分子蒸馏过程稀薄气体的流动及天然产物提纯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子蒸馏(又称短程蒸馏)是高真空下的非平衡连续蒸馏过程,是一种没有沸腾的特殊分离技术; 自二十世纪三十年代问世以来,以其诸多优点得到了前所未有的发展,特别是在热敏性物质分离中发挥了独特的作用。但由于分子蒸馏理论研究还不够深入,限制了分子蒸馏设备的进一步应用。因此,结合分子蒸馏液膜传质和传热过程,研究蒸发区间稀薄气体的运动规律对工艺优化和分子蒸馏器放大生产具有十分重要的意义。
    本文中,稀薄气体在一维稳态流动基础上,从气体能量守恒和平板间多组分矩方程出发,将蒸发空间划分为蒸发动力层,稳态流动层和冷凝动力层; 研究了由蒸发和冷凝引起的稀薄气体的运动规律,建立了蒸气分子在蒸发空间的运动模型。通过四矩法方程得出了稀薄气体的宏观性质和微观性质分布,建立了蒸气传质和传热方程。该模型方程可以预测蒸发空间气体分子数密度、动力学温度和宏观速度的分布规律,还可以预测馏出产物的组成和收率,为分子蒸馏器的放大生产提供理论基础。
    本文考察了操作参数蒸发温度、冷凝温度、液相组成和惰性气体分压,以及结构参数蒸发面与冷凝面间距等对传质效率和分离效率的影响。研究表明,当蒸发和冷凝温度恒定时,稳态流动层的平均温度随稀薄气体流速的增大而降低; 传质效率和分离效率均随蒸发温度的升高而降低; 分离效率随冷凝温度和原料组成的变化并不明显,而传质效率对冷凝温度比较敏感; 当残留惰性气体压力较低和不考虑其分压时,蒸发面和冷凝面间距对传质效率和分离效率的影响都不大。
    本文采用分子蒸馏技术对海狗油乙酯中功效成分EPA-EE、DHA-EE和DPA-EE的提取浓缩进行工艺研究。分子蒸馏过程中,考察了蒸馏温度、系统压力、进料速率、刮膜转速、操作比和操作级数等工艺参数对功效成分总含量和收率的影响; 探讨了海狗油乙酯中各组分的分馏温度,并对该研究进行经济核算,为工业化放大生产奠定基础。
    本文还对同分异构体间-对乙酰氨基苯乙酸乙酯的预分离给予了尝试,考察了上述工艺参数对两组分分离效率和相对含量的影响,通过验证性实验确定其最佳分离工艺条件,减轻同分异构体后序结晶工艺负荷,拓宽了分子蒸馏技术的应用领域。
Molecular distillation (MD), which also defined as short path distillation (SPD), is a special separation technology without boiling, non-equilibrium and continual distillation process at high vacuum condition. Since MD came out in 1930s, enormous developments of MD has been acquired with its lots of virtues, especially tremendous excess in separating thermal sensitive natural product. However, lack of deep studies on MD made the molecular distillatory in industry restrained. Therefore, combined with mass and heat transfer in liquid film, it is important for optimizing operation condition and enlarging equipment to study rarefied gas flowing in distillatory.
     In this dissertation, the space in distillatory is divided into three sections, including evaporating kinetic layer, steady flowing layer and condensing kinetic layer. In fact, rarefied gas flowing is produced by temperature difference between evaporation surface and condensation surface. The flowing process, which can be simply regarded as one dimension flowing, is studied on basis of energy conservation law and multi-composition moment equation of two parallel planes. Many properties of rarefied gas can be established by four-moment equation, including macroscopic and microscopic properties, mass and heat transfer equations. What’s more, these equations are solved with Delphi program. The mathematical models can predict the profile of rarefied gas, such as numerical density, kinetic temperature and macroscopic velocity, and the profile of distillate, too. So the flowing model make it possible to apply experimental distillatory to industrial equipment.
     The influence of operating and structure parameters on mass transfer efficiency and separation efficiency is studied, including composition in liquid film, partial pressure of inert gas, evaporation and condensation temperature, and distance between evaporating and condensing surfaces. It can be concluded from simulation that macroscopic temperature in steady flowing layer falls with velocity growing when evaporating and condensing temperature are constant, and that mass transfer efficiency and separation efficiency are decreasing with evaporating temperature increasing. However, the mass transfer efficiency is sensitive for condensing temperature. Besides, the effect of distance of two surfaces on mass transfer efficiency and separation efficiency is quite week whether taking inert partial pressure into consideration or not.
     The technological conditions of concentrating effective compositions from seal oil
    ethyl ester by molecular distillation are studied in this dissertation. In distillation process, the influence of operating parameters on total content and yield of effective compositions is investigated, such as distillation temperature, operating pressure, feed rate and operating stage. The fractionation temperatures of each composition in seal oil ethyl ester are discussed, and economic value on this item is evaluated. To meet the crystallization separation process for isomer, molecular distillation is applied to a preliminary separation of para-acetaminophenylacetate ethyl for the first time. The effect of above experimental parameters on relative content and separation efficiency of two components has been studied. In addition, several methods of improving product yield are presented in molecular distillation process. The optimal conditions could be included via repeated experiments, and reduces the crystallization load of isomer. The study of molecular distillation provides theoretical value for its new application yield.
引文
[1] King R W. Distillation of Heat Sensitive Materials Part1. British Chemical Engineering,1967,12(4): 568-572
    [2] 蔡静军. 化学工业中的短程蒸馏技术. 化工科技市场,2000,23(12):19,72
    [3] Kawala Z, Stephan K. Evaporation Rate and Separation Factor of Molecular Distillation in a Falling Film Apparatus. Chem. Eng. Technol. 1989, (12) : 406-413
    [4] Langmuir I, Condensation and Evaporation of gas molecular, Phys. Rev., 1916,7:302
    [5] Bhandarker M, Ferron J R. Simulation of rarefied vapour flows. Ind. Eng. Chem. Res. , 1991, 30: 998~1012
    [6] Langmuir I, Condensation and evaporation of gas molecular, Phys. Rev., 1916, 7:302
    [7] Kawala Z, Stephan K, Evaporation rate and separation factor of molecular distillation, Chem. Eng. Tech. 1989,12: 406-413
    [8] Micov M, Lutisan J and Cvengros J. Balance Equations for molecular distillation, separation science and technology, 1997, 32(18):3051-3066
    [9] Greenberg,D B. A theoretical and experimental study of the centrifugal molecular Still. AIChE J. 1972,18(2): 269-276
    [10] Kaplon J,Kawala Z,Skoczylas A. Evaporation rate of a liquid from the surface of a rotating disc in high vacuum. Chemical Engineering Science,1986, 41(3): 519-522
    [11] Burrows, G., molecular distillation, Oxford University, Press, Oxford,1960
    [12] Kawala z., Non-equilibrium processes of evaporation and separation of liquid mixtures in high vacuum, CHISA’78, Prague,1978
    [13] Hickman,K C D and Trevoy D J. Studies in high vacuum evaporation –the falling stream tensimeter. Ind. Eng. Chem. 1952, 44(8): 1882-1888
    [14] Trevoy D J. Projective and Equilibrium vapor-liquid relationships for two binary systems over an extended range, Ind. Eng. Chem. 1952, 44(8): 1888-1892
    [15] Trevoy D J. Rate of evaporation of glycerol in high vacuum, Ind. Eng. Chem. 1953, 45(10): 2366-2369
    [16] 殷红,王真,几种新技术在中药研究中的应用,中国药业,2003, 12(10): 62-63
    [17] Kawala Z, Dakiniewicz P. Influence of evaporation space geometry on rate of distillation in high-vacuum evaporator. Separation science and technology, 2002, 37(8): 1877-1895
    [18] Luti?an J, Micov M and Cvengro? J. The influence of Entrainment separator on the process of molecular distillation. Separation science and technology, 1998, 33(1): 83-96
    [19] 于鸿寿,王世昌,吴锦元. 化学工程手册,第 11,13 篇 蒸馏,化学工业出版社 北京,1989(第三卷)
    [20] 石勇,古维新,张忠义,超临界C02-分子蒸馏对螺旋藻有效成分的萃取与分离[J],广东药学, 2003,13(1): 10-11
    [21] 胡海燕, 彭劲甫, 黄世亮, 吴立宏. 分子蒸馏技术用于广藿香油纯化工艺的研究,中国中药杂志, 2004,29(4): 320-322,379
    [22] 王鹏, 张忠义. 超临界C02萃取-分子蒸馏对连翘挥发油的提取分离, 中国医院药学杂志,2002,22 (4): 253
    [23] Shimada.Facile Purification of Tocopherols from Soybean 0il deodorizer Distillate in High Yield Using Lipase.Journal of the American 0i1 Chemists Society. 2000,77(10): 1009-1013
    [24] 赵国志.油脂脱臭馏出物的回收和利用.中国油脂, 1997, 22(2): 51-53
    [25] 王发松.柠檬醛分子蒸馏纯化新工艺与毛叶木姜子果油成分分析.天然产物研究与开发,2002, 14(2): 55-56
    [26] 傅红,裘爱咏. 分子蒸馏法制备鱼油多不饱和脂肪酸,无锡轻工大学学报,2002,21(6): 617-621
    [27] 张忠义,雷正杰,王鹏.超临界C02萃取-分子蒸馏对干姜有效成分的萃取与分离.中药材,2001,24(8): 576-576
    [28] Batistella C B, Maciel M R W. Recovery of Carotenoids from Palm Oil by Molecular Distillation. Computers and Chemical Engineering, Suppl.1, 1998, 22: S53-S60
    [29] 赵宁,王艳辉,马润宇. 从干红辣椒中提取辣椒红色素的研究,北京化工大学学报:自然科学版,2004,31(1): 15-17
    [30] 崔毅. 沙轻减压渣油深拔窄馏分性质及催化裂化性能的研究,石油炼制与化工,2002,33(11): 18-21
    [31] Kappenberger Peter. Process for the further processing of the vacuum distillation residue in a crude oil refinery [P]. CA 1287593, 1991
    [32] Xu Songlin, Wang Junwu, Xu Shimin, Wang Shuhua. Purification of Octacosanol by Agitated-Path Distillation. Chinese Journal of Chemical Engineering(中国化学工程学报,英文版). 2003,11(4): 480-482
    [33] 江和源,段文华,尉蕊仙. 分子蒸馏技术及其应用,西部粮油科技,2003,28(6): 41-43
    [34] 刘学文,徐汉虹,鞠荣等. 植物精油在农药领域中的研究进展,香料香精化妆品,2004(2): 36-39
    [35] Tebus V N, Petrov, V, B. Klabukov, Yu, G. Tritium recovery from lithium by means of the jet nonequilibrium molecular distillation. Atomnaya Energiya, 1998, 84 (3) : 60-269
    [36] Brewer A K, Taylor T I, Madorsky S L. Concentration of uranium isotopes by molecular distillation of uranium poly alkoxides. CA 553571, 1958
    [37] 余国琮,樊丽秋. 降膜式分子蒸馏设备基本理论的探讨,化工学报,1979,(1): 16-30
    [38] Batistella C B, Maciel M R W., Modeling, simulation and analysis of molecular distillators: centrifugal and falling film. Computers and Chemical Engineering, Suppl., 1996, 20: S19-S24
    [39] Carnahan B., Luther, H A. and Wilkes J O., 1969, Applied Numerical Methods. John Wiley&Sons, Inc., 440-442
    [40] Ruckenstein E,and Hassink W J. The combined effect of diffusion and evaporation on the molecular distillation of ideal binary liquid mixtures. Separation science and technology, 1983, 18(6): 523-545
    [41] Micov M, Lutisan J and Cvengros J Balance Equations for molecular distillation, separation science and technology, 1997, 32(18): 3051-3066
    [42] Fischer W and Bethge D. short path distillation, ICHEME Symposium series No. 128: A403-A413
    [43] Bose A,Palmer H J. influence of heat and mass transfer resistances on the separation efficiency in molecular distillation. Ind. Eng. Chem. Fundam. 1984, 23(4): 459-465
    [44] Inuzuka M,ISHIKAWA H. Vaporization from liquid film of binary mixture in a centrifugal molecular still. Journal of Chemical Engineering of Japan. 1989, 22(3): 291-297
    [45] Inuzuka M, Sugiyama H. Analysis of heat and mass transfer in a centrifugal molecular still. Journal of Chemical Engineering of Japan. 1986, 19(1): 14-22
    [46] Emslie,A.G., Bonner, F. T. and Peck, L. G. Flow of a viscous liquid on a rotating disc. J. appl. Phys. ,1958, 29: 858-862
    [47] Bhandarker M and Ferron J. Transport processes in thin liquid films during High-Vacuum Distillation. Ind. Eng. Chem. Res. 1988, 27(6): 1016-1024
    [48] Ishikawa H, Inuzuka M, Hiraoka S and Yamada I. Numerical analysis of separation efficiency in a centrifugal molecular still. ICHEME SYMPOSIUM SERIES NO,128. distillation and Absorption, 1992,B167-B173
    [49] Godau H J. Flow processes in thin-film evaporators. Int. chem. Eng., 1975, 15 (3) : 445-451
    [50] Nguyen, Limits of wiped film short-path distiller, Chemical Engineering Science, 1997, 52(16): 2661-2666
    [51] 薛世芬,浅谈分子蒸馏设备的研制 ,粮油食品科技,2001,9(3): 31-32
    [52] Kern D Q and Karakas H J. Mechanically aided heat transfer. Chem. Eng. Prog. Symposium Series, 1959, 55(29): 141-147
    [53] Komori S, Takata K and Murakami Y. Flow structure and mixing mechanism in an agitated thin-film evaporator. J. Chem. Eng. Japan. 1998, 21(6): 639-644
    [54] Mekelvey J M and Sharps G V. Fluid transport in thin film polymer processors. Polym. Eng. Sci. 1979, 19(9): 651-659
    [55] Nakamura K and Watanabe T. Flow in agitated thin film horizontal evaporator. Chem. Eng. Commun. 1982, 18(1-4): 173-190
    [56] 盖德.希特斯洛尼(鲁钟琪译),多相流动和传热手册,机械工业出版社,北京,1993
    [57] Cvengro? J, Badin V, Pollak S. Residence time distribution in a wiped liquid film, Chem. Eng. J. 1995, 56: 259-263
    [58] 陈熙著,动力论及其在传热与流动研究中的应用. 北京:清华大学出版社,1996
    [59] Balescu, 龚少明(译). 非平衡态统计热力学. 复旦大学出版社,1989
    [60] Grad H. On the kinetic theory of rarefied gases, Pure Appl. Math. 1949, 5
    [61] Bhatnagar P L,Gross E P, Krook M. Phys. Rev., 1954, 94: 511-524
    [62] 张旭斌,分子蒸馏过程研究,天津大学博士学位论文,2003
    [63] Bird G A. Phys. Fluids, 1963, 6: 1518-1519
    [64] Bird G A. Molecular gas dynamics. Oxford : Clarendon Press, 1976.
    [65] Batistella C B, Maciel M R W, Maciel F R. Rigorous modeling and simulation of molecular distillators: development of a simulators under conditions of non-ideality of the vapor phase, Computer and Chemical Engineering, 2000, 24: 1309~1315
    [66] Lutisan J, Cvengros J. Mean free path of molecules on molecular distillation. Chem. Eng. J. 1995, 56: 39-50
    [67] Schrage R E. A theoretical study of interphase Mass transfer, Columbia University: New York, 1953
    [68] Ytrehus T. In Rarefied Gas Dynamics, Potter, J. L., Ed.; AIAA: New York, 1877, Vol.2, P1197
    [69] Hatakeyama M, Oguchi H. In Rarefied Gas Dynamics, Compargue, R., Ed., Commissariat a I’Energie Atomiquie: Paris, 1979, Vol.II, P1293
    [70] Cvengro? Jan, Miroslav Micov, Luti?an Juraj. Modelling of fractionation in a molecular evaporator with divided condenser, Chem.ical Engineering and Processing, 2000, 39(3):191-199
    [71] 查普曼,考林著,(刘大有 王伯懿 译)非均匀气体的数学理论,科学出版社,1985
    [72] Ferron John R. Evaporation and condensation of mixtures under rarefied conditions. Ind Eng Chem Fundam. 1986, 25(4):594-602
    [73] Perry E S, Weber W H. Vapor pressures of phlegmatic liquids(II). High weight esters and silicone oils. Journal of American Chemical Society, 1949, 71:3726-3730
    [74] Yaws C L. Chemical Properties Handbook. New York: McGraw-Hill, 1998
    [75] Luti?an J, Cvengros J. Effect of inert gas pressure on the molecular distillation process. Separation Science and Techology, 1995, 30(17):3375-3389
    [76] 赵亚平, 吴守一, 陈钧, 李国文. 鱼油中二十碳五烯酸和二十二碳六稀酸提取分离研究现状和进展. 江苏理工大学学报, 1996,17(4): 1-6
    [77] Merete M J, Torben S, Carl-Erik H. Correlation between Level of (n-3) Polyunsaturated Fatty Acids in Brain Phospholipids and Learning Ability in Rats. A multiple generation study. Biochimica et Biophysica Acta 1300,1996,203-209
    [78] 曾祥基. 国外近期推出的油脂保健品. 四川粮油科技, 2000,65(1): 40-41,58
    [79] 王 璟. 海狗油与鱼油的区别. 医苑天地, 2000,5(7)
    [80] 胡爱军, 丘泰球, 梁汉华. 海藻EPA、DHA含量及分离浓缩方法. 海洋通报, 2002,21(2): 84-91
    [81] 金妙仁, 王水英. 鳖油的制备及其理化性质研究. 氨基酸和生物资源, 2003,25(1): 40-40
    [82] 王磊,许海洲,张容新. 海狗油软胶囊中脂肪酸的 GC/MS 测定. 山东科学,2000,13(2):23-25
    [83] 林兰,忻余,徐康森. GC-MS 法测定海狗油中不饱和脂肪酸. 药学进展, 2002,26(4):229-231
    [84] Xu S L,Wang J W,Xu Sh M. Fractionating Pharmaceutical material by Short Path Distillation. Journal of Chemical Industry and Engineering(China),2003,54(9):1343-1344
    [85] Hickman K C D. High-vacuum distillation of the steroids. Ind. Eng. Chem. 1940, 32: 1451-1453
    [86] Gray E L,Cawley J D. The influence of structures on the elimination maximum-I: The structure of vitamin A2. Biol. Chem. 1940, 34: 397-401
    [87] Liang J H, Hwang L S. Fractionation of squid visceral oil ethyl esters by short-path distillation. J. Am. Oil. Chem. Soc. 2000, 77: 773-777
    [88] Hwang L S, Liang J H. Fractionation of Urea-pretreated Squid Visceral oil ethyl esters. J. Am. Oil. Chem. Soc. 2001, 78: 473-476
    [89] Manakotu, US. US 4720506.1988
    [90] 林丽薇,钟晓华. 对乙酰氨基苯乙酸乙酯的合成新工艺. 中国药业,2003,12(9):50-50
    [91] 孙绪江. 从二甲基萘异构体中分离 2,6-二甲基萘的研究进展. 化学工业与工程,2000,17(6):362-368
    [92] 石白茹,郭燕文,张军良等. 从工业二硝基甲苯中分离 2,6-二硝基甲苯的研究. 含能材料, 2002, 10(4): 171-173
    [93] 王克强. 烷烃同分异构体的沸点与其分子结构之间关系的二级结构信息法研究. 广西师院学报(自然科学版),1991,(1):26-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700