干旱农牧交错带耕种和围栏放牧对草地土壤有机碳库和土壤结构稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围栏放牧是被广泛推荐的一种保护性草地利用方式,开垦是我国北方干旱、半干旱地带草原退化和沙漠化的主要原因之一,但是关于这两种利用方式在干旱农牧交错带对草原土壤有机碳及土壤结构稳定性影响的研究不多。本研究以自由放牧草地为对照,对围栏放牧和耕种两种利用方式下草原土壤有机碳动力学和团聚体稳定性进行了定量研究,以评价耕种和围栏放牧对农牧交错带草地可持续利用的影响。本研究的主要结果如下:
     1.与自由放牧草地相比较,围栏放牧22年草地土壤0-20 cm总有机碳含量增加了20%;土壤粗(0.1-2 mm )有机碳含量增加了16%,年轻(0.05-0.1 mm)有机碳含量降低了19%,稳定有机碳(0.05-0.1 mm)含量增加了27%;浓酸提取碳水化合物碳含量增加了22%,稀酸提取碳水化合物碳含量增加了15%,热水溶提取碳水化合物碳含量增加了16%;矿化碳(在51天培养期间释放出的碳)含量增加了30%,但是微生物量碳含量变化不明显。耕种40年后虽然土壤总有机碳含量变化不明显,但是粗(0.1-2 mm )有机碳含量降低了%,年轻(0.05-0.1 mm)有机碳含量降低了22%,土壤稳定有机碳(0.05-0.1 mm)含量增加了8%;浓酸提取碳水化合物碳含量降低了13%,稀酸提取碳水化合物碳含量降低了19%,热水溶提取碳水化合物碳含量降低了21%;矿化碳(在51天培养期间释放出的碳)含量降低了16%,微生物量碳含量降低了30%。上述结果说明,与传统放牧(自由放牧)相比较,围栏轮牧有利于土壤总有机碳、碳水化合物含量的增加以及微生物活性的增强,而开垦耕种虽然使干草原土壤的总有机碳含量变化不明显,但是碳水化合物含量和微生物活性显著降低。
     2.与自由放牧草地相比较,围栏放牧利用方式对>0.25 mm土壤水稳性团聚体含量影响不明显,耕种利用方式使>0.25 mm土壤水稳性团聚体含量降低了74%,团聚体稳定率降低了77%,平均重量直径降低了90%,表明干旱农牧交错带耕种对草原土壤结构稳定性产生毁灭性的影响。
     3.与总有机碳相比较,碳水化合物碳含量与土壤水稳性团聚体的含量、结构稳定率和平均重量直径更相关;而在所提取的三个碳水化合物组分中,稀酸提取碳水化合物与团聚体稳定性最相关,表明在本研究所涉及的土壤中,稀酸提取碳水化合物在水稳性团聚体的形成和稳定性上起主要作用。这一结果表明,
Intensive grazing (fenced) is generally recommended a conservative use of grasslands, while cropping is one of major reasons relative to grassland degradation so as to desertification in arid and semi-arid regions. However, their effects on soil organic C pools and soil aggregates stability have not been well understood. This work was designed to investigate the changes in soil organic C dynamics and aggregates stability with relation to cultivation and intensive-grazing (fenced), compared with open-grazing (no-fenced) and therefore we evaluated the sustainability of these two types of grassland uses. The main conclusions as following:
     1. Compared with open grazing, intensive grazing for 22 years increased soil total organic C, coarse organic carbon and stable organic carbon contents by 20%,16% and 27% respectively, but decreased fine organic content by 19%. Intensive grazing increased soil concentrated-acid extracted carbohydrate C, diluted-acid extracted carbohydrate C, hot-water extracted carbohydrate C and mineralized C (in 51 incubation days ) by 22%,15%, 16% and 30%, respectively, but did not influence microbial C. Compared with open grazing, after 40 years cultivation did not influence total organic carbon, but decreased soil coarse organic carbon and fine organic carbon contents by 29% and 22% respectively, meanwhile, increased stable organic carbon content by 8%. Cultivation decreased concentrated-acid extracted carbohydrate carbon, diluted-acid extracted carbohydrate carbon, hot-water extracted carbohydrate carbon, microbial carbon and mineral carbon contents by 13%,19%,21%,30% and 16% respectively. Our work indicated intensive grazing is advantageous to the soil total organic carbon, the carbohydrate content increase as well as the microorganism activeness enhancement; although cultivation did not causes the grassland soil total organic carbon content significantly declining, the carbohydrate content and microorganism activeness remarkably reduce compared with open grazing.
     2 Compared with open grazing, intensive grazing has not significantly effect the content of >0.25 mm soil water stable aggregates, but cultivation decreased >0.25 mm soil water stable aggregates content, water stable aggregates ration and mean weight diameter by 74%,77% and 90% respectively. This results show cultivation had the ruinous influence to the grassland soil structure stability in the arid crisscross zones of agriculture and animal husbandry.
     3 Our research indicated with compared total organic carbon content, carbohydrate carbon concentration were more closed linear relationships to soil water stable aggregates content, stable aggregates ration and mean weight diameter. Between in withdraws in three carbohydrates components, the most linear relationship were found between diluted-acid extracted carbohydrate concentration and soil aggregates stability, It demonstrated diluted-acid extracted
引文
[1] 阳含熙,李飞.生态系统浅说[M].北京:清华大学出版社.2002:60-75
    [2] 李博,雍世鹏,李瑶等.中国的草原[M].北京:科学出版社.1990:40-60
    [3] 李博.中国北方草地退化及防治对策[J].中国农业科学.1997,6:1-9
    [4] 陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社.2000:70-80
    [5] 许志信,殷伊春.滥用草原与土地荒漠化和沙尘暴的发生[J].内蒙古草业.2001,13(3):1-5
    [6] 任继周,朱兴运.中国河西走廊草地农业的基本格局和它的系统相悖[J].草业科学.1995,4(1):69-80
    [7] 丁菡.我国干旱荒漠植被区土壤生态特性研究[D].南京林业大学硕士论文.2003
    [8] 郭正刚,张自和,候扶江.河西走廊草地退化现状及其可控因素和分类综合治理[J].中国草地.24(4):53-57
    [9] 樊江文,钟华平,员旭疆.50 年来我国草地开垦状况及生态影响[J].中国草地.2002,24(5):69-72
    [10] 李瑜琴,赵景波.过度放牧对生态环境的影响与控制对策[J].中国沙漠.2005,25(3):404-408
    [1]1 程积民,杜峰.放牧对千旱地区草地植被影响的研究[J].草原与牧草.I999,1( 6):29-31.
    [12] 玉辉,何兴元,周广胜.放牧强度对羊草草原的影响[J].草地学报.2002,10(1):45-49.
    [1]3 汪诗平,王艳芬,李水宏,等.不同放牧率对草原牧草生产性能和地上净初级生产力的影响[J].草地学报.1998, 6(4):275- 281.
    [14] 杨汝荣. 我国西部草地退化原因及可持续发展分析[J].草业科学.2002,19(1):23-27.
    [15] 王树青,张起荣,马苍. 天祝县天然草原退化原因及治理对策[J]. 草业科学.2003,20(6):7-9.
    [16] 赵万羽. 新疆草地资源的劣化、原因及治理对策[J]. 草业科学. 2002,(2)19:19-22.
    [17] 赛胜宝. 内蒙古北部荒漠化草原带的严重荒漠化及其治理[J]. 干旱区资源与环境.2001,15(4):34-39
    [18] 周广胜.全球碳循环[M].北京:气象出版社,2003
    [19] 李凌浩,陈佐忠. 草地生态系统碳循环及其对全球变化的响应. Ⅰ :碳循环的分室模型、碳输入与储量[J]. 植物学通报.1998,15(2):14-22
    [20] Gregorich E G, Carter M G, Angers D A. et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils [J].Can J Soil Sci.1994,74:367-385
    [21] Tiessen H, Salcedo I H, Sampaio E V S B. Nutrient and soil organic matter dynamics under shifting cultivation in semi-arid northeastern Brazil [J] .Agriculture, Ecosystems & Environment. 1992, 38(3):139-151
    [22] 张金波,宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境 2003,12(4):500-504
    [23]安登第,何毅,韩爱萍等. 不同利用方式对亚高山草甸草地土壤性质和微生物的影响[J].草业科学.2003,20(6):1~3
    [24] Six J, Callewaert P, Lenders S. et al. Measuring and understanding carbon storage in afforested soils by physical fractionation [J]. Soil Sci Soc. Am. J. 2002, 66:1981-1987
    [25] Thuriés L., Larré-Larrouy M C., Feller C. Influences of organic fertilization and solarization in a greenhouse on particle-size fractions of a Mediterranean sandy soil [J]. Biol Fertil Soils.2000, 32: 449-457
    [26] Fortuna A, Harwood R R, Paul E A. The effects of compost and crop rotations on carbon turnover and the particulate organic matter fraction [J].Soil Science. 2003,168:434-444
    [27] Christensen B T. Physical fraction of soil and organic matter in primary particle size and density separates. Advance in Soil Science. Springer Verlag, New York, Inc.
    [28] Quiroga A R., Buschiazzo D E., Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas [J]. Soil Sci. 1996,161:104-108
    [29] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence [J]. Soil Sci Soc.Am.J.1992, 56:777-783
    [30] Wander M M, Bollero G A. Soil quality assessment of tillage impacts in Illinois [J]. Soil Sci Soc.AM.J.1999, 63:961-971
    [31] Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems [J]. Soil Sci Soc.AM.J.1999, 63:1350-1358
    [32] Kononova M M. Soil organic matter,its nature,its role in siol formation and in fertility[M]. London: Pergamon Press, 1964:5-20
    [33] Stevenson F J. 1982. Trans,Xia R-J(夏荣基),1994. Humus Chemistry: Genesis, Composition,Renctions[M]. Beijing:Beijing Agricultural University Press,1-15
    [34] Brandy N C, and Well R R. The Nature and Properties of Soils[M]. New Jersey: Prentice Hall, 1999: 446-489
    [35] Whitbread A M, Lefroy R D B, Blair G J. Surrey of the impact of cropping on soil physical and chemical properties in South Wales [J].Australian Journal of soil Research.1998,36:669-681
    [36] Johns M M, Skogley E O. Soil organic matter testing and labile carbon identification by carbon acetous resin capsules [J].Soil Sci Soc.Am.J.1994, 58:751~758
    [37] 林滨,陶澍,曹军等. 伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J].中国环境科学.1996,16(4): 307-310
    [38] Blair B J, Lefroy R D. Soil carbon fractions based on their degree of oxidation, and the developments of a carbon management index for agricultural systems[J]. Aust J Agric Res.1995,46:456-466
    [39] 蒋疆,王果,方玲.土壤水溶解态有机物质与重金属的络合作用[J].土壤与环境.2001,10(1): 67-71
    [40] Wlson D S, Brooks P C, Christen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Boil Biochem.1987, 19:159-164
    [41] Anderson, T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils [J]. Soil Biol. Biochem. 1989,21:471-479
    [42] Wu J, Brookes P C, Jenkinson D S. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil [J]. Soil Biol. Biochem.1993,25:1435-1441
    [43] Wu R G, Tiessen H. Effect of land use on soil degradation in alpine grassland soil[J]. Soil Sci Soc Am J.2002, 66: 1648-1655
    [44] Bardgett R D, McAlister E. The measurement of soil fungal: bacterial biomass ratios as indicator of ecosystem, self-regulation in temperate meadow grasslands [J]. Biol Fertil Soils.1999, 29:282-290
    [45] Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand [J]. Soil Biol Biochem.2000, 32:211-219
    [46] Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter [J]. Aust J Soil Res.1992,30:195-207
    [47] 侯扶江,于应文,傅华等. 阿拉善草地健康评价的 CVOR 指数[J]. 草业学报. 2004,13(4):117-126
    [48] 王仁忠. 放牧和刘割干扰对松嫩草原羊草草地影响的研究[J].生态学报. 1998,18(2):210-212
    [49] 李凌洁.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报.1998,22(4):300-302
    [50]安登第,何毅,韩爱萍等. 不同利用方式对亚高山草甸草地土壤性质和微生物的影响[J].草业科学.2003,20(6):1-3
    [51] 王艳芬,陈佐忠.人类活动队锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报.1998,22(6):545-551
    [52] Cambardella C A,Elliott E T.Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J].Soil Sci Soc Am J.1993,57:1071-1076
    [53] 李凌洁. 内蒙古锡林河流域羊草草原生态系统碳酸循环研究[J].植物学报.1998,22(4):300-302
    [54] Anderson D W, Coleman D C. The dynamics of organic matter in grassland soil [J].Journal of soil and water conservation.1985,40:211-216
    [55] 丁瑞兴,刘树桐.黑土开垦后土壤肥力的研究[J].土壤学报.1980,17(1):20-32
    [56] 沈善敏.黑土开垦后土壤团聚体稳定性与土壤养分的关系[J].土壤通报.1981,2:32-34
    [57] Chan K Y, Heenan D P, Oates A. Soil carbon fractions and relationship to soil quality under different tillage and stubble management [J]. Soil & Tillage Research.2002, 63:133-139
    [58] 蒋疆,王果,方玲. 土壤水溶解态有机物质与重金属的络合作用[J].土壤与环境.2001,10(1): 67-71
    [59] 苏永中,赵哈林. 持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J].环境科学.2003,24(4):23-28
    [60] 王艳芬,陈佐忠.人类活动队锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报.1998,22(6):545-551
    [61] 吴荣贵,林葆.高寒地区农牧交错带土壤侵蚀研究[J].水土保持学报.2004,33(4):63-38
    [62] 于君宝 , 刘淑霞 , 刘景双等 . 开垦对黑土有机碳在有机无机复合体分配的影响 [J]. 土壤通报.2004,34(6):13-17
    [63] 辛刚,颜丽,汪景宽等.不同开垦年限黑土有机质变化的研究[J].土壤通报.2002,23(5):32-37
    [64] Conant R T, Six J, Paustian K. Land use effects on soil carbon fractions in the southeastern United Statesx[J]. Biology and Fertility of Soils.2003,38:386-392
    [65] 陈伏生,曾德慧,陈广生等.开垦对草甸土有机碳的影响[J].土壤通报.2004,33(4):49-53
    [66] 王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J] 应用生态学报.1999,10(4):425-429
    [67] 刘连友,王建华,李小雁,等. 耕作土壤可蚀性颗粒的风洞模拟测定[J].科学通报.1998, 43(15):1663-1666
    [68] Anderson F E. The role of the microorganism in aggregation of soil[J]. Soil Sci. 1968, 106(2):136-143
    [69] Bennet H H. Some comparisions of the properties of humid-temperate American soils,with special reference to indicated relations between chemical composition and physical properties[J]. Soil Science.]1926,21:349-375.
    [70] 田积莹,黄义瑞. 子午岭连家贬地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报. 1964, 12(3):286- 295.
    [71] 高维森. 土壤抗蚀性指标及其适用性初步研究[J]. 水土保持学报.1991,5(2)
    [72] 王佑民,郭培才,高维森. 黄土高原土壤抗冲性研究[J]. 水土保持学报.1994,8(4):11-16
    [73] 余清珠,师明洲. 半干早黄土丘陵沟壑区人工混交林土壤抗蚀性研究初报[J]. 水土保持通报.1990,10(5):5-9
    [74] 郭培才,张振中,杨开宝. 黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报. 1992,6(3): 48-58
    [75] 吴淑安,蔡强国等.内蒙古东胜地区土壤抗冲性试验研究[J].干旱区资源与环境,1996,10(2):38-45
    [76] 查轩,唐克丽等.植被对土壤特性及土壤侵蚀的影响研究[J].水土保持学报,1992,6(2):52-58
    [77] 王佑民,郭培才,高维森.黄土高原土壤抗冲性研究[J].水土保持学报.1994, 8(4):11-16
    [78] 骆东奇侯春霞.紫色土团聚体抗蚀特性研究[[J]. 水土保持学报. 2003, 17 (2): 20-27
    [79] 李阳兵谢德体.不同土地利用方式对岩溶土壤团粒结构的影响[[J]. 水土保持学报. 2001, 15 (4): 122-125
    [80] 彭新华赵其国,红壤侵蚀裸地植被恢复及有机碳含量对土壤团聚体稳定性的影响[[J]. 生态学报. 2003, 23(10): 2176-2182
    [81] 丁瑞兴,刘树桐.黑土开垦后土壤肥力的研究[J].土壤学报,1980,17(1):20-32
    [82] Eynardr,Schumacher T E,Lindstrom M J,etal.Aggregate sizes and stability in cultivated South Dakota Prairie Us tolls and Usterts[J].Soil Sci Soc Am.2004,68:1360-1365
    [83] Zhang M K,He Z L,Chen G C,etal.Formation and water stability of aggregates in red soil as affedted by organic matter[J].Pedosphere.1996,6(1):39-45
    [84] 宇万太,沈善敏,张璐等.黑土开垦后水稳性团聚体与土壤养分的关系[J].应用生态学报.2004, 38(12):1221-1226
    [85] Six J, Elliott E T, Pausrian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology&Biochemistry, 2000,32: 2099-2103
    [86] Anderson D W, Coleman D C.The Dymanics of organic matter in grassland soils [J].Journel of Soil and Water Conservation.1985,40:211-216
    [87] Puget P , Chenu C , Balesdent J . Dynamics of soil organic matter associated with particle size fractions of water stable aggregates[J]. Euro.Soil Sci.2000,51:595-605
    [88] Jastrow J D , Boutton T W , Miller R M. Carbon dynamics of aggregates associated organic matter estimated by 13C natural abundance[J]. Soil Sci. Soc. Am. 1996 , 60 : 801-807
    [89]彭新华 , 张斌 , 赵其国. 红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的的影响[J].生态学报.2003,23:2176-2183
    [90] Six J, Panslain K, Elliol E T, etal. Soil structure and organic matter: I.Distribution of aggregate-size classes and aggregate associated carbon[J].Soil Sci.Soc.Am.J.2000, 64:681-689
    [91] 陈利军, 周礼凯.土壤保肥供肥机理及其调节 Ⅱ. 棕壤型菜园土的腐殖质结合形态及其肥力学意义[J]. 应用生态学报.1999, 10(4):427-429
    [92] Tisdall J M , Oades J M. Organic matter and water stable aggregates in soils[J]. Soil Sci.1982,33:141-163
    [93] Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil [J]. Soil Biol Biochem.1991,23:1077-1082
    [94] Six J, Elliott, E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J].Soil Science Society of America Journal, 1999, 63: 1350-1358
    [95] Singly S and Singly J S. Microbial biomass associated with water-stable aggregates in forest,savanna and cropland soils of a seasonal dry tropical region, India[J]. Soil Biol. Biochem. 1995,27:1027-1033
    [96] Monrozier L J, Ladd J N, Fitzpatrick R W. etal. Componebts and microbial biomass content of size fractions in soils of constracting aggregation[J]. Geoderma, 1991,49:37-62
    [97] Gupta V V S R, Germida J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J]. Soil Biol. Biochem. 1988, 20:777-786
    [98] Collins H P, Elliot, E. T., Paustian, K.etal. Soil carbon pools and fluxes in long-term corn belt agroecosystems[J]. Soil Biology & biochemistry. 2000, 32:157-168
    [99] 甘肃省土地管理局编.甘肃土地资源[M].甘肃科学技术出版社,2000
    [100] A.L.佩奇,等著.土壤分析法[M].闵九康,等译.北京:中国农业科技出版社,1991,431-434
    [101] 南京农业大学主编.土壤农化分析(第二版)[M].北京:中国农业出版社.1986,29-39
    [102] Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry.1999,31:55-63
    [103] Brink R H, Dubach J P, Lynch D L. Measurement of carbohydrates in soil hydrolyzates with anthrone[J]. Soil Science, 1960,89: 157-166
    [104] Vance E D, Brookes P C, Jenkinson P S. An extraction method for measuring microbial biomass [M]. Soil Biology and Biochemistry. 1987,19:703-707
    [105] Lin Q M, Wu, Y G, Liu, H L. Modification of fumigation extraction method for soil microbial biomass carbon [J]. Chinese Journal of Ecology. 1999,18:63-66 (in Chinese)
    [106] Haynes R J. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping histories [J]. Soil Sci.1993,44:261-270
    [107] 汪仁真. 土壤比重、容重和孔隙度的测定;土壤颗粒分析[M]. 中国土壤学会农业化学专业委员会李酉开主编,土壤农业化学常规分析方法. 北京:科学出版社.1989, 15-54
    [108] 张连第. 土壤碳酸钙和石膏的分析[M]. 中国土壤学会农业化学专业委员会李酉开主编.土壤农业化学常规分析方法. 北京:科学出版社.1989, 221-228
    [109] 刘志光. 土壤 pH 值的测定[M]. 中国土壤学会农业化学专业委员会李酉开主编,土壤农业化学常规分析方法. 北京:科学出版社.1989, 166-169
    [110] 李酉开.土壤含盐量的测定[M]. 中国土壤学会农业化学专业委员会李酉开主编,土壤农业化学常规分析方法. 北京:科学出版社.1989, 166-169
    [111] Batjes N H. European Journal of Soil Science[C].1996, 47:151-163 [112 苏永中,赵哈林. 持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J].环境科学.2003,24(4):23-28
    [113] Fortuna A, Harwood R R, Paul E A. The effects of compost and crop rotations on carbon turnover and the particulate organic matter fraction [J].Soil Science. 2003,168:434-444
    [114] Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence [J]. Soil Sci Soc.Am.J.1992, 56:777-783
    [115] Quiroga A R, Buschiazzo D E, Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas [J]. Soil Sci. 1996,161:104-108
    [116] Insam H, Parkinson D, Domcsh K H. Influence of macroclimate on soil microbial biomass [J]. Soil Biol Biochem.1989,21:211-227.
    [117] 郭景恒,朴河春,张晓山等.生态系统转换对土壤中碳水化合物的影响[J].2002,22(8):1367-1370
    [118] Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry. 1999 31: 55-63
    [119] Haynes R J, Swift R S. Stability of soil aggregates in relation to organic constituents and soil water content[J]. Journal of Soil Science. 1990, 41:73~-83
    [120] 吴金水肖和艾.土壤微生物生物量碳的表观周转时间测定方法[J].土壤学报.2004,41(3):401-408
    [121]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤.1997,2:61-70
    [122] 付会芳,张兴昌. 旱地土壤氮素矿化的动力学研究[J]. 干旱区资源与环境. 1997,11(1):53-57
    [123] 王常慧,邢雪荣,韩兴国. 草地生态系统中土壤氮素矿化影响因素的研究进展[J]. 应用生态学报. 2004,15(11):2184-2188
    [124] 李忠佩,林心雄. 田间条件下红壤水稻土有机碳的矿化量研究[J]. 土壤. 2002,6:310-314
    [125]Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biol Fertil Soils. 1998,26:88-94
    [126] Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil [J]. Soil Biol Biochem.1991,23:1077-1082
    [127] Díaz-Zorita M, Perfect E, Grove J H, Disruptive methods for assessing soil structure[J]. Soil & TillageResearch.2002,64:3-22
    [128] Kay B D. Soil structure. In: Sumner E. M. (Ed.), Handbook of Soil Science. 2000,Boca Raton, London, New York, Washington, D.C., pp. A-229-264
    [129] 章明奎,何振立,陈国潮等.利用方式对红壤水稳性团聚体形成的影响[J].土壤学报.1997,34(4):359-366
    [130] Baldock J A, Kay B D. influence of cropping history and chemical treatments on the water-stable aggregation of a silt loam soil[J]. Canadian journal of soil science. 1987,67:501-511.
    [131] Haynes R J, Swift R S. Stability of soil aggregates in relation to organic constituents and soil water content[J]. Journal of Soil Science.1990, 41:73~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700