不同土地利用与施肥管理对黑土团聚体中有机碳的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳具有供植物生长的肥力和影响大气温室气体的双重功能,保证土壤有机碳适当的更新速度和提高现有土壤有机碳的稳定性,是提高土壤肥力和减缓土壤CO2排放的重要目标,提高土壤团聚化作用是实现这个重要目标的有效途径之一。自然黑土是一种团聚体性状良好的土壤,但是垦殖后团聚体属性发生了很大变化,研究不同土地利用与施肥管理对黑土团聚体中有机碳的影响,将对揭示垦殖黑土有机碳的物理性保护具有科学意义和广泛的应用价值。本文基于长期定位试验,采用土壤团聚体分组、闭蓄态微团聚体分离等技术,研究不同土地利用与施肥管理下耕作黑土和短期黄土状母质发育的土壤有机碳在团聚体中的分布特征,定量评价有机碳固存的主要组分,从团聚体尺度阐明黑土有机碳库的稳定性机制。主要研究结果与结论如下:
     (1)农田黑土自然恢复为草地(27年)显著提高了土壤有机碳含量,增幅为7.6%,固碳速率为0.17MgCha~(-1)yr~(-1);相反,农田转变为裸地,土壤有机碳含量下降,降幅为14.1%,固碳速率为0.22MgCha~(-1)yr~(-1);
     黄土状母质经过短期(8年)的自然发育和不同施肥管理下耕种作物均显著促进了耕层土壤有机碳的积累。母质自然发育与无肥和单施化肥3个处理土壤有机碳含量变化接近,增幅为41%~54%,秸秆还田和有机肥2个处理的提升作用尤为明显,增幅为114%~122%。同样,与无肥相比,长期(19年)单施化肥对耕作黑土总有机碳没有显著的提升作用,而与有机肥配施显著提高了土壤有机碳含量。随着有机肥施用量的增加,土壤有机碳含量增加,而固碳效率不断下降。
     (2)草地大幅度提高了土壤的团聚化程度,促进了大团聚体(>250μm),尤其是>2000μm团聚体的形成,水稳性团聚体的平均重量直径(MWD)达1.74mm;裸地则降低了土壤的团聚度,表现为微团聚体(53-250μm)比例的下降与粉粘粒(<53μm)比例的增加。
     短期母质自然发育与无肥和单施化肥处理对土壤的团聚化作用(MWD)与母质间没有显著差异,而秸秆还田和有机肥处理显著促进了>2000μm和250-2000μm团聚体的形成,进而增加了水稳性团聚体的平均重量直径。同样,与无肥相比,长期单施化肥对耕作黑土各粒径团聚体的含量均没有显著影响,有机无机配施则显著提高了土壤的团聚化程度。随着有机肥施用量的增加,250-2000μm团聚体含量增加,而粉粘粒比例降低,土壤团聚体的MWD相应增加,但中量与高量有机肥处理间差异并不显著。
     (3)草地土壤有机碳的积累主要归咎于总粗颗粒有机质有机碳的增加,约为总有机碳增量的3倍;裸地显著降低了总细颗粒有机质有机碳含量,对总有机碳损失的贡献率为60%。表明,耕作黑土有机碳的累积或耗竭主要表现为活性较强的有机碳库(粗颗粒有机质或细颗粒有机质)的增加或减少。
     与母质相比,自然发育和不同施肥管理处理耕层土壤各组分(总粗颗粒有机质、总细颗粒有机质和总粉粘粒)有机碳含量均有显著提高。自然发育与无肥处理各组分有机碳含量均没有显著差异。单施化肥处理土壤总细颗粒有机质和总粉粘粒中有机碳含量高于无肥处理。秸秆还田和有机肥处理对各组分有机碳的提升作用最为明显,且均显著高于自然发育、无肥与单施化肥处理。与短期母质发育土壤不同,与无肥相比,长期单施化肥没有显著影响耕作黑土总粗颗粒有机质、总细颗粒有机质和总粉粘粒中有机碳含量,有机无机配施则显著增加了总粗颗粒有机质和总细颗粒有机质有机碳含量,对总有机碳增量的贡献率分别为55%和45%。
     黑土不同粒径团聚体对有机碳的固持存在等级饱和机制。当土壤基础有机碳水平很低时,新增有机碳在各粒径团聚体以及团聚体中各组分均得以累积,而随着外源碳输入的增加,土壤中粉粘粒最先达到饱和,然后是微团聚体,而更多的新增碳向周转速率不断加速的大团聚体富集,固持在活性相对较强的有机碳库(粗颗粒有机质)之中。
Improving soil organic carbon (SOC) levels helps to maintain nutrientavailability and agricultural sustainability as well as to improve C sequestration tomitigate CO2emissions to the atmosphere. Improved soil aggregation has beenrecognized as a strategy to increase SOC. Natural Mollisols have good-qualityaggregates. However, the aggregate quality degraded when it has been intensivelycultivated. The study was conducted based on the long-term field experiment toinvestigate the effects of land use and fertilization on bulk soil C and aggregateassociated C pools and to elucidate C sequestration mechanisms in a Mollisol inNortheast China. The main results and conclusions are as follows:
     (1) The conversion from cropland (CL) to naturally restored grassland (GL) ledto increases in SOC by7.6%, and the accumulation rate in the surface soil (020cm)were estimated to be0.17MgCha~(-1)yr~(-1);1over a period of27years; In contrast,converting cropland to bare land (BL) resulted in a decrease in SOC by14.1%, andthe accumulation rate in the surface soil (020cm) was about0.22MgCha~(-1)yr~(-1);.
     Compared with the parent materials of Mollisols (P), the8-year naturallydeveloped soil (PNat) and cropped-soils under no fertilizers (PCS F), mineralfertilizers only (PCS+F), mineral fertilizer plus crop biomass returned to the field(PCS+F+BM) and mineral fertilizer plus modeled organic manure (PCS+F+OM)promoted C sequestration. Compared with the P treatment, PNat, PCS F and PCS+Fincreased SOC by41%54%, with no significant difference in SOC between them,while soils under PCS+F+BM and PCS+F+OM contained higher organic C than othertreatments and increased SOC by114%122%. No significant improvements inorganic C levels of mature Mollisols were found when mineral fertilizers were applied alone compared with the unfertilized control. In contrast,19-year continuousapplication of organic manure along with mineral fertilizer promoted SOCaccumulation. The SOC increases but the C sequestration efficiency decreases withmanure application rate. However, no significant differences were found between thetwo greatest manure application rates.
     (2) There was an increase in the weight proportion of macroaggregates (>250μm), especially large macroaggregates (>2000μm), but a decrease in microaggregatesand silt plus clay fraction in GL relative to CL. As a result, the mean weight diameters(MWD) of water-stable aggregates under GL (1.74mm) was higher than that underCL (0.55mm). The proportion of microaggregates was decreased in BL relative to CL,thus leading to a small but non-significant reduction in the MWD of aggregates.
     Compared with the P treatment, the PNat, PCS F and PCS+F did not affect theMWD of aggregates, while the PCS+F+BM and PCS+F+OM greatly improvedmacroaggregation, thus leading to higher MWD of aggregates than other treatments.Mere mineral fertilizer amendment had no significant effect on aggregation of matureMollisols compared with the unfertilized control. The combined use of organicmanure with mineral fertilizer increased the proportion of macroaggregates. Theproportion of small macroaggregate (250-2000μm) tended to increase, and theproportion of the silt plus clay fraction tended to decrease with manure additions.However, the MWD of the aggregates did not significantly differ between the twogreatest manure application rates.
     (3) At the aggregate level, the total coarse particulate organic matter (total cPOM)fraction contributed300%to the increases in SOC in GL. The total fine particulateorganic matter (total fPOM) fraction was a major contributor to the C loss in BL,which accounted for60%of the total C decreases. These results indicated that the Caccumulation or loss in mature Mollisols was mainly happened in the relatively labileC pools. Compared with the P treatment, the C in the total cPOM, total fPOM and total silt plus clay (total s+c) were all increased in the naturally developed soils andcropped-soils under different fertilizations. There was no significance in C content inthese fractions between PNat and PCS F. Soil under PCS+F had higher C in the totalfPOM and total s+c than soil under PCS F. The C of these fractions in soils underPCS+F+BM and PCS+F+OM was all significantly higher than other soils.
     In contrast, mere chemical fertilizer additions did not affect aggregate-associatedC in mature Mollisols. The increment of organic C following organic manure plusinorganic fertilizer amendment was located in the total cPOM and total fPOMfractions, which contributed55%and45%to the total increases in bulk SOC inmanure-added soil compared with the control, respectively.
     Carbon saturation occurs in a hierarchical fashion in a Mollisol. When the SOCis rather low, the additional C was allocated to all aggregate fractions. As the C inputincreases, the smaller SOC pools saturate before the larger pools and consequentlyadditional C input will only accumulate in labile SOC pools (cPOM) inmacroaggregates that have a relatively faster turnover.
引文
1. Amelung W, Zech W, Zhang X, Follett R, Tiessen H, Knox E, Flach K-W. Carbon, nitrogen,and sulfur pools in particle-size fractions as influenced by climate. Soil Science Society ofAmerica Journal,1998,62:172-181.
    2. Andrews SS, Karlen DL, Cambardella CA. The soil management assessment framework.Soil Science Society of America Journal,2004,68:1945-1962.
    3. Angers D, Carter M. Aggregation and organic matter storage in cool, humid agricultural soils.Structure and organic matter storage in agricultural soils. Boca Raton, FL, Lewis PublishersCRC Press Inc,1996:193-211.
    4. Angers D, Recous S, Aita C. Fate of carbon and nitrogen in water-stable aggregates duringdecomposition of13C15N-labelled wheat straw in situ. European Journal of Soil Science,1997,48:295-300.
    5. Antle J, Capalbo S, Mooney S, Elliott ET, Paustian KH. Sensitivity of carbon sequestrationcosts to soil carbon rates. Environmental Pollution,2002,116:413-422.
    6. Aoyama M, Angers D, N'dayegamiye A. Particulate and mineral-associated organic matter inwater-stable aggregates as affected by mineral fertilizer and manure applications. CanadianJournal of Soil Science,1999,79:295-302.
    7. Ayuke F, Brussaard L, Vanlauwe B, Six J, Lelei D, Kibunja C, Pulleman M. Soil fertilitymanagement: impacts on soil macrofauna, soil aggregation and soil organic matter allocation.Applied Soil Ecology,2011,48:53-62.
    8. Baldock JA, Nelson PN. Soil organic matter. In: Sumner ME, ed. Handbook of soil science.CRC Press Inc., BocaRaton; USA,1999:25-84.
    9. Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physicalprotection and tillage. Soil and Tillage Research,2000,53:215-230.
    10. Bandyopadhyay P, Saha S, Mani P, Mandal B. Effect of organic inputs on aggregateassociated organic carbon concentration under long-term rice–wheat cropping system.Geoderma,2010,154:379-386.
    11. Banger K, Kukal S, Toor G, Sudhir K, Hanumanthraju T. Impact of long-term additions ofchemical fertilizers and farm yard manure on carbon and nitrogen sequestration underrice–cowpea cropping system in semi-arid tropics. Plant and Soil,2009,318:27-35.
    12. Bhattacharyya R, Prakash V, Kundu S, Srivastva A, Gupta H, Mitra S. Long term effects offertilization on carbon and nitrogen sequestration and aggregate associated carbon andnitrogen in the Indian sub-Himalayas. Nutrient Cycling in Agroecosystems,2010,86:1-16.
    13. Blanco-Canqui H, Lal R, Sartori F, Miller R. Changes in organic carbon and physicalproperties of soil aggregates under fiber farming. Soil Science,2007,172:553-564.
    14. Blanco-Canqui H, Lal R. Mechanisms of carbon sequestration in soil aggregates. CriticalReviews in Plant Sciences,2004,23:481-504.
    15. Bronick C, Lal R. Soil structure and management: a review. Geoderma,2005,124:3-22.
    16. Campbell C, Zentner R, Bowren K, Townley-Smith L, Schnitzer M. Effect of crop rotationsand fertilization on soil organic matter and some biochemical properties of a thick BlackChernozem. Canadian Journal of Soil Science,1991,71:377-387.
    17. Carter M, Angers D, Gregorich E, Bolinder M. Characterizing organic matter retention forsurface soils in eastern Canada using density and particle size fractions. Canadian Journal ofSoil Science,2003,83:11-23.
    18. Carter MR. Soil quality for sustainable land management. Agronomy Journal,2002,94:38-47.
    19. Chen Y, Zhang X, He H, Xie H, Yan Y, Zhu P, Ren J, Wang L. Carbon and nitrogen pools indifferent aggregates of a Chinese Mollisol as influenced by long-term fertilization. Journal ofSoils and Sediments,2010,10:1018-1026.
    20. Chenu C, Stotzky G, Huang P, Bollag J, Senesi N. Interactions between microorganisms andsoil particles: an overview. Interactions between soil particles and microorganisms: Impact onthe terrestrial ecosystem,2001:3-40.
    21. Christensen BT.1992. Physical fractionation of soil and organic matter in primary particlesize and density separates, Advances in soil science. Springer, pp.1-90.
    22. Chung H, Grove JH, Six J. Indications for soil carbon saturation in a temperateagroecosystem. Soil Science Society of America Journal,2008,72:1132-1139.
    23. Churchman GJ, Foster R, D’Acqui L, Janik LJ, Skjemstad JO, Merry R, Weissmann D.Effect of land-use history on the potential for carbon sequestration in an Alfisol. Soil andTillage Research,2010,109:23-35.
    24. Clough A, Skjemstad J. Physical and chemical protection of soil organic carbon in threeagricultural soils with different contents of calcium carbonate. Australian Journal of SoilResearch,2000,38:1005-1016.
    25. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due tocarbon-cycle feedbacks in a coupled climate model. Nature,2000,408:184-187.
    26. Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition andfeedbacks to climate change. Nature,2006,440:165-173.
    27. Dawson JJ, Smith P. Carbon losses from soil and its consequences for land-use management.Science of the Total Environment,2007,382:165-190.
    28. DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R. Soil organic carbon poolchanges following land-use conversions. Global Change Biology,2004,10:1120-1132.
    29. Denef K, Six J, Merckx R, Paustian K. Carbon sequestration in microaggregates of no-tillagesoils with different clay mineralogy. Soil Science Society of America Journal,2004,68:1935-1944.
    30. Denef K, Six J. Clay mineralogy determines the importance of biological versus abioticprocesses for macroaggregate formation and stabilization. European Journal of Soil Science,2005,56:469-479.
    31. Derenne S, Largeau C. A review of some important families of refractory macromolecules:composition, origin, and fate in soils and sediments. Soil Science,2001,166:833-847.
    32. Ding X, Han X, Liang Y, Qiao Y, Li L, Li N. Changes in soil organic carbon pools after10years of continuous manuring combined with chemical fertilizer in a Mollisol in China. Soiland Tillage Research,2012,122:36-41.
    33. Edwards A, Bremner J. Microaggregates in soils. Journal of Soil Science,1967,18:64-73.
    34. Elliott E. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivatedsoils. Soil Science Society of America Journal,1986,50:627-633.
    35. Emerson W. Stability of soil crumbs. Nature,1959:183,538.
    36. Fonte SJ, Yeboah E, Ofori P, Quansah GW, Vanlauwe B, Six J. Fertilizer and residue qualityeffects on organic matter stabilization in soil aggregates. Soil Science Society of AmericaJournal,2009,73:961-966.
    37. Gale W, Cambardella C, Bailey T. Root-derived carbon and the formation and stabilization ofaggregates. Soil Science Society of America Journal,2000,64:201-207.
    38. Gerzabek MH, Pichlmayer F, Kirchmann H, Haberhauer G. The response of soil organicmatter to manure amendments in a long-term experiment at Ultuna, Sweden. EuropeanJournal of Soil Science,1997,48:273-282.
    39. Gleixner G, Poirier N, Bol R, Balesdent J. Molecular dynamics of organic matter in acultivated soil. Organic Geochemistry,2002,33:357-366.
    40. Guggenberger G, Kaiser K. Dissolved organic matter in soil: challenging the paradigm ofsorptive preservation. Geoderma,2003,113:293-310.
    41. Gulde S, Chung H, Amelung W, Chang C, Six J. Soil carbon saturation controls labile andstable carbon pool dynamics. Soil Science Society of America Journal,2008,72:605-612.
    42. Guo L, Gifford R. Soil carbon stocks and land use change: a meta analysis. Global ChangeBiology,2002,8:345-360.
    43. Hassink J, Whitmore AP. A model of the physical protection of organic matter in soils. SoilScience Society of America Journal,1997,61:131-139.
    44. Hassink J. Preservation of plant residues in soils differing in unsaturated protective capacity.Soil Science Society of America Journal,1996,60:487-491.
    45. Hassink J. The capacity of soils to preserve organic C and N by their association with clayand silt particles. Plant and Soil,1997,191:77-87.
    46. Hati K, Swarup A, Singh D, Misra A, Ghosh P. Long-term continuous cropping, fertilisation,and manuring effects on physical properties and organic carbon content of a sandy loam soil.Australian Journal of Soil Research,2006,44:487-495.
    47. Haynes R, Naidu R. Influence of lime, fertilizer and manure applications on soil organicmatter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems,1998,51:123-137.
    48. Haynes R. Labile organic matter fractions and aggregate stability under short-term,grass-based leys. Soil Biology and Biochemistry,1999,31:1821-1830.
    49. Huang S, Peng X, Huang Q, Zhang W. Soil aggregation and organic carbon fractions affectedby long-term fertilization in a red soil of subtropical China. Geoderma,2010,154:364-369.
    50. Huggins D, Buyanovsky G, Wagner G, Brown J, Darmody R, Peck T, Lesoing G, Vanotti M,Bundy L. Soil organic C in the tallgrass prairie-derived region of the corn belt: effects oflong-term crop management. Soil and Tillage Research,1998,47:219-234.
    51. Jastrow J, Miller R. Soil aggregate stabilization and carbon sequestration: feedbacks throughorganomineral associations. Soil Processes and the Carbon Cycle,1998:207-223.
    52. Jastrow J. Soil aggregate formation and the accrual of particulate and mineral-associatedorganic matter. Soil Biology and Biochemistry,1996,28:665-676.
    53. Jolivet C, Arrouays D, Leveque J, Andreux F, Chenu C. Organic carbon dynamics in soilparticle-size separates of sandy Spodosols when forest is cleared for maize cropping.European Journal of Soil Science,2003,54:257-268.
    54. Kabir Z, O'halloran I, Fyles J, Hamel C. Seasonal changes of arbuscular mycorrhizal fungi asaffected by tillage practices and fertilization: hyphal density and mycorrhizal rootcolonization. Plant and Soil,1997,192:285-293.
    55. Kahle M, Kleber M, Jahn R. Predicting carbon content in illitic clay fractions from surfacearea, cation exchange capacity and dithionite-extractable iron. European Journal of SoilScience,2002,53:639-644.
    56. Kemper WD, Rosenau RC. Aggregates stability and size distribution. In: Klute A, ed.Methods of soil analysis: Part1. Madison, WI: American Society of Agronomy. Soil ScienceSociety of America,1986:425-442.
    57. Khanna M, Yoder M, Calamai L, Stotzky G. X-ray diffractometry and electron microscopy ofDNA from Bacillus subtilis bound on clay minerals. Sciences of Soils,1998,3:1-10.
    58. Kiem R, K gel-Knabner I. Contribution of lignin and polysaccharides to the refractorycarbon pool in C-depleted arable soils. Soil Biology and Biochemistry,2003,35:101-118.
    59. Kong AY, Six J, Bryant DC, Denison RF, Van Kessel C. The relationship between carboninput, aggregation, and soil organic carbon stabilization in sustainable cropping systems. SoilScience Society of America Journal,2005,69:1078-1085.
    60. Kool DM, Chung H, Tate KR, Ross DJ, Newton PC, Six J. Hierarchical saturation of soilcarbon pools near a natural CO2spring. Global Change Biology,2007,13:1282-1293.
    61. Krull E, Baldock J, Skjemstad J. Soil texture effects on decomposition and soil carbonstorage. Net ecosystem exchange. Coop. Res. Ctr. for Greenhouse Accounting, Canberra,ACT, Australia,2001:103-110.
    62. Krull ES, Baldock JA, Skjemstad JO. Importance of mechanisms and processes of thestabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology,2003,30:207-222.
    63. Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304:1623-1627.
    64. Leon MCC, Stone A, Dick RP. Organic soil amendments: Impacts on snap bean common rootrot (Aphanomyes euteiches) and soil quality. Applied Soil Ecology,2006,31:199-210.
    65. Li H, Han X, Wang F, Qiao Y, Xing B. Impact of soil management on organic carbon contentand aggregate stability. Communications in Soil Science and Plant Analysis,2007,38:1673-1690.
    66. Li Z, Liu M, Wu X, Han F, Zhang T. Effects of long-term chemical fertilization and organicamendments on dynamics of soil organic C and total N in paddy soil derived from barrenland in subtropical China. Soil and Tillage Research,2010,106:268-274.
    67. Lowe L. Total and labile polysaccharide analysis of soils. Soil sampling and methods ofanalysis,1993:373-376.
    68. Lugato E, Simonetti G, Morari F, Nardi S, Berti A, Giardini L. Distribution of organic andhumic carbon in wet-sieved aggregates of different soils under long-term fertilizationexperiment. Geoderma,2010,157:80-85.
    69. Lützow Mv, K gel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E,Marschner B. SOM fractionation methods: Relevance to functional pools and to stabilizationmechanisms. Soil Biology and Biochemistry,2007,39:2183-2207.
    70. Lützow Mv, K gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B,Flessa H. Stabilization of organic matter in temperate soils: mechanisms and their relevanceunder different soil conditions–a review. European Journal of Soil Science,2006,57:426-445.
    71. Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A,Jandl G, Ji R. How relevant is recalcitrance for the stabilization of organic matter in soils?Journal of Plant Nutrition and Soil Science,2008,171:91-110.
    72. Mikha MM, Rice CW. Tillage and manure effects on soil and aggregate-associated carbonand nitrogen. Soil Science Society of America Journal,2004,68:809-816.
    73. Mikutta R, Kleber M, Torn MS, Jahn R. Stabilization of soil organic matter: association withminerals or chemical recalcitrance? Biogeochemistry,2006,77:25-56.
    74. Morris SJ, Bohm S, Haile-Mariam S, Paul EA. Evaluation of carbon accrual in afforestedagricultural soils. Global Change Biology,2007,13:1145-1156.
    75. Mtambanengwe F, Mapfumo P. Smallholder farmer management impacts on particulate andlabile carbon fractions of granitic sandy soils in Zimbabwe. Nutrient Cycling inAgroecosystems,2008,81:1-15.
    76. Munkholm LJ, Schj nning P, Debosz K, Jensen HE, Christensen BT. Aggregate strength andmechanical behaviour of a sandy loam soil under long-term fertilization treatments. EuropeanJournal of Soil Science,2002,53:129-137.
    77. Murty D, Kirschbaum MU, Mcmurtrie RE, Mcgilvray H. Does conversion of forest toagricultural land change soil carbon and nitrogen? A review of the literature. Global ChangeBiology,2002,8:105-123.
    78. Nyborg M, Solberg E, Malhi S, Izaurralde R. Fertilizer N, crop residue, and tillage alter soilC and N content in a decade. Advances in Soil Science: Soil Management and Greenhouseeffect. CRC Press. Boca Raton, FL,1995:93-99.
    79. Oades JM. Soil organic matter and structural stability: mechanisms and implications formanagement. Plant and Soil,1984,76:319-337.
    80. Paré T, Dinel H, Moulin A, Townley-Smith L. Organic matter quality and structural stabilityof a Black Chernozemic soil under different manure and tillage practices. Geoderma,1999,91:311-326.
    81. Paustian K, Collins HP, Paul EA. Management controls on soil carbon. Soil organic matter intemperate agroecosystems: Long-term experiments in North America. CRC Press, BocaRaton, FL,1997:15-49.
    82. Plante A, McGill W. Soil aggregate dynamics and the retention of organic matter inlaboratory-incubated soil with differing simulated tillage frequencies. Soil and TillageResearch,2002,66:79-92.
    83. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. Soil carbon pools and world life zones.1982.
    84. Post WM, Kwon KC. Soil carbon sequestration and land-use change: processes and potential.Global Change Biology,2000,6:317-327.
    85. Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-sizefractions of water-stable aggregates. European Journal of Soil Science,2000,51:595-605.
    86. Puget P, Drinkwater L. Short-term dynamics of root-and shoot-derived carbon from aleguminous green manure. Soil Science Society of America Journal,2001,65:771-779.
    87. Rasool R, Kukal S, Hira G. Soil organic carbon and physical properties as affected bylong-term application of FYM and inorganic fertilizers in maize–wheat system. Soil andTillage Research,2008,101:31-36.
    88. Rillig MC, Wright SF, Eviner VT. The role of arbuscular mycorrhizal fungi and glomalin insoil aggregation: comparing effects of five plant species. Plant and Soil,2002,238:325-333.
    89. Rovira P, Ramón Vallejo V. Labile, recalcitrant, and inert organic matter in Mediterraneanforest soils. Soil Biology and Biochemistry,2007,39:202-215.
    90. Sainju U, Terrill T, Gelaye S, Singh B. Soil aggregation and carbon and nitrogen pools underrhizoma peanut and perennial weeds. Soil Science Society of America Journal,2003,67:146-155.
    91. Sainju UM. Carbon and nitrogen pools in soil aggregates separated by dry and wet sievingmethods. Soil Science,2006,171:937-949.
    92. Sarkar S, Singh S, Singh R. The effect of organic and inorganic fertilizers on soil physicalcondition and the productivity of a rice-lentil cropping sequence in India. The Journal ofAgricultural Science,2003,140:419-425.
    93. Schwendenmann L, Pendall E. Effects of forest conversion into grassland on soil aggregatestructure and carbon storage in Panama: evidence from soil carbon fractionation and stableisotopes. Plant and Soil,2006,288:217-232.
    94. Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research,2004,79:7-31.
    95. Six J, Callewaert P, Lenders S, De Gryze S, Morris S, Gregorich E, Paul E, Paustian K.Measuring and understanding carbon storage in afforested soils by physical fractionation.Soil science society of America journal,2002a,66:1981-1987.
    96. Six J, Conant R, Paul E, Paustian K. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,2002b,241:155-176.
    97. Six J, Elliott E, Paustian K, Doran J. Aggregation and soil organic matter accumulation incultivated and native grassland soils. Soil Science Society of America Journal,1998,62:1367-1377.
    98. Six J, Elliott E, Paustian K. Soil macroaggregate turnover and microaggregate formation: amechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry,2000a,32:2099-2103.
    99. Six J, Elliott E, Paustian K. Soil structure and soil organic matter II. A normalized stabilityindex and the effect of mineralogy. Soil Science Society of America Journal,2000b,64:1042-1049.
    100. Six J, Frey S, Thiet R, Batten K. Bacterial and fungal contributions to carbon sequestration inagroecosystems. Soil Science Society of America Journal,2006,70:555-569.
    101. Six J, Jastrow JD. Organic matter turnover. Encyclopedia of soil science. Marcel Dekker,New York,2002:936-942.
    102. Sleutel S, De Neve S, Németh T, Tóth T, Hofman G. Effect of manure and fertilizerapplication on the distribution of organic carbon in different soil fractions in long-term fieldexperiments. European Journal of Agronomy,2006,25:280-288.
    103. Sodhi G, Beri V, Benbi D. Soil aggregation and distribution of carbon and nitrogen indifferent fractions under long-term application of compost in rice–wheat system. Soil andTillage Research,2009,103:412-418.
    104. Solberg E, Nyborg M, Izairralde R, Malhi S, Jansen H, Molina-Ayala M, Lal R, Kimble J,Follett R, Stewart B. Carbon storage in soils under continuous cereal grain cropping: Nfertilizer and straw. Management of carbon sequestration in soil.,1998:235-254.
    105. Sollins P, Homann P, Caldwell BA. Stabilization and destabilization of soil organic matter:mechanisms and controls. Geoderma,1996,74:65-105.
    106. Solomon D, Fritzsche F, Lehmann J, Tekalign M, Zech W. Soil Organic Matter Dynamics inthe Subhumid Agroecosystems of the Ethiopian Highlands. Soil Science Society of AmericaJournal,2002,66:969-978.
    107. Song C, Han X, Tang C. Changes in phosphorus fractions, sorption and release in UdicMollisols under different ecosystems. Biology and Fertility of Soils,2007,44:37-47.
    108. Soussana JF, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D.Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use andManagement,2004,20:219-230.
    109. Spaccini R, Zena A, Igwe C, Mbagwu J, Piccolo A. Carbohydrates in water-stable aggregatesand particle size fractions of forested and cultivated soils in two contrasting tropicalecosystems. Biogeochemistry,2001,53:1-22.
    110. Stewart CE, Paustian K, Conant RT, Plante AF, Six J. Soil carbon saturation: Evaluation andcorroboration by long-term incubations. Soil Biology and Biochemistry,2008,40:1741-1750.
    111. Stewart CE, Paustian K, Conant RT, Plante AF, Six J. Soil carbon saturation: Implications formeasurable carbon pool dynamics in long-term incubations. Soil Biology and Biochemistry,2009,41:357-366.
    112. Su Y, Wang F, Suo D, Zhang Z, Du M. Long-term effect of fertilizer and manure applicationon soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping systemin northwest China. Nutrient Cycling in Agroecosystems,2006,75:285-295.
    113. Tisdall J, Oades J. Organic matter and water-stable aggregates in soils. Journal of SoilScience,1982,33:141-163.
    114. Wander MM, Yang X. Influence of tillage on the dynamics of loose-and occluded-particulateand humified organic matter fractions. Soil Biology and Biochemistry,2000,32:1151-1160.
    115. Wang Y, Chen Z, Tieszen LT. Distribution of soil organic carbon in the major grasslands ofXilinguole, Inner Mongolia, China. Acta Phytoecologica Sinica,1998,22:545-551.
    116. West TO, Six J. Considering the influence of sequestration duration and carbon saturation onestimates of soil carbon capacity. Climatic Change,2007,80:25-41.
    117. Whalen JK, Chang C. Macroaggregate characteristics in cultivated soils after25annualmanure applications. Soil Science Society of America Journal,2002,66:1637-1647.
    118. Yan Y, Tian J, Fan M, Zhang F, Li X, Christie P, Chen H, Lee J, Kuzyakov Y, Six J. Soilorganic carbon and total nitrogen in intensively managed arable soils. Agriculture,Ecosystems and Environment,2012,150:102-110.
    119. Yang X, Zhang X, Fang H, Zhu P, Ren J, Wang L. Long-term effects of fertilization on soilorganic carbon changes in continuous corn of northeast China: RothC model simulations.Environmental Management,2003,32:459-465.
    120. Yang Y, Xie J, Sheng H, Chen G, Li X, Yang Z. The impact of land use/cover change onstorage and quality of soil organic carbon in midsubtropical mountainous area of southernChina. Journal of Geographical Sciences,2009,19:49-57.
    121. Yoder RE. A direct method of aggregate analysis of soils and a study of the physical nature oferosion losses. Agronomy Journal,1936,28:337-351.
    122. Young I, Ritz K. Tillage, habitat space and function of soil microbes. Soil and TillageResearch,2000,53:201-213.
    123. Yousefi M, Hajabbasi M, Shariatmadari H. Cropping system effects on carbohydrate contentand water-stable aggregates in a calcareous soil of Central Iran. Soil and Tillage Research,2008,101:57-61.
    124. Yu H, Ding W, Luo J, Geng R, Cai Z. Long-term application of organic manure and mineralfertilizers on aggregation and aggregate-associated carbon in a sandy loam soil. Soil andTillage Research,2012,124:170-177.
    125. Yuan Y, Li L, Li N, Yang C, Han X. Long-term fertilization effects on organic carbonstabilization in aggregates of Mollisols. Journal of Food, Agriculture and Environment,2013,10:1386-1391.
    126. Zhang M, He Z, Chen G, Huang C, Wilson M. Formation and water stability of aggregates inred soils as affected by organic matter. Pedosphere,1996,6:30-45.
    127. Zhou T, Shi P. Indirect impacts of land use change on soil organic carbon change in China.Advances in Earth Science,2006,21:138-143.
    128. Zinn YL, Lal R, Bigham JM, Resck DV. Edaphic controls on soil organic carbon retention inthe Brazilian Cerrado: Texture and mineralogy. Soil Science Society of America Journal,2007,71:1204-1214.
    129. Zotarelli L, Alves B, Urquiaga S, Boddey R, Six J. Impact of tillage and crop rotation on lightfraction and intra-aggregate soil organic matter in two Oxisols. Soil and Tillage Research,2007,95:196-206.
    130.陈晓侠,梁爱珍,张晓平.土壤团聚体固碳的研究方法.应用生态学报,2012,23(7):1999-2006.
    131.崔荣美,李儒,韩清芳,贾志宽,梁连友,王晓娟,马晓丽.不同有机肥培肥对旱作农田土壤团聚体的影响.西北农林科技大学学报(自然科学版),2011,39(11):124-132.
    132.丁雪丽,韩晓增,乔云发,李禄军,李娜,宋显军.农田土壤有机碳固存的主要影响因子及其稳定机制.土壤通报,2012,43(3):737-744.
    133.杜介芳.施肥对土壤团聚体分布及其中球囊霉素的影响.大连交通大学硕士学位论文,2010.
    134.范昊明,蔡强国,王红闪.中国东北黑土区土壤侵蚀环境水土保持学报,2004,18(2):66-70.
    135.方华军,杨学明,张晓平,梁爱珍,申艳.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布.生态学报,2006,26(9):2847-2854.
    136.冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99-102.
    137.高飞,贾志宽,韩清芳,杨宝平,聂俊峰.有机肥不同施用量对宁南土壤团聚体粒级分布和稳定性的影响.干旱地区农业研究,2010,(3):100-106.
    138.高会议,郭胜利,刘文兆,车升国,李淼.不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响.土壤学报,2010,(5):931-938.
    139.韩晓增,王守宇,宋春雨,乔云发.土地利用/覆盖变化对黑土生态环境的影响.地理科学,2005,25(2):203-208.
    140.郝翔翔,杨春葆,苑亚茹,韩晓增,李禄军,江恒.连续秸秆还田对黑土团聚体中有机碳含量及土壤肥力的影响.中国农学通报,2013(接收).
    141.何云峰,徐建民.有机无机复合作用对红壤团聚体组成及腐殖质氧化稳定性的影响.浙江农业学报,1998,10(4):197-200.
    142.黄昌勇.土壤学.北京:中国农业出版社,2000.
    143.解宏图,付时丰,张旭东,王晶.土壤有机质稳定性特征与影响因子研究综述.土壤通报,2003,34(5):459-462.
    144.李维福,解宏图,何红波,白震,张旭东.颗粒有机质的来源,测定及其影响因素.生态学杂志,2007,26(11):1849-1856.
    145.李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析.土壤学报,2006,43(1):46-52.
    146.梁爱珍,张晓平,申艳,李文凤,杨学明.东北黑土水稳性团聚体及其结合碳分布特征.应用生态学报,2008,19(5):1052-1057.
    147.梁尧.有机培肥对黑土有机质消长及其组分与结构的影响.中国科学院研究生院博士学位论文,2011.
    148.刘景双,杨继松,于君宝,王金达.三江平原沼泽湿地土壤有机碳的垂直分布特征研究.水土保持学报,2003,17(3):5-8.
    149.刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展.生态学报,2007,27(6):2642-2650.
    150.刘中良,宇万太,周桦,马强.不同有机厩肥输入量对土壤团聚体有机碳组分的影响.土壤学报,2011,48(6):1149-1157.
    151.刘中良,宇万太.土壤团聚体中有机碳研究进展.中国生态农业学报,2011,19(2):447-455.
    152.孟凯,张兴义,随跃宇,赵军.黑龙江海伦农田黑土水分特征.土壤通报,2003,34(1):11-14.
    153.倪进治,徐建民,谢正苗,王德建.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究.土壤学报,2003,40(5):724-730.
    154.潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4):609-618.
    155.潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题.南京农业大学学报,2002,25(3):100-109.
    156.潘根兴,李恋卿,郑聚锋,张旭辉,周萍.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题.土壤学报,2008,45(5):901-914.
    157.潘根兴,赵其国,蔡祖聪.京都议定书.中国基础科学,2005,7(2):12-18.
    158.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展,2005,20(4):384-393.
    159.潘根兴,周萍,李恋卿,张旭辉.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-337.
    160.史奕,陈欣,闻大中.东北黑土团聚体水稳定性研究进展.中国生态农业学报,2005,13(4):95-98.
    161.宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态.南京农业大学博士学位论文,2005.
    162.孙文娟,黄耀,张稳,于永强.农田土壤固碳潜力研究的关键科学问题.地球科学进展,2008,23(9):996-1004.
    163.王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.土壤通报,2005,36(3):415-421.
    164.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳,氮,磷的影响.土壤学报,2002,39(1):89-96.
    165.严云.高强度管理措施对农田土壤碳氮累积的影响及机制.中国农业大学博士学位论文,2011.
    166.杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响.生态学杂志,2005,24(8):887-892.
    167.杨景成,韩兴国,黄建辉,潘庆民.土壤有机质对农田管理措施的动态响应.生态学报,2003,23(4):787-796.
    168.章明奎,何振立.成土母质对土壤团聚体形成的影响.热带亚热带土壤科学,1997,6(3):198-202.
    169.郑庆福,刘艇,赵兰坡,冯君,王鸿斌,李春林.东北黑土耕层土壤黏粒矿物组成的区域差异及其演化.土壤学报,2010,47(4):734-746.
    170.周萍.南方典型稻田土壤有机碳固定机制研究.南京农业大学博士学位论文,2009.
    171.邹文秀,韩晓增,乔云发,李海波.不同生态恢复方式及施肥管理对退化黑土物理性状的影响.水土保持通报,2008,28(6):37-40.
    172.邹文秀.施肥管理对黑土农田水分特征和作物水分利用效率的影响.中国科学院研究生院博士学位论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700