Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles, Int J Pharm, 2002, 244(1-2):105-115
    [71] Davda J, Labhasetwar V, Characterization of nanoparticle uptake by endothelial cells, Int J Pharm, 2002, 233(1-2):51-59
    [72] Guo W, Lee RJ, Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII), Biosci Rep, 2000, 20(5):419-432
    [73] Tavitian B, Marzabal S, Boutet V, et al., Characterization of a synthetic anionic vector for oligonucleotide delivery using in vivo whole body dynamic imaging, Pharm Res, 2002, 19(4):367-376
    [74] Poncet P, Panczak A, Goupy C, et al., Antifection: an antibody-mediated method to introduce genes into lymphoid cells in vitro and in vivo, Gene Ther, 1996, 3(8):731-738
    [75] Durrbach A, Angevin E, Poncet P, et al., Antibody-mediated endocytosis of G250 tumor-associated antigen allows targeted gene transfer to human renal cell carcinoma in vitro, Cancer Gene Ther, 1999, 6(6):564-571
    [76] Seki T, Dmitriev I, Suzuki K, et al., Fiber shaft extension in combination with HI loop ligands augments infectivity for CAR-negative tumor targets but does not enhance hepatotropism in vivo, Gene Ther, 2002, 9(16):1101-1108
    [77] Kren BT, Parashar B, Bandyopadhyay P, et al., Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide, Proc Natl Acad Sci U S A, 1999, 96(18):10349-10354
    [78] Plank C, Oberhauser B, Mechtler K, et al., The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems, J Biol Chem, 1994, 269(17):12918-12924
    [79] Wyman TB, Nicol F, Zelphati O, et al., Design, synthesis, and characterizationof a cationic peptide that binds to nucleic acids and permeabilizes bilayers, Biochemistry, 1997, 36(10):3008-3017
    [80] Subramanian A, Ranganathan P, Diamond SL, Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells, Nat Biotechnol, 1999, 17(9):873-877
    [81] Mumper RJ, Novel polymeric condensing carriers for gene delivery, Proc Intl Symp Controlled Rel Bioact Mater, 1995:178-179
    [82] Erbacher P, Zou S, Bettinger T, et al., Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability, Pharm Res, 1998, 15(9):1332-1339
    [83] Aral C, Ozbas-Turan S, Kabasakal L, et al., Controlled release of interleukin-2 from chitosan microsphere Studies of effective factors of plasmid DNA-loaded chitosan microspheres I. Plasmid size, chitosan concentration and plasmid addition techniques, Stp Pharma Sci, 2000, 10(1):83-88
    [84] Sato T, Ishii T, Okahata Y, In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency, Biomaterials, 2001, 22(15):2075-2080
    [85] Kiang T, Wen J, Lim HW, et al., The effect of the degree of chitosan deacetylation on the efficiency of gene transfection, Biomaterials, 2004, 25(22):5293-5301
    [86] Li F, Liu WG, Yao KD, Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour, Biomaterials, 2002, 23(2):343-347
    [87] Liu WG, Yao KD, Liu QG, et al., Formation of a DNA/N-dodecylated chitosan complex and salt-induced gene delivery, J Appl Polym Sci, 2001, 82:3391-3395
    [88] Mitchell DJ, Kim DT, Steinman L, et al., Polyarginine enters cells more efficiently than other polycationic homopolymers, J Pept Res, 2000, 56(5):318-325
    [89] Calnan B, Tidor B, Biancalana S, et al., Arginine-mediated RNA recognition: the arginine fork, Science, 1991, 252(5009):1167-1171
    [90] Liu WG, Zhang JR, Cao ZQ, et al., A chitosan-arginine conjugate as a novel anticoagulation biomaterial, J Mater Sci Mater Med, 2004, 15(11):1199-1203
    [91] Lavertu M, Methot S, Tran-Khanh N, et al., High efficiency gene transferusing chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation, Biomaterials, 2006, 27(27):4815-4824
    [92] Bozkir A, Saka OM, Chitosan nanoparticles for plasmid DNA delivery: effect of chitosan molecular structure on formulation and release characteristics, Drug Deliv, 2004, 11(2):107-112
    [93] Umezawa N, Gelman MA, Haigis MC, et al., Translocation of a beta-peptide across cell membranes, J Am Chem Soc, 2002, 124(3):368-369
    [94]张海玲,朱敦皖,杨健, et al.,壳聚糖修饰对细胞摄入和细胞毒性的影响,中国医学科学院学报, 2006, 28(6):486-491
    [95] AgullóE, Rodríguez MS, Ramos V, Present and future role of chitin and chitosan in food, 2003, 3:521-530
    [96] Mao HQ, Roy K, Troung-Le VL, et al., Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency, J Control Release, 2001, 70(3):399-421
    [97]张敏,崔俊锋,尹玉姬, et al.,磷酸化壳聚糖膜的仿生复合修饰,高等学校化学学报, 2005, 26(3):550-553
    [98] Fischer D, Li Y, Ahlemeyer B, et al., In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis, Biomaterials, 2003, 24(7):1121-1131
    [99] Schipper NG, Varum KM, Artursson P, Chitosans as absorption enhancers for poorly absorbable drugs. 1: Influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells, Pharm Res, 1996, 13(11):1686-1692
    [100] Jiang ZF, Zhao Y, Hong X, et al., Nuclear apoptosis induced by isolated mitochondria, Cell Res, 2000, 10(3):221-232
    [101] Chowdhury EH, Kunou M, Nagaoka M, et al., High-efficiency gene delivery for expression in mammalian cells by nanoprecipitates of Ca-Mg phosphate, Gene, 2004, 341:77-82
    [102] Roy I, Mitra S, Maitra A, et al., Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery, Int J Pharm, 2003, 250(1):25-33
    [103] Huang M, Khor E, Lim LY, Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation, Pharm Res, 2004, 21(2):344-353
    [104] Ishii T, Okahata Y, Sato T, Facile Preparation of a Fluorescence-LabeledPlasmid, Chemistry Letters, 2000, 29(4):386-387
    [105] Huang M, Ma Z, Khor E, et al., Uptake of FITC-chitosan nanoparticles by A549 cells, Pharm Res, 2002, 19(10):1488-1494
    [106] Hashimoto M, Morimoto M, Saimoto H, et al., Lactosylated chitosan for DNA delivery into hepatocytes: the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes, Bioconjug Chem, 2006, 17(2):309-316
    [107] Mansouri S, Lavigne P, Corsi K, et al., Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy, Eur J Pharm Biopharm, 2004, 57(1):1-8
    [108] Klugherz BD, Jones PL, Cui X, et al., Gene delivery from a DNA controlled-release stent in porcine coronary arteries, Nat Biotechnol, 2000, 18(11):1181-1184
    [109] Shears LL, 2nd, Kibbe MR, Murdock AD, et al., Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo, J Am Coll Surg, 1998, 187(3):295-306
    [110] Wang K, Kessler PD, Zhou Z, et al., Local adenoviral-mediated inducible nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model, Mol Ther, 2003, 7(5 Pt 1):597-603
    [111] Dulak J, Jozkowicz A, Dembinska-Kiec A, et al., Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells, Arterioscler Thromb Vasc Biol, 2000, 20(3):659-666
    [112] Walter DH, Cejna M, Diaz-Sandoval L, et al., Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis, Circulation, 2004, 110(1):36-45
    [113] Sharif F, Daly K, Crowley J, et al., Current status of catheter- and stent-based gene therapy, Cardiovasc Res, 2004, 64(2):208-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700