高寒草地土壤有机碳组分之间及有机碳组分与土壤物理性质之间的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增加土壤有机质(碳)含量能有效地改善土壤的物理性质,相关的报道很多,但对于高寒草地土壤有机碳组分之间及有机碳组分与土壤物理性质之间关系的直接研究并不多见。本文针对高寒地区(0~30cm)六种草地类型(51个土样)土壤有机碳组分以及有机碳组分与土壤物理性质之间的相关性进行了研究,旨在使人们能够更清楚的了解土壤有机碳组分并真正认识到其生态学意义。主要研究结论如下:
     1.微生物量碳、矿化碳、粗有机碳(2~0.1 mm)、稳定有机碳(<0.05 mm)、水溶性有机碳、焦磷酸钠提取土壤有机碳(腐殖质有机碳)以及碳水化合物碳含量和土壤总有机碳含量之间均呈显著线性正相关,其中焦磷酸钠提取土壤有机碳含量与总有机碳含量之间最相关(r=0.91,p<0.001),这说明土壤总有机碳含量的变化在很大程度上依赖于焦碳磷酸钠提取土壤有机碳的含量。有机碳颗粒粒径组分粗有机碳、稳定有机碳含量与焦磷酸钠提取有机碳含量之间均显著线性正相关。浓酸(浓度为12M的硫酸)、稀酸(浓度为0.5M的硫酸)和热水提取碳水化合物碳含量与粗有机碳以及矿化碳含量之间的相关性均达到了极显著水平,这说明碳水化合物碳主要分布在粗有机碳中,是容易矿化的有机碳组分。微生物量碳和矿化碳(培养50天)含量分别与粗有机碳、焦磷酸钠提取有机碳、水溶性有机碳以及碳水化合物碳含量之间均显著线性正相关,且矿化碳和粗有机碳的相关性最高(r=0.93,p<0.001),这说明在本研究中矿化碳主要来自于粗有机碳组分,粗有机碳是土壤微生物主要的呼吸基质。
     2.试验就高寒草地(0-30cm)的土壤物理性质(>0.25mm水稳性团聚体平均重量直径(MWD)、颗粒密度、容重、孔隙度以及土壤最大持水量)与土壤有机碳含量之间的关系做了研究,以评价高寒地区土壤有机碳库变化致使土壤物理性质退化,从而导致土壤的严重恶化,造成水土流失的状况。研究结果表明,容重(p<0.001)和颗粒密度(p<0.001)与土壤总有机碳含量均显著线性负相关;水稳性团聚体平均重量直径(p<0.001)、孔隙度(p<0.01)和最大持水量(p<0.001)与土壤总有机碳含量均显著线性正相关;水稳性团聚体平均重量直径与腐殖质有机碳、稳定有机碳、浓酸提取碳水化合物碳和稀酸提取碳水化合物碳含量之间均呈显著线性正相关;与粗有机碳、微生物量碳、矿化碳和热水提取碳水化合物碳之间无相关性。以上结果说明并不是所有有机碳都影响着土壤团聚体的稳定性。
     3.本研究得出土壤团聚体稳定性主要受有机碳组分中腐殖质有机碳、稳定有机碳和浓酸、稀酸提取碳水化合物碳含量的影响,它们之间的相关性系数大小顺序为稳定有机碳(r=0.62)>稀酸提取碳水化合物碳(r=0.49)>腐殖质有机碳(r=0.47) >浓酸提取碳水化合物碳(r=0.46)。高寒地区的土壤系统非常脆弱,开垦、过度放牧等人为干扰造成土壤有机碳库的减少,从而降低土壤团聚体的稳定性,潜在的加速土壤侵蚀和降低土壤的通透性和持水能力,严重地威胁着高寒草地土壤的生态功能。
Generally believing, increasing the content of soil organic matter can effectively improve the soil physical properties. However, correlations between soil organic carbon fractions themselves and theirs with variable links to soil physical properties in an alpine pastureland have not be well understood. Aim of this study was to investigate relationships of soil organic carbon fractions and their soil physical properties (in the depth of 30cm, six pastureland and 51 soil samples) and therefore further we may know their value of economy. The main conclusion as follows:
     1. Significant positive linear relationships were found between microbial biomass carbon, coarse organic carbon, stable organic carbon, water-soluble organic carbon, humus organic carbon, carbohydrate carbon and total organic carbon. Meanwhile, linear relationships between humus organic carbon and the total organic carbon(r=0.91, p<0.001) were most significant which indicated that the contents of total organic carbon are based on the humus organic carbon. The coarse organic carbon and stable organic carbon was positive linear relationships to the humus organic carbon. A positive and high relationship was found between carbohydrate carbon contents and coarse organic carbon, microbial biomass carbon and Mineralized C which showed important relation of carbohydrate carbon contents and microbial biomass, carbohydrate carbon mainly being among coarse organic carbon and easy mineralized. Microbial biomass carbon and mineralized C was associated with coarse organic carbon, humus organic carbon, water-soluble organic carbon and carbohydrate carbon. The Mineralized C presented the highest correlation with coarse organic carbon(r=0.93, p<0.001), showing Mineralized C coming mainly from coarse organic carbon fraction, the coarse organic carbon is a mainly basic of soil microbial breath.
     2. Correlation between fractions soil physical properties( in water stability of >0.25mm aggregates MWD(mean weight diameter), particle density, bulk density, porosity , water holding capacity of soils) and grassland soil organic carbon were also evaluated relative to soil physical degradation. There a passive and high relationship between bulk density and particle density(p<0.001) and soil total organic carbon, whereas between water stable aggregate MWD , porosity , water holding capacity and soil total organic carbon presented positive and high correlation(p<0.001), showing it was important that effects of soil organic carbon on soil physical properties. Water stable aggregate MWD presented high correlation with humus organic carbon, stable organic carbon, concentrated-acid extracted carbohydrate-C, diluted-acid extracted carbohydrate-C and low correlation and coarse organic carbon, microbial biomass carbon, mineralized C, Hot-water extracted Carbohydrate-C. This result showed that some of all organic carbon influence on water stable aggregate.
     3. The research shows in alpine region that soil water stability of aggregate MWD was mainly affected by humus organic carbon, stable organic carbon, concentrated-acid extracted carbohydrate-C and diluted-acid extracted carbohydrate-C, and correlation coefficient(r) is stable organic carbon(r=0.62)>diluted-acid extracted carbohydrate-C(r=0.49) > humus organic carbon(r=0.47) >concentrated-acid extracted carbohydrate-C(r=0.46). Our results indicated that soil system in alpine region was very frangible, soil managements in present study reduced soil organic pool, which lowed soil stability of aggregate and accelerated loss of soil with water, therefore threaten ecological function of soil.
引文
[1] 周广胜,王玉辉. 陆地生态系统类型转变与碳循环.植物生态学报[J], 2002, 26(2): 250-254.
    [2] Canadel J G, Mooney H A, Baldocchi D D, et al. Carbon Metabolism of the Terrestrial biosphere: Amultitechnique approach for improved understanding [J]. Ecosystems, 2000, (3) : 115-130.
    [3] LeCain D R, Morgan J A, Schuman G E, et al. Carbon exchange and species composition of grazed pastures and exclosures in the shotgrass steppe of Colorado. Agriculture, Ecosystems & Environment, 2002, 93:421-435.
    [4] Conant R T, Paustian K. Potential soil sequestration in overgrazed grassland ecosystems. Global Biogeochemical Cycles, 2002, 16(4): 1143-1151.
    [5] Chen Z Z, Wang S P, Wang Y F, et al. Typical grassland ecosystem of China. Beijing: Science Press, 2000.
    [6] 钟华平,樊江文,于贵瑞,韩彬.草地生态系统碳蓄积的研究进展.草业科学,2005, 22(1): 4-11.
    [7] Ojima D S, Dirks B O M, Gleovn E P, et al. Assessment of C budget for grasslands and drylands of the world [J ] .Water, Air, and Soil Pollution.1993, (70): 95-109.
    [8] 周广胜.全球碳循环[M].北京:气象出版社,2003.
    [9] Tiessen H Cuevas E, Chacon P .The role of soil organic matter in sustaining soil fertility. Nature, 1994, 371: 783-785.
    [10] Six J,Paustian K,Elliott E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon . Soil Sci. Soc. Am. J, 2000, 64: 681-689.
    [11] Doran J W, Jones A J,Arshad M A, etal. Determinants of soil quality and health [A]. Soil Quality and Soil Erosion [C]. CRC Press, 1999, 17-36.
    [12] Jeffrey E Herrick, Michelle M Wander. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: the importance of distribution, composition, and soil biological activity [A]. Lal R, et al. Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1997, 405-425.
    [13] Li, X., Li, F., Bhupinderpal-Singh, Rengel Zed and Zhan Zheng-Yan. 2007a. Soil management changes organic carbon pools in alpine pastureland soils. Soil & Tillage Research. 93: 186-196.
    [14] Quiroga A R., Buschiazzo D E., Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas [J]. Soil Sci. 1996, 161:104-108.
    [15] Fortuna A, Harwood R R, Paul E A. The effects of compost and crop rotations on carbon turnover and the particulate organic matter fraction [J]. Soil Science. 2003, 168: 434-444.
    [16] Buschiazzo D, Quiroga D, Stahr K. Patterns of organic matter accumulation in soils of the semiarid Argentinian Pampas [J]. Zeitschr. Pflanzenernahr. Bodenk. 1991, 154: 437-441.
    [17] Kononova M M. Soil organic matter,its nature,its role in siol formation and in fertility[M]. London: Pergamon Press, 1964: 5-20.
    [18] Stevenson F J. 1982. Trans, Xia R-J( 夏荣基 ),1994. Humus Chemistry: Genesis, Composition, Renctions [M]. Beijing: Beijing Agricultural University Press, 1-15.
    [19] 郭景恒,朴河春,刘启明. 碳水化合物在土壤中的分布特征及其环境意义.地质地球化学,2000,28(2): 59-64.
    [20] 沈 宏 , 曹 志 洪 , 胡 义 正 . 土 壤 活 性 有 机 碳 的 表 征 及 其 生 态 效 应 [J]. 生 态 学 杂志.1999,18(3):32-38.
    [21] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management Index for agricultural systems. Aust. J. Agric. Res., 1995, 46: 1459-1466.
    [22] Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations. Soil Sci. Soc. Am J., 1992,56: 1799-1806.
    [23] Gregorich E G, Carter M R, Angers D A, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci., 1994, 74: 376-385.
    [24] Whitbread A M, Lefroy R D B, Blair G J. Surrey of the impact of cropping on soil physical and chemical properties in South Wales [J].Australian Journal of soil Research.1998,36: 669-681.
    [25] Johns M M, Skogley E O. Soil organic matter testing and labile carbon identification by carbon acetous resin capsules [J].Soil Sci Soc.Am.J.1994, 58: 751-758.
    [26] 林滨,陶澍,曹军等.伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J].中国环境科学.1996,16(4): 307-310.
    [27] 蒋疆,王果,方玲.土壤水溶解态有机物质与重金属的络合作用[J].土壤与环境.2001,10(1): 67-71.
    [28] Brookes P C. The use of microbial paraments in monitoring soil pollution by heavy metals. Biol Fertil Soils. 1995, 19: 269-279.
    [29] Jordon D, Kremer R J, Bergfield W A, et al. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol Fertil Soils .1995, 19: 297-302.
    [30] Wu J S (吴金水). 1994. Soil organic matter and turnover dynamics. In: He D Y(何电源), eds. Soil Fertility and Fertilizing of the Cultivating Crops in Southern China. Beijing:Science Press. 37-46. (in Chinese)
    [31] Wu R G, Tiessen H. Effect of land use on soil degradation in alpine grassland soil [J]. Soil Sci Soc Am J. 2002, 66: 1648-1655.
    [32] Dexter A R. Advances in characterization of soil structure.Soil Till. Res., 1988, 11: 199-238.
    [33] 王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素[J].应用生态学报.1999,10(4):425-429.
    [34] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Euro. J. Soil Sci., 1996, 47: 425-437.
    [35] Zhang B, Horn R. Mechanisms of aggregates stabilization in Ultisols from subtropical China. Geoderma, 2001, 99: 123-145.
    [36] Horn R, Taubner H, Wuttke M, et al. Soil physical properties related to soil structure. Soil Till. Res., 1994, 30: 187-216.
    [37] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Euro. J. Soil Sci., 2000, 51: 595-605.
    [38] Tisdall J M, Oades J M. Organic matter and water-stable aggregate in soils. J. Soil Sci., 1982, 33: 141-163.
    [39] 刘连友,王建华,李小雁等. 耕作土壤可蚀性颗粒的风洞模拟测定[J].科学通报.1998, 43(15): 1663-1666.
    [40] Anderson F E. The role of the microorganism in aggregation of soil[J]. Soil Sci. 1968, 106(2):136-143.
    [41] Bennet H H. Some comparisions of the properties of humid-temperate American soils,with special reference to indicated relations between chemical composition and physical properties[J]. Soil Science.1926, 21: 349-375.
    [42] 高维森. 土壤抗蚀性指标及其适用性初步研究[J]. 水土保持学报.1991,5(2).
    [43] 王佑民,郭培才,高维森. 黄土高原土壤抗冲性研究[J]. 水土保持学报.1994,8(4):11-16.
    [44] 郭培才,张振中,杨开宝.黄土区土壤抗蚀性预报及评价方法研究[J].水土保持学报. 1992,6(3): 48-58.
    [45] 吴淑安,蔡强国等.内蒙古东胜地区土壤抗冲性试验研究[J].干旱区资源与环境,1996,10(2):38-45.
    [46] 查 轩 , 唐 克 丽 等 . 植 被 对 土 壤 特 性 及 土 壤 侵 蚀 的 影 响 研 究 [J]. 水 土 保 持 学报,1992,6(2):52-58.
    [47] 陈恩凤.土壤肥力物质基础及其调控[M]. 北京: 科学出版社,1990.
    [48] 关世英,文沛钦,康师安,常进宝.不同牧压强度对草地土壤养分含量的影响[A].草原生态系统研究(第五集)[C].北京:科学出版社,1997.17-22.
    [49] 姚爱兴.放牧对多年生黑麦草/白三叶草地及奶牛生产性能的影响[M].北京:中国农业大学草地研究所,1995.
    [50] 黄昌勇主编.土壤学[M]. 北京: 中国农业出版社. 2000, 66-69.
    [51] 史德明,韦启潘,梁音,杨艳生,吕喜玺.中国南方侵蚀土壤退化指标体系研究[J]. 水土保持学报.2000, 14(3): 1-9.
    [52] 朱褚祥主编.土壤学[M]. 农业出版社. 1993, 80-84.
    [53] Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations (Pasture - arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil & Tillage Research, 1991, 19: 77-87.
    [54] Sombroek W G, Nachtergaele F O , Hebel A. Amounts , dynamics and sequestering of carbon in tropical and subtropical soils. AM BIO , 1993 , 22 : 417-425.
    [55] 蒋端生. 南岳森林土壤有机质的研究[J ]. 湖南农业科学, 2001 2 : 26-29.
    [56] 秦钟 , 周兆德 . 土壤物理性质变化简析 [J ]. 海南大学学报自然科学版 ,2002, 20(4) :379-385.
    [57] 黄承标,何斌,梁怀军. 尾叶松人工林取代灌草植被对土壤物理性质的影响[J ]. 西南林学院学报,1999,19(4) :215-218.
    [58] 黄承标,梁宏温. 广西不同地理区域森林土壤水文物理性质研究[J ]. 土壤与环境,1999,8 (2) :96-100.
    [59] Golchin A, Oades J M,Kjemstad J O,et al. Soil structure and carbon cycling. Aust. J. Soil Res., 1994, 32: 1043-1068.
    [60] Karlen D L, Rosek M J, Gardner J C, et al. Conservation reserve program effects on soil quality indicators [J]. Journal of Soil and Water Conservation, 1999, 54(1): 439-444.
    [61] Elliot E T. Aggregate structures and carbon nitrogen and phosphorus in native and cultivated soil [J]. Soil Sci. Soc. Am. J., 1986, 50: 627-633.
    [62] Lal R, Kimble J, Follett R F. Pedospheric processes and the carbon cycle [A]. Lal R, et al. Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1997, 1-8.
    [63] 孙波,张桃林,赵其国. 我国中亚热带缓丘区红粘土红壤肥力的演化 I. 物理学肥力的演化[J]. 土壤学报, 1999, 36(1): 35-47.
    [64] Elliott E T, Coleman D C. Let the soil work for us. Ecology Bulletin, 1988, 39: 23-32.
    [65] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32: 2099- 2103.
    [66] Baldock J A , Kay B D , Schnitzer M. Influence of cropping treatments on the monosaccharide content of the hydrolysates of a soil and its aggregate fractions [J ]. Canada Journal of Soil Science, 1987, 67: 489 - 499.
    [67] O'Sullivan, M.F., 1992. Uniaxial compaction effects on soil physical properties in relation to soil type and cultivation. Soil Tillage Res. 24, 257-269.
    [68] Soane, B.D., 1975. Studies on some soil physical properties in relation to cultivations and traffic. In: Soil Physical Conditions and Crop Production. Min. Agric. Food Fish., Tech. Bull. 29, 160-183.
    [69] Oades J M, Waters A G. Aggregate hierarchy in soils. Aust. J. Soil Res., 1991, 29: 815-828.
    [70] Quiroga A R., Buschiazzo D E., Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas [J]. Soil Sci. 1996,161:104-108.
    [71] THURMAN E M. Organic Geochemistry of Natural Waters [M].Boston Kluwer Academic, 1985.
    [72] BURFORD J R .BREMNER J M. Relatiionships between denitri fication capacities of soils and total water soluble and readily decomposable soil organic matter [J].Soil Biol Biochen,1975,7: 389-394.
    [73] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved Organic matter in soils: A Review. Soil Sci., 2000, 165(4):277-304.
    [74] Chantigny M H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices.Geoderma, 2003, 113: 357-380.
    [75] Czarnes S, Hallett P D, Bengough A G, et al. Root and microbial-derived mucilages affect soil structure and water transport. Euro. J.Soil Sci., 2000, 51: 435-443.
    [76] Lin Q M, Brookes P C. An evaluation of the substrate-induced respiration method. Soil Biology and Biochemistry, 1999, 31: 1969-1983.
    [77] Six J, Elliott, E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems [J].Soil Science Society of America Journal, 1999, 63: 1350-1358.
    [78] 尹瑞玲.微生物与土壤团聚体[J]. 土壤学进展, 1985, 4: 24-29.
    [79] Guggenberger G, et al. Microbial contributions to the aggregation of a cultivated grassland soil amended with starch [J].soil Biol Biochem.,1999, 31:407-419.
    [80] 冯 固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J].水土保持学报, 2001, 15(4): 99-102.
    [81] Birgitte N, Leif P. Influence of arbuscular mycorfiizal fungion soil structure and aggregate stability of vertisol [J].Plant and Soil 2000, 218: 173-1 83.
    [82] Tisdall J M. Possible role of soil microorganisms in aggregation in soil [J]. Soil Science, 1993, 159: 115-121.
    [83] Degens B,Sparling G. Changes in aggregation do not correspond with changes in labile organic C fractions in soil amended with 14C-glucose[J]. Soil Biol Biochem., 1996, 28(4- 5): 453 一 462.
    [84] 张丽娟,刘树庆,张金柱等. 冀西北栗钙土有机物料的腐解特征[J]. 华北农学报. 2000,15(增刊: 69~75.
    [85] 南京农业大学主编.土壤农化分析(第二版)[M].北京:中国农业出版社.1986,29-39.
    [86] 王旭东,张一平.娄土不同粒径团聚体中胡敏酸性质结构研究[J].干旱地区农业研究1997,(15)2: 69-72.
    [87] 程丽娟,来航线,李素俭,周马康. 微生物对土壤团聚体形成的影响[J]. 西北农业大学学报. 1994, 22(4): 93-97.
    [88] Miltner A,Zech W. Carbohydrate decomposition in beech litter as influenced by aluminum, iron, and manganese oxides. Soil Biol. Biochem., 1998, 30: 1-7.
    [89] Oades J M. Soil organic matter and structural stability mechanisms and implications for management. Plant and Soil, 1984, 76: 319-337.
    [90] Changey K, Swift R S Studies on aggregate stability II. The effect of humic substances on the stability of re-formed soil aggregate [J]. Soil Sci, 1986, 37: 337-343.
    [91] Pojasak Tand,Kay S D. Effect of root exudates from corn and bromegrass on soil structuralstability[J].Can J Soil Sci,1990,70: 351-362.
    [92] Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral- associated organic matter[J]. Soil Biol Biochem., 1996, 28(4- 5): 665-676.
    [93] 中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组. 中国土壤系统分类(修订方案)[M]. 北京:中国农业科技出版社.1995, 21-99.
    [94] Quiroga A R., Buschiazzo D E., Peinemann N. Soil organic matter size fractions in soils of the semiarid Argentinian Pampas [J]. Soil Sci. 1996,161:104-108.
    [95] 王哲锋, 高波, 李小刚. 利用方式对干旱草原土壤碳水化合物含量及团聚体稳定性的影响[J]. 甘肃农业大学学报. 2006, 41(3):91-95.
    [96] Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter. In: Page, A L, Miller R H, Kenny D R et al. (eds.), Methods of Soil Analysis, Part 2, ASA Publication No. 9, 2nd ed. Madison, WI, 1982, 539-577.
    [97] Vance E D, Brookes P C, Jenkinson P S. An extraction method for measuring microbial biomass [M]. Soil Biology and Biochemistry. 1987, 19: 703-707.
    [98] Puget P, Angers D A, Chenu C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils[J]. Soil Biology and Biochemistry.1999, 31: 55-63.
    [99] Brink R H, Dubach J P, Lynch D L. Measurement of carbohydrates in soil hydrolyzates with anthrone[J]. Soil Science, 1960, 89: 157-166.
    [100] Lin Q M, Wu, Y G, Liu, H L. Modification of fumigation extraction method for soil microbial biomass carbon [J]. Chinese Journal of Ecology. 1999, 18: 63-66 (in Chinese).
    [101] Haynes R J. Effect of sample pretreatment on aggregate stability measured by wet sieving or turbidimetry on soils of different cropping histories [J]. Soil Sci.1993,44:261-270.
    [102] 汪仁真. 土壤比重、容重和孔隙度的测定; 土壤颗粒分析[M]. 中国土壤学会农业化学专业委员会李酉开主编,土壤农业化学常规分析方法. 北京: 科学出版社.1989,15-54.
    [103] 刘志光. 土壤pH值的测定[M]. 中国土壤学会农业化学专业委员会李酉开主编, 土壤农业化学常规分析方法. 北京: 科学出版社.1989, 166-169.
    [104] 张连第. 土壤碳酸钙和石膏的分析[M].中国土壤学会农业化学专业委员会李酉开主编.土壤农业化学常规分析方法. 北京: 科学出版社.1989, 221-228.
    [105] 周印东. 子午岭植被演替过程中土壤有机碳积累与变化[D].2003.
    [106] Six, J., E.T. Elliott, K. Paustian, and J.W. Doran. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. 1999,J.62(5):1367-1377.
    [107] Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil [J]. Soil Biol Biochem.1991,23:1077-1082.
    [108] Liang B C, MacKenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils [J]. Biol Fertil Soils. 1998, 26: 88-94.
    [109] Motavalli P P , Palm C A, Parton W J, Elliott E T & Frey S D. Comparison of laboratoryand modeling simulation methods for estimating carbon pools in tropical forest soils. Soil Biology &Biochemistry. 1994, 26 : 935-944.
    [110] Whalen J K, Bottomley P J& Myrold D D.Carbon and nitrogen mineralization from light-and heavy-fraction addition to soil. Soil Biology &Biochemistry. 2000, 32: 1345-1352.
    [111] Piao H C, Hong Y T, Yuan Z Y. Seasonal changes of microbial biomass carbon related to factors in soils from karst areas of southwest China. Biol. Fertil. S oils, 2000, 30: 294-297.
    [112] Haynes R J , Francis G S. Changes in microbial biomass C , soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions[J ]. Journal of Soil Science , 1993 , 44 :665-675.
    [113] S. Sarig and Y. Steinberger. Immediate effect of wetting event on microbial biomass and carbohydrate production-mediated aggregation in desert soil. Elsevier Science Publishers B.V., Amsterdam. 1993, 56: 599-607.
    [114] Edwards A P, Bremner J M. Microaggregates in soils. J. Soil Sci., 1969, 18: 64-73.
    [115] 章明奎,何振立,陈国潮等.利用方式对红壤水稳定性团聚体形成的影响.土壤学报,1997,34(4): 360-366.
    [116] 姚贤良,于德芬. 关于集约农作制下的土壤结构问题 I. 有机物料及其利用方式对土壤结构的影响. 土壤学报, 1985,22(3): 242-250.
    [117] Haynes R J. Labile organic matter fractions and aggregate stability under short-term grass-based leys [J]. Soil Boil Biochem.1999, 31:1821~1830.
    [118] 宇万太,沈善敏,张璐等. 黑土开垦后水稳性团聚体与土壤养分的关系[J].应用生态学报.2004,15(12): 2287-2291.
    [119] Bajracharya B M, Lal R, Kimbl J M. Soil organic carbon distribution in aggregates and primary particle fractions as in fluenced by erosion phase and landscape position [A]. Lal R,et al. Soil Processes and the Carbon Cycle [C]. Boca Raton: CRC Press, 1997, 353-367.
    [120] Xiaogang Li , Fengmin Li, Rengel Zed, Zhengyan Zhan. Soil physical properties and their relations to organic carbon pools of alpine soil as affected by land use. Soil & Tillage Research xxx xxx–xxx[J]. ARTICLE IN Press .2006, 1-30.
    [121] Magdi T A, Takatsigu H,Shinya O. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba been(Vicia faba L.)growth and soil properties [M].108.D C.CRC Press.2000,A3-A15.
    [122] Bow man R A, Vigil M F, Nielsen D C, et al. Soil organic matter changes in intensively cropped dryland systems [J]. Soil Sci. Soc. Am. J., 1999,63: 186-191.
    [123] Wall, A., Heiskanen, J., 2003. Water-retention characteristics and related physical properties of soil on afforested agricultural land in Finland. For. Ecol. Manage. 186,21-32.
    [124] 李小刚,崔志军,王玲英. 施用秸秆对土壤有机碳组成和结构稳定性的影响.土壤学报[J]. 2002, 39(3): 421-428.
    [125] Baldock J A, Kay B D. influence of cropping history and chemical treatments on thewater-stable aggregation of a silt loam soil[J]. Canadian journal of soil science. 1987,67:501-511.
    [126] Haynes R J , Swift R S. Stability of soil aggregates in relation to organic constituents and soil water content [J ]. Journal of Soil Science , 1990 , 41 :73-83.
    [127] Gijsman A J, Thomas R J. Aggregate size distribution and stability of an Oxisol under legume - based and pure grass pastures in the Eastern Colombian savannas[J ]. Australia Journal of Soil Research,1995,33:153-165.
    [128] Gang Lu , Kan - ichi Sakagami , Haruo Tanaka ,et al. Role of soil organic matter in stabilization of water - stable aggregates in soils under different types of land use[J]. Soil Science and Plant Nutrition,1998,44 (2):147-155.
    [129] Xiao-Gang Li, Feng-Min Li, Rengel Zed, Zheng-Yan Zhan, Bhupinderpal-Singh. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland[J]. Geoderma,2007,139:98-105.
    [130] Lynch,J.M.,1981.Promotion and inhibition of soil aggregate stabilization by microorganisms. J. Gen. Microbiol., 126: 371-375.
    [131] Christensen B T. Carbon in primary and secondary organomineral complexes. In :Carter ,M. R. & A. B. Stewart eds. Structure and organic matter storage in agricultural soils. Boca. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700