基于超声辐射的高级氧化技术处理偶氮染料酸性绿B的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料合成过程中排放的废水成分复杂,浓度高、色度大、难生物降解物质多,且含有多种具有生物毒性或三致性能(致癌、致畸、致突变)的有机物。此外,由于染料生产品种逐渐增多,并且逐步向抗氧化、抗光解、抗生化方向发展,使得染料废水处理的难度加大。未经严格处理的染料废水不但造成受纳水体的严重污染,而且给人体及生态环境也造成潜在的危害。针对染料废水化学结构稳定,对微生物有毒害的特点,常规的物化法和生化法无法取得理想的处理效果,有必要开发针对这类废水治理行之有效的处理新工艺,来满足越来越严格的环保排放标准,达到综合治理的目的。超声波降解技术是近年来水污染控制领域一个研究热点,它集高温热解、自由基氧化和超临界水氧化于一身,降解条件温和、适用范围广、操作简单。超声波技术可以单独使用,也可以与其它技术联合使用,是一种很有发展潜力和应用前景的技术。
     论文以偶氮染料酸性绿B为研究对象,在单因素试验设计、正交试验设计、Plackett-Burman试验设计、Box-Behnken设计和中心组合设计等试验设计的基础上,并结合响应面分析,研究了超声及超声组合技术对酸性绿B的降解效果、试验条件优化、反应过程动力学及降解机理。旨在探索偶氮染料废水降解的新途径,拓宽超声化学在水处理领域的应用范围,从而为丰富、深化超声氧化技术理论研究提供一定的数据和基础。
     论文的主要研究结论如下:
     (1)单独超声辐射降解酸性绿B,试验结果表明,单独超声处理酸性绿B效果并不理想。在优化试验条件下,酸性绿B的脱色率仅为41.8%。酸性绿B在单独超声辐射下,其降解效果受多种因素的影响,其中超声频率和功率密度是影响酸性绿B降解效果的两个重要因素。酸性绿B降解率随功率密度的增大而增大,而当超声频率由28 kHz增大为45 kHz时,降解率反而降低。此外,废水浓度、初始pH值、饱和气体和无机盐溶液对酸性绿B降解也有一定的影响。在反应体系中投加自由基清除剂,降解效果大大降低,说明酸性绿B超声降解反应以自由基氧化为主。通过分析降解前后的紫外-可见光谱图,初步推断在超声辐射下,酸性绿B并没有完全降解为CO2和H2O,而仅仅是生色基团受到自由基攻击而被破坏。反应过程符合表观一级反应动力学。
     (2)在双频超声降解酸性绿B的试验中,研究发现,在给定试验条件下,双频超声波对酸性绿B的降解效果优于两种单频超声波的脱色效果之和,双频超声存在一定的协同效应。在优化试验条件下,即在28 kHz+40 kHz组合的双频超声复合模式下,调节废水pH = 4.0,控制超声输入功率为490 W,反应时间为165 min,废水浓度为100 mg/L时,酸性绿B脱色率为64.6%。通过对双频超声系统中?OH产额的测定和分析空化泡的Rayleigh-Plesset运动方程,初步探讨了双频超声协同效应产生的原因和机理。
     (3)在超声-H2O2降解酸性绿B的试验中,以酸性绿B脱色率为目标响应值,采用响应面法中的Box-Behnken设计建立酸性绿B降解反应的数学模型。在模型确定的优化试验条件下,酸性绿B降解率的理论预测值为96.82%,而验证试验表明酸性绿B的实际脱色率为93.34%,试验值与模型预测值偏差仅为3.48%,表明该模型具有高度显著性,回归模型预测值与实验值拟合性好,可用该模型对酸性绿B降解反应进行预测。由响应面及等高线图分析,染料初始pH值、H2O2投加量、超声功率三因素对酸性绿B降解的影响不是简单的线性关系,两两间亦有一定的交互作用。此外,研究发现,在反应体系中加入自由基清除剂正丁醇对酸性绿B的降解有明显的抑制作用,且反应体系中?OH自由基浓度与酸性绿B脱色率成正比例关系,说明酸性绿B在超声-H2O2体系中的主要降解途径是通过?OH自由基使酸性绿B氧化的过程。反应遵循表观一级反应动力学规律。
     (4)在超声-Fenton降解酸性绿B的试验中,为获得超声-Fenton降解酸性绿B的优化试验条件,设计5因素3水平的L27(35)正交试验。结果表明:因素对酸性绿B脱色反应影响的大小次序为:pH>反应时间>Fe2+投加量>功率密度>H2O2投加量>交互作用。酸性绿B脱色反应的优化工艺为:Fe2+投加量为7 mmol/L;H2O2投加量为140mmol/L;废水pH值为3.5;功率密度为1.00 W/mL;反应时间为30 min。而对酸性绿B的COD去除率影响的大小次序为:反应时间> H2O2投加量>pH>Fe2+投加量>功率密度>交互作用。酸性绿B的COD去除反应的优化工艺:Fe2+投加量为6 mmol/L;H2O2投加量为120mmol/L;废水pH值为4.0,功率密度为1.00 W/mL;反应时间为40 min。酸性绿B在超声-Fenton体系中的降解反应主要是基于羟基自由基的氧化反应为主,酸性绿B在羟基自由基的攻击下,首先生成苯和萘的衍生物,而随着反应的继续进行进一步为降解为小分子中间体。
     (5)以Al2O3为载体制备Fe-Ni-Mn/Al2O3催化剂,并对催化剂的性能进行表征。采用正交试验设计考察负载溶液浓度、负载时间和焙烧温度对催化剂性能的影响。试验结果表明,当负载溶液浓度、负载时间和焙烧温度分别为0.1mol/L,12 h和550℃时,催化剂的活性最好。以Fe-Ni-Mn/Al2O3为催化剂、H2O2为氧化剂,考察超声催化氧化酸性绿B的降解效果。首先采用Plackett-Burman设计对影响酸性绿B降解反应的8个因素,即催化剂投加量、催化剂使用次数、H2O2投加量、反应时间、废水初始浓度、废水pH值、超声功率和超声频率,外加三个虚拟变量,进行初步筛选。然后根据中心组合设计对Plackett-Burman筛选出的三个主要因素:催化剂投加量、H2O2投加量、溶液pH值进行响应面优化设计,从而得到酸性绿B催化氧化反应的优化条件。试验得到酸性绿B的脱色率平均值为96.76%,而由回归模型预测的酸性绿B的脱色率为94.11%,预测值和试验值较接近,偏差仅为2.65%,说明试验值与预测值之间拟合性良好,证明用此模型对超声降解染料酸性绿B优化实验条件进行分析和预测准确可靠,预测结果充分、可信,具有一定实用价值。由降解反应后酸性绿B的紫外-可见光谱图、离子色谱图和GC-MS扫描图知酸性绿B已被完全降解,并对酸性绿B的反应历程进行了推断。研究认为,酸性绿B在Fe-Ni-Mn/Al2O3催化剂存在下超声降解反应机理是超声效应使催化剂Fe-Ni-Mn/Al2O3表面得到不断的摩擦、清洗和更新,不仅使得催化剂有效表面积增加,可保持较多的催化活性位,而且可加速酸性绿B分子在催化剂表明的物质传输,强化降解效果。
Dye wastewater from dye synthesis process has characteristics of complex constituents, high concentration and high colority. Moreover, it contains many biorefractory compounds and carcinogenic or teratogenic organic matters. With the increase of the variety of dye, the dye wastewater is becoming more difficult to treat since dyes are designed to be resistant to chemical oxidation, photochemical degradation and biodegradation. If the dye wastewater cannot be processed properly, they will not only pollute seriously the receiving water but also have the potential danger to the public health and ecologicalenvironment. Generally, azo dyes have the stable chemical structure and they are toxic to microorganism, as a result, the common physicochemical processes and biochemical processes can not achieve the sastisfactory results. In order to follow the environmental standard and achieve the purpose of comprehension treatment, it is necessary to develop a new and effective process aiming at treating this kind of dye wastewater. The ultrasound irradiation technology has been a study focus in the water pollution control field in recent years. It has the characteritis of the advanced oxidation processes including thermolysis, radical oxidation and supercritical oxidation. The ultrasound irradiation technology can be operated under the mild condition and the reaction is rapid. In addition, it can be applied alone or with other treatment technologies, so the ultrasound irradiation is considered a potential and promising technology.
     In this dissertation, azo dye Acid Green B was choosed as the model contaminant. Based on single parameter design, orthogonal design, Plackett-Burman design, Box-Behnken design and central composite design and response surface method, the degradation efficiency, the optimal experimental conditions, reaction kinetics and degradation mechanism of Acid Green B by ultrasound irradiation and ultrasound in combination with other treatment methods were investigated in detail. The purpose of this study is to expand the application range of sonochemistry in the field of wastewater treatment and to explore the new method to degrade the azo dye wastewater. At the same time, this study will provide experimental data for azo dye wastewater treatment and fundamental theory for the mechanism study of sonochemistry. Main results in this dissertation are summarized as follows:
     (1) In the case of degradation of Acid Green B by the single frequency ultrasonic irradiation, the experimental results showed that the degradation efficiency of Acid Green B was not satisfactory. The decolourity ratio of Acid Green B was just 41.8% under the optimal experimental conditions. The degradation efficieny was influenced by many factores, especially ultrasonic frequency and power density. the degradation efficiency of Acid Green B increased with the increase of power density, but it decreased when the ultrasonic frequency changed from 28 kHz to 45 kHz. In addition, the degradation efficiency was affected by Acid Green B concentration, initial pH value, bubbling gas and inorganic salts. The degradation efficiency of Acid Green B reduced greatly when the radical scavenger was added into the reaction system, which indicated the degradation of Acid Green B was achieved mainly through the radical oxidation reaction. The UV-Vis spectra of Acid Green B before and after degradation were analyzed and the following conclusions cound be drawn: Acid Green B was not completely mineralized to CO2 and H2O by the single frequency ultrasonic irradiation, instead, the chromophore in Acid Green B molecular structure was just destroyed under the attack of radicals. The degradation reaction of Acid Green B by single ultrasonic irradiation followed the first-order kinetics reaction.
     (2) In the case of degradation of Acid Green B by dual-frequency ultrasonic irradiation, the results showed that the degradation efficiency of Acid Green B by dual frequency ultrasound irradiation was proved to be superior to the total value of two single frequency ultrasound irradiation at the given experimental conditions, which indicated there was the synergistic effect in the dual frequency ultrasonic irradiation system. The decolouration ratio of 64.6% could be achieved when pH value was 4.0, input power was 490 W, the reaction time is 165 min and the initial concentration of dye wastewater is 100 mg/L. The detailed reasons and machanisms of the synergistic effect in the dual frequency ultrasonic irradiation system were studied on the base of the measurement of the quantity relationship of ?OH and analyzing the Rayleigh-Plesset equation of. the wall of cavitation bubbles.
     (3) In the case of degradation of Acid Green B by ultrasonic irradiation and H2O2. The decolourity ratio of Acid Green B was the objective response value, and the response surface methodology based on Box-Behnken design was employed to build the predictive mathematical model of Acid Green B degradation reaction. Under the optimum experimental conditions obtained by the predictive model, the predictive value of Acid Green B decolourity ratio is 96.82% according to the predictive model. The adequacy of the model equation for predicting the optimum response values was verified under the same experimental conditions and the experimental value is 93.34%, which was fitted to the predicted value by polynomial quadratic model with the deviation of just 3.48%. The confirmatory test showed that the predictive model has a significant difference and the experimental values agreed with the predicted values by the model. So the model can be used to the degradation reaction of Acid Green B. The response surface and contour plot was analyzed and the result showed that three factors: pH value, H2O2 dosage and ultrasonic power, were not linear relation, there is interaction reaction among these factors. The radical scavenger n-butanol was proved to inhibit the degradation reaction of Acid Green B. Moreover, there is proportional relationship between ?OH concentration and Acid Green B degration efficiency. So it can be drawn that the main degradation mechanism of Acid Green B was radical oxidation ?OH, and the reaction followed the apparent first-order kinetics reaction.
     (4) In the case of degradation of Acid Green B by ultrasonic irradiation and Fenton reaction, an orthogonal design L27(35) including 5 factors with 3 levels was applied in order to obtain the optimal experimental condtions of Acid Green B degradation by ultrasonic irradiation in combination with Fenton reation. The results showed that the effects order of 5 factors on decolourity were pH >reaction time > Fe2+ dosage > power density > H2O2 dosage > interaction effect of Fe2+ and H2O2. The optimal experimental conditions of Acid Green B decolouration reaction were as followed: Fe2+ dosage 7 mmol/L, H2O2 dosage 140mmol/L, pH value 3.5, power density 1.00 W/mL and reaction time 30 min. The effects orders of 5 factors on COD removal were reaction time> H2O2 dosage > pH > Fe2+ dosage > power density > interaction effect of Fe2+ and H2O2. The optimal experimental conditions of Acid Green B COD removal reaction were as followed: Fe2+ dosage 6 mmol/L, H2O2 dosage 120mmol/L, pH value 4.0, power density 1.00 W/mL and reaction time 40 min. The degradation mechanism is mainly radical oxidation of ?OH. The degradation path of Acid Green B by ultrasonic irradiation and Fenton reaction was explored. Firstly,. Acid Green was degraded into derivatives of benzene and naphthalene under the attack of ?OH, and then some small molecular organic intermediates were produced.
     (5) Fe-Ni-Mn/Al2O3 catalyst was prepared using Al2O3 as the carrier and the properties of Fe-Ni-Mn/Al2O3 catalyst were characterized. The effects of loaded solution concentration, loaded time and roast temperature on catalyst property were investigated by using an orthogonal experimental design. The experimental results showed that the best catalytic activity was obtained when loaded solution concentration, loaded time and roast temperature were 0.1mol/L,12 h and 550℃, respectively. The degradation efficiency of Acid Green B by ultrasonic irradiation was explored in the presence of catalyst Fe-Ni-Mn/Al2O3 and the oxidizer H2O2. The Plackett-Burman design was applied to study the effects of eight variables including catalyst dosage, the used times of catalyst, H2O2 dosage, reaction time, initial concentration and pH value of Acid Green B, power density and ultrasonic frequency and three pseudo variables. The Plackett-Burman design results gave three most important variables for Acid Green B degradation including catalyst dosage, H2O2 dosge and pH value. Then, the response surface methodology based on central composite disign was used to optimize the experimental conditions of Acid Green B degradation. UV-Vis spectra、ion chromatogram and GC-MS before and after reaction showed that Acid Green B had been completely decomposed, and the degradation path of Acid Green B was also inferred. It is deduced that the degradation mechanism of Acid Green B: The surface of Fe-Ni-Mn/Al2O3 catalyst was rubbed, rinsed and refreshed under the ultrasonic irradiation, as a result, the superficial area and the catalytic spot increased on the surface of Fe-Ni-Mn/Al2O3 catalyst, moreover, the mechanical effect of ultrasonic irradiation could speed up the transmitance of Acid Green B on the surface of catalyst and enhance the reaction efficiency.
引文
[1] P. Banerjee, S. DasGupta,S. De.Removal of dye from aqueous solution using acombination of advanced oxidation process and nanofiltration [J].Journal of Hazardous Materials,2007,140:95~103.
    [2]王进,赵彬侠,白伟利,张小里,金奇庭.湿式双氧水氧化处理染料中间体H-酸钠盐溶液的研究[J].环境工程学报,2007,1(1):40~44.
    [3] A.A. Idil.Degradation of a commercial textile biocide with advanced oxidation processes and ozone [J].Journal of Environmental Management,2007,82:145~154.
    [4] E.J. Rosenfeldt,K.G. Linden,S. Canonica,U. Gunten.Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2 [J].Water Research,2006,40:3695~3704.
    [5] K.Selvam, M.Muruganandham, N.Sobana, M.Swaminathan Enhancement of UV-assisted photo-Fenton degradation of reactive orange 4 using TiO2-P25 nanoparticles[J].Separation and Purification Technology,2007,54:241~247.
    [6] S.G.Schrank,J. N.R. Santos,D.S. Souza,E. E. S. Souza.Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process.Journal of Photochemistry and Photobiology A:Chemistry,2007,186:125~129.
    [7]洪荷芳,李正山,王欢.一种新兴的高级氧化技术—超临界水氧化法[J].环境污染治理技术与设备,2004,5(4):62~65.
    [8]颜婉茹,王鹏,于泽华.超临界水氧化法处理含染料废水的工艺研究[J].哈尔滨商业大学学报(自然科学版),2006,22(4):30~33.
    [9]王金成,薛大明,全燮,熊力,杨风林,赵雅芝.微波辐射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报,2001,21(5):628~630.
    [10]郝苗.微波催化处理连续流染料废水的研究[D].长春:东北师范大学,2002:18~28.
    [11]姜思朋,王鹏,张国宇,洪光,马慧俊.微波诱导氧化法处理BF-BR染料废水[J].中国给水排水,2004,20(4):13~15.
    [12]祁佩时,陈战利,李辉,刘云芝.微电解-Fenton工艺预处理难降解染料废水研究[J].中国矿业大学学报,2008,37(5):685~689.
    [13]方建章,张再利,雷恒毅等.电生成强氧化剂处理染料废水试验研究[J].水处理技术,2004,30(3):173~175.
    [14] P. A. Carneiro,M. E.Osugi,C. S.Fugivara,N. Boralle,M. Furlan,M. V. B.Zanoni.Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution[J]. Chemosphere,2005,59:431~439.
    [15]郑怀礼,龙腾锐,袁宗宣.聚合硫酸铁制备方法研究及其发展[J].环境污染治理技术与设备,2000,1(5):21~28.
    [16]张占梅,郑怀礼,陈春艳.高铁铝矾土制备聚合氯化铝铁及其在污水处理中的应用研究[J].环境污染治理技术与设备,2006,7(6):52~55.
    [17]韩照祥,陈科,朱婷.改性壳聚糖对染料废水的脱色研究[J].水生态学杂志,2009,2 (3): 42~47.
    [18]王雅娜,崔励,徐同宽.壳聚糖改性絮凝剂在染料废水处理中的应用[J].毛纺科技,2008,5:19~20.
    [19]丁绍兰,李郑坤,毛飞,马前程.两种季铵盐絮凝剂对皮革染料废水处理效果的研究[J].陕西科技大学学报,2009,27 (1):82~85.
    [20]杨劲峰,赵继红,曲凤华.微生物絮凝剂用于染料废水脱色及其动力学研究[J].化工科技,2009,17(3):16~19.
    [21]陶博,于水利,孟庆凡,章琪.高浓度活性污泥法处理染料废水的实验研究[J].工业水处理,2007,27 (1):37~39.
    [22]苏晓丽,刘汉湖,鲁璐,秦伟伟.序批式活性污泥法处理染料废水[J].工业水处理,2008,23 (8):39~42.
    [23]郑慧,王兴祖,孙德智.厌氧光生物转盘-好氧生物膜处理偶氮染料废水[J].工业水处理,2009,29 (1):49~52.
    [24]洪俊明,洪华.厌氧—好氧MBR组合工艺处理蒽醌活性染料废水[J].中国给水排水,2008,24 (1):51~53.
    [25]寇晓芳,安立超,左志芳,张平,贾金魁,沈娟.白腐真菌-活性污泥联用降解染料废水[J].精细化工,2007,24(5):500~503.
    [26]程永前,蒋大和,陆雍森.白腐真菌脱色降解染料废水的试验研究[J].给水排水,2006, 32(3):52~54.
    [27]田玉萍.白腐真菌生物接触氧化法处理染料废水实验研究[J].四川化工,2009,12 (1):37~40.
    [28] M.A. Behnajady,N. Modirshahla,S. B. Tabrizi,S.Molanee.Ultrasonic degradation of Rhodamine B in aqueous solution:Influence of operational parameters[J].Journal of Hazardous Materials,2008,152:381~386.
    [29] S. F?nd?k,G. Gündüz.Sonolytic degradation of acetic acid in aqueous solutions.Ultrasonics Sonochemistry,2007,14:157~162.
    [30] P. R. Gogate,S. Mujumdar,A.B. Pandit.Sonochemical reactors for wastewater treatment:comparison using formic acid degradation as a model reaction[J].Advances in Environmental. Research,2003,7:283~299.
    [31] I. Hua,M. Hoffmann.Optimization of ultrasonic irradiation as an advanced oxidation technology[J].Environmental Science and Technology,1997,31(8):2237~2243.
    [32] G. Thoma, M. Gleason.Sonochemical treatment of benze/toluene contaminates waste-water[J].Enviromental Progress,1998,17(3):154~156.
    [33] M. H. Eentezari.Effects of frequency on sonochemical reactionsⅡ:temperature and intensity effects[J].Ultrasonic Sonochemistry,1996,3:19.
    [34]岑科达.超声降解染料废水的实验研究[D].合肥:合肥工业大学,2007.
    [35]朱昌平,黄波,倪才华,段红恩,王瑞华.功率超声的声学参数对废水处理效果的影响[J].水资源保护,2008, 24(3):57~61.
    [36]曹志斌,王玲,薛建军,薛峰.超声协同三维电极处理染料废水[J].水处理技术,2008,34 (11):57~60.
    [37] X. Wang,Z. Yao,J. Wang,W. Guo,G. Li.Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation[J].Ultrasonics Sonochemistry,2008,15:43~48.
    [38] P.R. Gogate,S. Mujumdar,J. Thampi,A. M. Wilhelm,A. B. Pandit.Destruction of phenol using sonochemical reactors:scale up aspects and comparison of novel configuration with conventional reactors[J].Separation and Purification Technology,2004,34:25~34.
    [39] N. H. Ince,G.T. Güuyer.Impacts of pH and molecular structure on ultrasonic degradation of azo dyes[J].Ultrasonics,2004,42:591~596.
    [40] A. Kumar,P.R.Gogate,A.B. Pandit.Mapping the efficacy of new designs for large scale sonochemical reactors[J].Ultrasonics Sonochemistry,2007, 14, 538~544.
    [41] Y.Asakura,K.Yasuda,D. Kato,Y. Kojima,S. Koda.Development of a large sonochemical reactor at a high frequency.Chemical Engineering Journal [J]. 2008,139:339~343.
    [42] H. Destaillats,T.M. Lesko,M. Knowlton,H. Wallace,M.R. Hoffmann. Scale-up of sonochemical reactors for water treatment[J] . Industrial and Engineering Chemistry Research,2001,40:3855~3860.
    [43]周烈,刘绍刚,周泽广.超声波降解染料废水的实验研究[J].广西民族大学学报(自然科学版),2006,12(4):96~99.
    [44] G.T. Guyer,N.H.Ince.Degradation and toxicity reduction of textile dyestuffs by ultrasound [J].Ultrasonics Sonochemistry,2003,10:235~240.
    [45] M.A. Behnajady,N. Modirshahla,S. B. Tabrizi,S.Molanee.Ultrasonic degradation of Rhodamine B in aqueous solution:Influence of operational parameters[J].Journal of Hazardous Materials,2008,152:381~386.
    [46] M. Inoue,F. Okada,A.Sakurai,M. Sakakibara.A new development of dye stuffs degradation system using ultrasound[J].Ultrasonics Sonochemistry,2006,13:313~320.
    [47]邹华生,林岗,肖磊.多频率组合平行正交超声场降解氯苯的研究[J].环境科学与技术,2008, 3(2):16~19.
    [48] K.T. Byun,H.Y. Kwak.Degradation of methylene blue under multibubble sonoluminescence condition [J].Journal of photochemistry and photobiology A:Chemistry,2005,175:45~50.
    [49] P.M. Kanthale,P.R. Gogate,A.B. Pandit.Modeling aspects of dual frequency sonochemical reactors [J].Chemical Engineering Journal,2007,127:71~79.
    [50]陈长琦,岑科达,殷福才,程建萍,潘成荣,郑志侠.酸性大红GR染料废水超声降解的实验研究[J].安徽化工,2007,33(1):50~53.
    [51] M. Abbasi,N.R. Asl. Sonochemical degradation of Basic Blue 41 dye assisted by nano TiO2 and H2O2 [J].Journal of Hazardous Materials,2008,53:942~947.
    [52]宋爽,金红丽,何志桥.超声强化臭氧氧化分散蓝染料废水的研究[J].浙江工业大学学报,2006,34(3):306~309.
    [53] J.H. Sun,S.P. Sun,J.Y. Sun, R.X. Sun, L.P. Qiao,H.Q. Guo,M.H. Fan.Degradation of azo dye Acid black 1 using low concentration ion of Fenton process facilitated by ultrasonic irradiation [J].Ultrasonics Sonochemistry,2007,14:761~766.
    [54] J. Wang,T. Ma,Z. Zhang,X. Zhang,et al. Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities [J].Desalination,2006,195:294~305.
    [55] A.M. Mohammed,A.A. Zaid,T. Tomohiko,A. Salah,A.S. Mohammad.Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave [J].Ultrasonics Sonochemistry,2008,15:869 ~874.
    [56]郭志峰,马瑞欣,李国俊.气质联用测定超声波降解废水中的苯酚含量及机理研究[J].河北大学学报(自然科学版),2005,25(3):290~294.
    [57]汤心虎,黄丽莎,莫测辉,曹刚.中性条件下超声波/零价铁协同降解活性艳红X-3B[J].环境化学,2006,25(2):199~202.
    [58] C. Minero,P. Pellizzari,V. Maurino,E. Pelizzetti,D.Vione.Enhancement of dye sonochemical degradation by some inorganic anions present in natural waters[J].Applied Catalysis B:Environmental,2008,77:308~316.
    [59] L.M. Wang,L.H. Zhu,W. Luo,Y.H. Wu,H.Q. Tang. Drastically enhanced ultrasonic decolorization of Methyl orange by adding CCl4[J].Ultrasonics Sonochemistry,2007,14:253~258.
    [60] D.B. Von?ina,A.M. Marechal.Reactive dye decolorization using combined ultrasound/H2O2[J].Dyes and Pigments,2003,59:173~179.
    [61]唐玉斌,吕锡武,陈芳艳.超声波/H2O2协同降解水中染料酸性嫩黄的研究[J].化学世界,2005,12,745~748.
    [62] H. Ghodbane,O. Hamdaoui.Degradation of Acid Blue 25 in aqueous media using 1700 kHz ultrasonic irradiation:ultrasound/Fe(II) and ultrasound/H2O2 combinations [J].Ultrasonics Sonochemistry,2009,16:593~598.
    [63]张翼,张晖,吴峰,王正琪.超声-Fenton法处理偶氮染料橙黄Ⅱ的研究[J].环境污染治理技术与设备,2003,4(11):48~51.
    [64]彭晓云,冯流,刘路.超声/Fenton试剂氧化耦合处理染料废水[J].北京化工大学学报,2007,34 (2):122~125.
    [65]王晓宁,卞华松,张国莹.声与紫外光协同氧化法处理染料废水的工艺研究[J].上海环境科学,2002,21(6):334~337.
    [66]刘振荣,李红,王君等.TiO2催化超声降解亚甲基蓝溶液[J].化学研究, 2005,16(1):69~71.
    [67] T.C. An, H. F. Gu, Y. Xiong.Decolourization and COD removal from reactive dye containing wastewater using sonophoto catalytic technology[J] . Journal of Chemical Technology and Biotechnology,2003,78(11):1142~1148.
    [68] N. L. Stock, J. Peller,K. Vinodgopal.Combinative sonolysis and photocatalysis for textile dye degradation[J].Environmental Science Technology,2000,34(12):1747~1750.
    [69] E.Selli.Synergistic effects of sonolysis combined with photocatalysis in the degradation of an azo dye[J].Physical Chemistry Chemical Physics,2002,24:6123~6128.
    [70] H. Zhang, Y.J. Lv, F. Liu, D.B. Zhang. Degradation of C.I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor[J].Chemical Engineering Journal,2008,138:231~238.
    [71] N.H. Ince,G. Tezcanlí.Reactive dye stuffs degradation by combined sonolysis and ozonation[J].Dyes and Pigments,2001,49:145~153.
    [72] Z.Q. He,S. Song,M. Xia,J.P. Qiu,H.P. Ying,B.S. Lu,Y.F. Jiang,J.M. Chen.Mineralization of C.I.ReactiveYellow 84 in aqueous solution by sonolytic ozonation[J].Chemosphere,2007,69:191~199.
    [73]孙海波.超声电化学氧化降解偶氮染料废水的研究[D],南京航空航天大学.
    [74] J.P. Lorimer,T.J. Mason,M. Plattes,S.S. Phull.Dye effluent decolourisation using ultrasonically assisted electro-oxidation[J].Ultrasonics Sonochemistry,2000,7:237~242.
    [75]白波,陈志红,王莉平.超声波/铁-炭微电解耦合处理直接大红4BE染料废水[J].应用化工,2007,36(2):130~133.
    [76]黄延召,王光龙,张宝林,朱建华.超声降解偶氮染料活性艳红X-3B的动力学研究[J].化学工程,2007,35(10):30~33.
    [77]华彬,陆永生,唐春燕,卞华松,胡龙兴.超声技术降解酸性红B废水[J].环境科学,2000,21(2):88~90.
    [78]陈芳艳,唐玉斌.水中染料酸性嫩黄的超声/H2O2降解动力学研究[J].环境科学与技术,2006,29(2):21~26.
    [79] S. Song,H.P. Ying,Z.Q. He,J.M. Chen.Mechanism of decolorization and degradation of C.I. Direct Red 23 by ozonation combined with sonolysis[J].Chemosphere,2007,66:1782~1788.
    [80]李静红,张艳.超声强化Fenton法处理碱性品蓝染料废水[J].东北电力大学学报,2008,28 (6):62~67.
    [81]郑怀礼,张占梅,唐鸣放,伊茜,陈春艳,彭志聪.光助Fenton氧化反应降解染料亮绿SF[J].光谱学与光谱分析,2006,26(4):768~771.
    [82] H.L. Zheng,Y.X. Pan,X.Y. Xiang Oxidation of acidic dye eosinY by the solar photo-Fenton processes[J].Journal of Hazardous Materials,2007,141:457~464.
    [83]陶长元,刘作华,李晓红,杜军,司秀杰,朱俊.超声波促进Fenton法脱色甲基橙[J].环境科学,2005,26(5):111~114.
    [84]程云,周启星,马奇英,王颖慧.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,(6):56~60.
    [85]杨清香,贾振杰,杨敏.徽生物染料脱色研究进展[J].徽生物学通报,2003,33 (4):144~148.
    [86] A. Rehorek,M. Tauber,G. Gubitz.Application of power ultrasound for azo dye degradation[J].Ultrasonics Sonochemistry,2004,11(3-4):177~182.
    [87] K.T. Chung,G.E. Fulk,A.W. Andrews.Mutagenicity testing of some commonly used dyes [J].Applied and Environmental Microbiology. 1981,42:641~648.
    [88] C.M. Zhu,L.Y. Wang,L. R. Kong.Photocatalytic degradation of azo dyes by supported TiO2+UV in aqueous solution[J].Chemosphere,2000,41(3):303~309.
    [89] M. Muruganandham,M. Swaminathan.Solar photo catalytic degradation of a reactive azo dye inTiO2-suspension[J].solar energy materials and solar cells,2004,81:439~457.
    [90]郑怀礼,张占梅.低频超声协同Fe-Ni-Mn/Al2O3催化降解酸性绿B的研究[J].环境工程学报,2009,3 (2):193~198.
    [91] Y.C. Adewuyi . Sonochemistry : environmental science and engineering application[J].Industrial and Engineering Chemistry Research,2001,40(22):4681~4715.
    [92]卞华松,张大年,赵一先.水污染物的超声波降解研究进展[J].环境污染治理技术与设备,2000,1(1):56~64.
    [93] E.B. Flint,K.S. Suslick.The temperature of cavitation [J].Science,1991,253 (5026):1397~1402.
    [94] K.S. Suslick.The chemical effect of ultrasound [J].Science,1989,260(2):80~87.
    [95]段丽杰.超声强化臭氧氧化模拟染料废水的研究[D].武汉:武汉大学,2005.
    [96] Y. jiang,C. Petrier,T D. Waite.Kinetics and mechanism of ultrasonic degradation of volatilec hlorinated aromatics in aqueous solutions [J].Ultrasonics Sonochemistry, 2002, 9(6):317~323.
    [97]王宏青,钟爱国.超声波诱导降解甲胺磷的研究[J].环境化学,2000,19 (1):84~87.
    [98] C. Wu,X. Liu,D. Wei,J. Fan,L. Wang.Photo sonochemical degradation of phenol in water [J].Water Research,2001,35 (16):3927~3933.
    [99] R. Astrid , T. Michael , G. Georg . Application of power ultrasonic for azo dye degradation[J].Ultrasonics Sonochemistry,2004,11:177~182.
    [100] J.M. Joseph,H. Destaillats,H.M. Hung,M.R. Hoffmann.The Sonochemical degradation of azobenzene and related azo dyes:rate enhancements via Fenton's reactions[J].Journal of Physical Chemistry A,2000,104:301~308.
    [101]徐宁.超声及其组合技术处理酚类溶液的研究[D].南京:南京工业大学,2004,29~30.
    [102]路炜.超声波强化臭氧氧化降解松花江水源水污染效能研究[D].哈尔滨:哈尔滨工业大学,2006,14~15.
    [103] H. Inez,M. R. Hoffxnanu,Optimization of ultrasonic irradiation as an advanced oxidation technology.Environment Science and Technology,1997,31:2237~2243.
    [104] P.M. Kanthale,P.R. Gogate,A.B. Pandit,A.M. Wilhelm. Cavity cluster approach for quantification of cavitational intensity in sonochemical reactors. Ultrasonics Sonochemistry,2003,10:181~189.
    [105] E. Psillakis,G. Goula,N. Kalogerakis,D. Mantzavinos.Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation[J].Journal of Hazardous Materials B,2004,108:95~102.
    [106]王君,潘志军,张朝红.普通锐钛型TiO2催化超声降解十二烷基苯磺酸钠(SDBS)的研究[J].环境科学研究,2006,19(3):81~87.
    [107] H. Zhang,J. Duan,D.B. Zhang.Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation [J].Journal of Hazardous Materials B,2006,138:53~59.
    [108] B.Neppolian,H. Jung,H.Choi,J.H. Lee,J.W. Kang.Sonolytic degradation of methyl tert-butyl ether:the role of coupled fenton process and persulphate ion[J].Water Research,2002,36:4699~4708.
    [109] M. Sivakumar,A.B. Pandit.Ultrasound enhanced degradation of Rhodamine B:optimization with power density [J].Ultrasonics Sonochemistry,2001,8:233~240.
    [110] J. Wang,Z.J. Pan,Z.H. Zhang.The investigation on ultrasonic degradation of acid fuchsine in the presence of ordinary and nanometer rutile TiO2 and the comparison of their sonocatalytic activities[J].Dyes and Pigments,2007,74:525~530.
    [111] S. Song,M. Xia,Z.Q. He,B.S. Lü,J. M. Chen.Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis[J].Journal of Hazardous Materials,2007,144:532~537.
    [112] B. Neppolian,J.S. Park,H. Choi.Effect of Fenton-like oxidation on enhanced oxidative degradation of parachloro benzoic acid by ultrasonic irradiation[J] . Ultrasonics Sonochemis-try,2004,11:273~279.
    [113] S . Vajnhandl,A. M. L. Marechal.Case study of the sonochemical decolouration of textile azo dye Reactive Black 5 [J].Journal of Hazardous Materials,2007,141:329~335.
    [114] M.Dükkanc?,G.Gündüz.Ultrasonic degradation of oxalic acid in aqueous solutions [J].Ultrasonics Sonochemistry,2006,13:517~522.
    [115] Y. Kojima,T. Fujita,E.P. Ona,H. Matsuda,S. Koda,N.Tanahashi,Y. Asakura.Effects of dissolved gas species on ultrasonic degradation of (4-chloro-2-methylphenoxy) acetic acid(MCPA) in aqueous solution[J].UltrasonicsSonochemistry,2005,12:359~365.
    [116] Y. Nagata,M. Nakagawa,H.Okuno,Y.Mizukoshi,B.Yim,Y. Maeda.Ultrasonics Sono-chemistry,2000,7:115~120.
    [117] B.Yim,H. Okunu,Y. Nagata,R. Nishimura,Y. Maeda.Ultrasonics Sonochemistry,2002,9:209~213.
    [118]刘越男,吕效平,韩萍芳.超声浸渍法制备Fe3O4/γ-Al2O3催化剂及其表征、活性研究[J].化工学报,2007,58(11):2805~2809.
    [119] T.Velegraki , I. Poulios , M. Charalabaki , N.Kalogerakis , P. Samaras , D. Mantzavinos . Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution[J].Applied Catalysis B:Environmental,2006,l62:159~168.
    [120]吴晓晖.造纸废水的超声降解研究[D].武汉:华中科技大学,2003,17.
    [121] M. Goel,H. Hongqiang,A.S. Mujumdar,M.B. Ray.Sonochemical decomposition of volatile and non-volatile organic compounds a comparative study [J].Water Research,2004,38:4247~4261.
    [122] J.D. Seymour,R.B.Gupta.Oxidation of aqueous pollutants using ultrasound salt induced enhancement [J].Industrial and Engineering Chemistry Research,1997,36:3453~3457.
    [123]曾荣华,丘泰球,陆海勤.双频超声空化效应强化提取中药有效成分的实验研究[J].声学技术,2005,24(4):219~222.
    [124]曹雁平,李建宇,朱桂清,刘佐才.绿茶茶多酚的双频超声浸取研究[J].食品科学,2004,25(10):139~143.
    [125]丁彩梅,丘泰球,陆海勤.双频超声强化超临界流体萃取黄酮类化合物[J].化学工程, 2005,33(6):67~70.
    [126]贲永光,丘泰球,阎杰.超声强化从海金沙中提取黄酮的实验研究[J].声学技术,2006,25(3):209~213.
    [127]石新军.单频及复频超声声动力降解氯苯酚废水研究[J].沈阳工程学院学报(自然科学版),2006,2(3):218~221.
    [128]赵德明,史惠祥,汪大翚.复频超声波氧化降解苯酚废水[J].化工学报,2003,54(4):570~574.
    [129]沈壮志,程建政,吴胜举.五氯苯酚降解的超声诱导[J].化学学报,2003, 12(61):2016~2019.
    [130]杨春维,王栋.可见分光光度法检测环境模拟水相中Fenton反应产生的羟基自由基[J],环境技术,2005,1:29~31.
    [131]丘泰球,曾荣华,张晓燕.双频超声强化提取的机理[J].华南理工大学学报(自然科学版),2006,34(8):89~93.
    [132] Z. Mayerhoff,I. Robert,T. Franco.Purification of xylose reductase from Candida mogii in aqueous two-phase systems,Biochemistry Engineering Journal.2004,18 (3):217~223
    [133] Z. Wen,Z. Liao,Z. Chen.Production of cellulase by trichoderma reesei from dairy manure,Bioresource Technology,2005,96:491~ 499.
    [134] R.H. Myers,D.C. Montgomery.Response surface methodology:process and product optimization using designed experiments,2th,John Wiley and Sons,USA,2002.
    [135] M. Muthukumar,D. Sargunmani,N. Selvakumar,J.V. Rao.Optimisation of ozone treatment for colour and COD removal of acid dye ef?uent using central composite design experiment,Dyes and Pigments,2004,63:127~134.
    [136] Q.K. Beg,V. Sahai,R. Gupta.Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor,Process Biochemistry,2003,39:203~209.
    [137] N. Aktas,I.H. Boyaci,M. Mutlu,A. Tanyolac.Optimization of lactose utilization in deproteinated whey by Kluyveromyces marxianus using response surface methodology (RSM), Bioresourse Technology,2006, 97:2252~2259.
    [138]傅剑锋,武秋立.响应面法优化酸性玫瑰红B光催化氧化的影响参数[J].环境化学,2007,26(4):519~522.
    [139]张晖,Chin-Pao Huang.响应面法分析卫生填埋渗滤液的Fenton处理过程[J].环境科学,2003,24(4):140~143.
    [140] Z.M. Zhang, H.L. Zheng.Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology [J]. Journal of Hazardous Materials. 2009, 172:1388-13933.
    [141] I.H. Cho,K.D. Zoh.Photocatalytic degradation of azo dye (Reactive Red120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design[J].Dyes and Pigments,2007,75:533~543.
    [142] G. Box,W.G. Hunter.Statistics for experimenters:an introduction to design,data analysis,and model building.Wiley,1987.
    [143] R.L.Mason,R.F.Gunst,J.J.Hess.Statistical design and analysis of experiments with applications to engineering and science,John Wiley and Sons Inc.(An International Thomason Publishing,Europe,London,1V7AA),Hoboken,NJ,2003.
    [144] D.C. Montgomery,G.C. Runger,N.F. Hubele.Engineering statistics,John Wiley and Sos Inc.,Hoboken,NJ,2001.
    [145] P.K. Pandey,H.S. Ramaswamy,D.St-Gelais.Effect of high pressure processing on rennet coagulation properties of milk[J].Innovative Food Science and Emerging Technologies,2003,4(3):245~256.
    [146]王鹏,文晨,孙柳,戴晓红.超声波/光Fenton法联合处理分散玉红染料废水的研究[J].印染助剂,2006,23(8):19~21.
    [147] J. Ge,J. Qu.Degradation of azo dye acid red B on mangan dioxide in the absence and presence of ultrasonic irradiation [J]. Journal of Hazardous Materials B,2003, 100:197~207.
    [148] M. H. Entezari,A. Heshmati,A. Sarafraz-yazdi.A combination of ultrasound and inorganic catalyst:removal of 2-chlorophenol from aqueous solution[J].Ultrasonics Sonochemistry,2005,12:137~141.
    [149] N. Shimizu,C. Ogino,M.F. Dadjour, T. Murata.Sonocatalytic degradation of methylene blue with TiO2 pellets in water[J].Ultrasonics Sonochemistry,2007,14:184~190.
    [150] L. Davydov,E.P. Reddy,P. France,P.G. Smirniotis.Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders [J].Applied Catalysis B:Environmental, 2001,32:95~105.
    [151] C.L. Bianchi,E. Gotti,L.Toscano,et a.l. Preparation of Pd/C catalysts via ultrasound: a study of the metal distribution[J].Ultrasonics Sonochemistry,1997,4(4):317~320.
    [152] U.R. Pillai,S.D. Endalkachew,R.S. Varma.Alternative routes for catalyst preparation: use of ultrasound and microwave irradiation for the preparation of vanadium phosphorus oxidecatalyst and their activity for hydrocarbon oxidation [J].Applied Catalysis,2003,252(1):1~8.
    [153] V.M. Zhyznevskiy,R.D. Tsybukh,V.V. Gumenetskiy.Physico-chemical and catalytic properties of Fe2BMiOx catalyst ultrasound treated and promoted with Al2O3 in the oxidative dehydrogenation of ethylbenzene to styrene [J].Applied Catalysis,2002, 238(1):19~28.
    [154]梁新义,张黎明,丁宏远,秦永宁.超声促进浸渍法制备催化剂LaCoO3/γ-Al2O3[J].物理化学学报,2003,19(7):666~669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700