日粮精粗比对奶牛瘤胃厌氧细菌和挥发性脂肪酸及血液指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日粮精粗比对奶牛的的生产性能和机体健康有着显著的影响,长期饲喂高精料饲粮易引起奶牛营养代谢病的发生,导致奶牛生产性能的下降。本试验选用5头健康的干奶期荷斯坦奶牛(体重为502±25㎏),以玉米、豆粕、麦麸、青贮、甘薯蔓及羊草等为主要原料,配制精粗质量比分别为30:70、35:65、40:60、45:55、50:50、55:45、60:40、70:30和100:0的9种日粮,连续进行9期不同精粗比日粮的饲喂试验。前8期试验每期30d,最后一期试验为3d,研究不同日粮精粗比对奶牛瘤胃厌氧菌和挥发性脂肪酸及血液相关指标的影响,分别检测了瘤胃pH,挥发性脂肪酸(乙酸、丙酸、丁酸)浓度,血清乙酸、丙酸、丁酸浓度,血脂(甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白)浓度,血清游离脂肪酸浓度,血清Na+,K+,Cl-,TCO2,HCO3-离子浓度,同时从瘤胃中分离出6株优势厌氧产乳酸细菌,进行了16Sr DNA序列分析和系统发育树的构建。结果表明:
     1随精料水平的提高奶牛瘤胃pH逐渐降低,其中饲喂精粗比100:0日粮组的奶牛瘤胃pH显著低于饲喂其它精粗比日粮组(P<0.05);精粗比为55:45日粮组的奶牛瘤胃乙酸、丙酸和丁酸浓度,显著低于粗精比为30:70、35:65、40:60、45:55、50:50日粮组(P<0.05);50:50日粮组奶牛血清乙酸浓度显著低于粗精比为30:70、35:65和100:0日粮组(P<0.05);不同精粗比日粮条件下,奶牛血清丙酸和丁酸浓度组间差异不显著(P>0.05);血清乙酸和丁酸浓度与瘤胃中乙酸、丁酸浓度无明显相关性(P>0.05),但血清丙酸浓度与瘤胃丙酸浓度组间呈极显著负相关性(P<0.01)。
     2随精料水平的提高,血清甘油三脂(TG)含量逐渐升高,100:0日粮组TG含量显著高于30:70日粮组(P<0.05);55:45日粮组血清高密度脂蛋白(HDL)含量显著高于30:70、35:65、40:60、45:55日粮组(P<0.05),55:45日粮组血清低密度脂蛋白(LDL)含量显著高于30:70、40:60日粮组,其余各日粮组差异不显著(P>0.05),血清总胆固醇(CHO)各日粮组之间差异不显著(P>0.05);月桂酸(C12:0)、棕榈酸(C16:0)含量在55:45日粮组达到最大,显著高于30:70日粮组(P<0.05),豆蔻油酸(C14:1)、亚油酸(C18:2)含量55:45日粮组最小,显著小于30:70、35:65、40:60日粮组(P<0.05),豆蔻酸(C14:0)、油酸(C18:1)含量各组间差异不显著(P>0.05),硬脂酸(C18:0)含量55:45日粮组显著高于30:70、60:40、70:30、100:0日粮组(P<0.05),其余各日粮组差异不显著(P>0.05);血清饱和脂肪酸含量先下降后上升,不饱和脂肪酸含量先上升后下降。
     3随精料水平的提高,血清Na+浓度呈逐渐上升趋势,且各日粮组之间差异不显著(P>0.05);血清K+,Cl-,TCO2浓度呈先下降后上升趋势,各日粮组之间K+浓度差异不显著(P>0.05),100:0日粮组血清Cl-浓度显著高于40:60、45:55、50:50日粮组(P<0.05),其余各日粮组之间Cl-浓度差异不显著(P>0.05),55:45日粮组血清TCO2浓度显著低于30:70、35:65、40:60、45:50、50:50日粮组(P<0.05) ;血清HCO3-浓度先逐渐上升,在55:45日粮组后虽略有下降,但其后各日粮组之间差异不显著(P>0.05)。
     4随精料水平的提高,瘤胃中产乳酸菌的含量呈逐渐上升趋势,且100:0日粮组显著高于其他日粮组(P<0.05)。分离的6株产乳酸菌,以细菌总DNA为模板,采用细菌16SrDNA的通用引物,经PCR扩增到一条约为1.5Kb左右的16Sr DNA片段,连接到PMD-18-T克隆载体上,并用化学法转化E.coli DH5α。用HindШ和EcoRⅠ对转化子进行酶切鉴定,DNA测序表明PCR扩增到的16Sr DNA片段长为1 540~1 615核苷酸。与Genbank上已提交的16SrDNA进行比较(BLAST)表明菌株8502,9101,1501,4101,5101,6601归属于链球菌属、盐单胞菌属、肠球菌属、不动杆菌属、肠杆菌属。由MEGA4.0软件构建的系统发育树表明菌株8502,9101,1501,4101,5101,6601分别同牛链球菌JB1(Streptococcus bovis strain JB1)、牛链球菌B315(Streptococcus bovis strain B315 )、盐单胞菌F22157(Halomonas sp. F22157)、粪肠球菌SL5(Enterococcus faecalis strain SL5)、不动杆菌TCCC11051(Acinetobacter sp. TCCC11051)、肠杆菌J11(Enterobacter sp. J11)的亲缘性最近。
     5综上述结果可知:不同精粗比日粮对奶牛瘤胃pH、VFA和血清丙酸产生了显著影响;高精料日粮可导致血脂水平的升高和血清饱和脂肪酸含量上升,不饱和脂肪酸含量下降;随日粮精料比例的提高,瘤胃产乳酸菌的数量逐渐升高,奶牛在饲喂过程中逐渐对精料产生了耐受性,获得了相对稳定的瘤胃生态系统。日粮精粗比为55:45时奶牛的生产性能最佳,高精料日粮水平是导致奶牛营养代谢病(瘤胃酸中毒、酮病、脂肪肝综合症等)发生的重要原因,因此合理的日粮精粗比是奶牛饲养的关键。
Different forage to concentrate ration has a significant impact on production and health of cow,high-forage diet can result in nutrition metabolism disease and reduce production frequently.Five healthy cows(502±25㎏) during the dry period were used to study the effects of forage to concentrate ration on rumen anaerobic bacterial and volatile fatty acids,some blood indexes. Cows were fed continuously in nine periods and experiment with 30 d each periods except last period that only keeping 3 d.The main ingredients were corn,wheat bran,soybean meal,pachyrhizus vine,corn silage and so on.Dietary forage to concentrate ration were 30:70, 35:65, 40:60, 45:55, 50:50, 55:45,60:40, 70:30, 100:0 concentration respectively.The indexes of rumen pH、VFA(acetate,butyrate and butyric acid ) and the concentration of serum VFA,lipide(TG,CHO,HDL,LDL),Na+,K+,Cl-,HCO3- and free fatty acids were tested. We separated 6 strains anaerobic bacterial from rumen fluide ,analysed 16SrDNA sequence and phylogenic tree construction. The result indicate that:
     1 Rumen pH was down gradually with the increase of forage to concentrate ration and tended to be the lowest in 100:0 concentration(P<0.05). Serum acetate were different lower (P<0.05) in 50:50 compared with 30:70, 35:65 and 100:0 concentration. Serum propionate and butyrate were no significant different(P>0.05). No relationships were observed between rumen acetate, butyrate and acetate, butyrate in serum(P>0.05), while the relationships between rumen propionate and serum propionate reached extremely significant(P<0.01).
     2 The serum content of TG was up gradually with the increase of Forage to concentrate ration and tended to be the highest in 100:0(P<0.05) compared with 30:70 concentration.HDL and CHO were significantly higher(P<0.05) in 55:45 compared with 30:70 concentration,others were no significantly different(P>0.05).No significant different(P>0.05) were observed in CHO concentration.The serum content of Lauric acid and Palmitic acid in 55:45 concentration were significantly higher(P<0.05) than that in 30:70. Linoleic acid and nutmeg acid in 55:45 concentration were significantly lower(P<0.05) than that in 30:70,35:65,40:60.Oleic acid and Myristic acid concentration were no significantly different(P>0.05).The serum content of Stearic acid in 55:45 concentration were significantly higher(P<0.05) than that in 30:70,60:40,70:30,100:0.The serum content of saturated fatty acid increased first and then gradually decreased but the content of unsaturated fatty acid was opposite with the increase of Forage to concentrate ration.
     3 The serum content of Na+ was up gradually with the increase of dietary forage to concentrate ration and no significantly different in every group(P>0.05). The serum content of K+, Cl-, TCO2 decreased first and then gradually increased, there is no siginficant difference in serum concent of K+ among every group. The serum content of Cl- in 100:0 were significantly higher than that in 40:60,45:55,50:50(P<0.05), serum TCO2 in 55:45 concentration were significantly lower than that in 30:70,35:65,40:60,45:50,50:50(P<0.05). The serum content of HCO3- increased first and then gradually decreased after 55:45, but there is no siginficant difference in serum concent of HCO3- after 55:45 group(P>0.05).
     4 The content of rumen bacterial which produce lactic acid was up gradually with the increase of dietary forage to concentrate ration and tended to be the highest in 100:0(P<0.05) compared with other groups. A 1.5Kb of 16SrDNA fragment amplified through general PCR with the template of bacterium total DNA, and bacteria 16SrDNA universal primers, was ligated into PMD-18-T vector which is classic cloning vector for PCR products, and then was taken to transform chemically competent cell of E.coli DH5α.Restriction enzyme analysis of the transformants, mediated by HindⅢand EcoRⅠ.The BLAST of the 1540~1615 by of 16SrDNA sequence obtained by DNA sequencing, with all 16SrDNA sequences in GenBank indicated that the bacterium 8502,9101,1501,4101,5101,6101 belong to Streptococcus ,Halomonas, Enterococcus、Acinetobacter、Enterobacter. The phylogenic tree of the field bacterium 8502,9101,1501,4101,5101,6101 which were generated by MEGA4.0 software,basing on 16SrDNA full-length sequence,showed that it is most close to Streptococcus bovis strain JB1、Streptococcus bovis strain B315、Halomonas sp. F22157、Enterococcus faecalis strain SL5、Acinetobacter sp. TCCC11051、Enterobacter sp. J11 respectively.
     5 Based on the result,the conclusion is differents diet forage to concentrate ration have notable effects on rumen pH, VFA and propionate in serum, high forage to concentrate ration increase the concentration of serum lipid and saturated fatty acid,decrease the concentration of un saturated fatty acids, the content of rumen bacterial which produce lactic acid was up gradually with the increase of forage to concentrate ration, the cow obtained relatively tolerance and established stable rumen ecosystem with the increase of forage to concentrate ration.The best production was obtained in 55:45 concentration of the dairy cow,high forage to conentrate ration can result in nutrion and metabolize disease of the cow,such as rumen acidosis,ketosis in dairy cows ,fatty liver syndrome and so on.So the appropriate forage to concentrate ration is very important in the process of cattle breeding.
引文
[1]冯仰廉主编.反刍动物营养学[M].北京:科学出版社,2004.
    [2]李德发主编.动物营养研究进展[M].北京:中国农业科技出版,2004. 124-133.
    [3]易学武,张石蕊.奶牛日粮精粗比应用研究进展[J].中国草食动物,2006,26(3):51-55.
    [4]张素华,李岩.瘤胃生理与奶牛过饲精料引发疾病的研究[J].动物科学与动物医学,2002,19(9):19-21.
    [5]唐兆新.奶牛弥漫性无菌性蹄皮炎病因学研究进展[J].国外兽医学-畜禽疾病,1995,16(4):13-15.
    [6]王加启,李树聪.不同日粮类型对奶牛营养代谢影响的研究[A].动物养研究进展[C].北京:中国农业科技出版,2004,124-133.
    [7]易学武,张石蕊.日粮精粗比对奶牛内环境的影响[J].中国饲料,2006,4:28-30.
    [8]郭冬生,彭小兰.反刍动物挥发性脂肪酸消化代谢规律刍议[J] .动物营养,2005,(1):1-3.
    [9]姜淑贞,杨在宾,等.瘤胃脂肪酸代谢研究进展[J].黄牛杂志,2001(4):40-42.
    [10]李伟忠单安山.挥发性脂肪酸在动物体内的作用[J].中国饲料,2003,12:23-31.
    [11]尹艳生物体液如何维持酸碱平衡[J].宿州教育学院学报,2002,5(2):153-159.
    [12]陈晓光.论人体体液酸碱平衡的调节机制[J].四川职业技术学院学报,2005,15(4):96-97.
    [13]钱文熙,崔慰贤.瘤胃发酵过程及其调控[J].宁夏农学院学报,2004,25(1):61-64.
    [14]王立志,姜宁,张爱忠.不同粗精比的日粮对反刍动物消化代谢功能的影响[J].畜牧与饲料科学,2006,2:36-37.
    [15]姜万,张巧娥,杨库.反刍动物的瘤胃消化生理及调控[J].畜牧生产,2005,9:26-27
    [16]王吉峰,王加启,李树聪,等.不同日粮对奶牛瘤胃发酵模式及泌乳性能的影响[J]畜牧兽医学报,2005,36(6):569-573.
    [17]张洪玉.血气分析及酸碱平衡失调(上)[J].中国医刊,2000,35(7):35-40.
    [18]刘永学.动物营养中的酸碱平衡与蛋白代谢相互关系探讨[J].动物营养,2004,6:38-40.
    [19]郭荣富,等.动物营养代谢中的酸碱平衡[J].中国饲料,2000(23):18-20.
    [20]周顺伍.动物生物化学[M].北京:中国农业出版社,1999,272-307.
    [21]赵水平血脂代谢基础及临床相关问题[J].临床荟萃,2006,21(14):989-993
    [22]唐传核,徐建祥,彭志英.脂肪酸营养与功能的最新研究[J].中国油脂,2000,25(6):20-23.
    [23]颜庆华.高脂血症与并存疾病的相关性[J].社区医学杂志,2007,5(9):1-3.
    [24]中谷矩章.高脂血症的相关研究[J].日本医学介绍,2007,28(12):554-556.
    [25]周顺伍.动物生物化学[M].北京:中国农业出版社,1999,117-144.
    [26]张伟敏,钟耕,王炜.单不饱和脂肪酸营养及其生理功能研究概况[J].粮食与油脂,2005,3:13-15.
    [27]范亚苇,邓泽元,刘蓉,等.共轭亚油酸对动脉粥样硬化老龄大鼠血脂和血浆脂肪酸的影响[J].营养学报,2006,28(6):472-475.
    [28]张文杰,宋光耀,王敬,等.高脂饮食对老年大鼠氧化应激及脂质代谢的影响[J]中国老年学杂志,2007,27(16):1567-1568.
    [29]刘丹丹,迟文峰,张永根.影响瘤胃微生物种群建立及数量的因素[J]饲料博览,2007,9:19-21.
    [30]薛丰,王洪荣,刘大程,等.瘤胃微生物区系的研究进展[J].畜牧与饲料科学,畜牧与饲料科学,2007,2:31-33.
    [31]傅君芬.16S~23SrDNA区间序列——种分类及鉴别细菌的新方法[M].《国外医学》流行病学传染病学分册,1998,25(6):245-249.
    [32]黄庆生,王加启.16SrRNA/rDNA序列分析技术在瘤胃细菌微生态系统研究中的应用[J].中国畜牧兽医,2003,30(1):7-11.
    [33]王远亮,杨瑞红,毛爱军,等.采用为培养技术对荷斯坦奶牛瘤胃细菌多样性进行初步分析[J].微生物学报,2005,45(6):915-919.
    [34]曾静,窦岳坦,王磊,等.新疆地区盐湖的中度嗜盐菌16SrDNA全序列及DNA同源性分析[J].微生物学报,2002,42(2):133-137.
    [35]焦振泉,刘秀梅.16SrRNA序列同源性分析与细菌系统分类鉴定[J].国外医学卫生学分册,1998,25(1):12-16.
    [36]底秀娟,马桂芳,刘彩莲.一种伤寒沙门氏菌分型的新方法[J].中国公共卫生,2001,17:632-633.
    [37]郭兴华益生菌基础及应用[M]北京科学技术出版社北京2000:256-276
    [38]付晓艳,霍贵成.利用16S rDNA部分序列聚类分析鉴定乳球菌[J].中国乳品工业2005,33(8):7-9.
    [39]张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法[J].微生物学通报,2003,3:97-99.
    [40]王中华.反刍动物挥发性脂肪酸中间代谢[J].草食家畜,1995,2(87):23-34.
    [41]熊本海,卢德勋,张子仪.瘤胃乙酸与丙酸摩尔比例的改变对瘤胃发酵及血液指标的影响[J].畜牧兽医学报,2002,33(6),537-543.
    [43]何振华,何德肆,解竹军.不同气温对奶牛血液中部分生化指标影响的研究[J].湖南畜牧兽医,2005,4:11-13.
    [44]闫明,吕瑞娟,贾晓青,孟繁立等.高脂血症性脂肪肝大鼠血清游离脂肪酸的变化及意义[J].山东医药,2001,41(15):6-7.
    [45]赵玉华,杨瑞红,王加启.瘤胃微生物甲烷生成的机理与调控[J]微生物学杂志,2005,25(5):68-73.
    [46]Andersen pH. Investigation of the possible role of endotoxin,TXA2,PGE2 in experimentally induced rumen acidosis in cattle[J]Acta Veterinaria Scandinavica, 1990, 31(1): 27-38.
    [47] A. Smith, C. Taylor. Analysis of blood gases and acid–basebalance.[J] Surgery (Oxford), 2008, 26(3): 86-90.
    [48]Bannink A, Dijkstra J, Kebreab E, et al. Advantage of a dynamical approach to rumen funtion to help resolve envirmental issues [C] //Kebbreab E, Dijkstra J, France J , et al. Modelling Nutrient Utilization in Farm Animals. Wallingford, United kingdorm: CAB International, 2006:281-298.
    [49] Bannink A, France J, Lopez S, et al. Modelling the implication of feeding strategy on rumen fermentation and functioning of the rumen wall [EB/OL].[2007-05-02] http://www.ScienceDirect.com.
    [50]Bargo F, Muller L D, Delahoy J E,et al. Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances[J]. Dairy Sci, 2002, 85: 1777-1792.
    [51] Brigitte I. Frohnert, David A. Bernlohr. Regulation of fatty acid transporters in mammalian cells.[J]Progress in Lipid Research, 2000, 39, 83-107.
    [52] Broda DM, Musgrave DR, Bell RG. Molecular differentiation of clostridia associated with“blown pack”spoilage of vacuum-packed meats using internal transcribed spacer polymorphism analysis[J].Food Microbiol, 2003, 84: 71-77.
    [53]Brossard L, Martin C, Michalef-Doreau B. Ruminal fermentative parameters and blood acids-basic balance changs during the onset and recovery of induced latent acidosis in sheep [J] .Anim.Res,2003,52: 513-530.
    [54] Busse HJ, Denner EB,Lubitz W. Classification and identification of bacteria: current approaches to an old problem overview of methods used in bacterial systematics[J].Biotechnol, 1996, 47: 32-38.
    [55] Chen C C, Teng L J, Chang T C. Identification of clinically relevant viridans group streptococci by sequence analysis of the 16S~23SrDNA spacer region[J].Clin Microbiol, 2004, 42: 2651-2657.
    [56] C.Silveira1, M.Oba, W.Z.Yang,et al. Selection of Barley Grain Affects Milk Fat Concentration[J] Anim Sci,2000,80: 691-701.
    [57]David Kritchevsky. Fatty acids,triglyceride structure,and lipid metabolism[J].Nutritional Biochemistry, 1995, 6: 172-178.
    [58]Dirksen G U, Liebich H G, Mayer E. Adaptive changes of the ruminal muccosa and their functional and clinical significance[J].Bovine practitioner ,1985, 20:116-120.
    [59]Fonty G, Grenet E.Effects of diet on the fungi population of the digestive tract of ruminants.in: Mountfort D 0 and Orpin C G,ed.Anaerobic Fungi Biology, Ecology,and Function[M].NewYork: Marcel Dekker, Inc 1995, 229-239.
    [60] F. J. Bas, M. D.Stern, G. C.Fahey. Effects of various combinations of urea, soya-bean meal and maize in alkaline hydrogen peroxide-treated wheat straw-based diets on ruminal bacterial fermentation[J] Animal Feed Science and Technology, 1990, 29(2):101-112.
    [61] F. L. Mould, E. R. ?rskov. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate[J]. Animal Feed Science and Technology, 1983, 10(1):1-14.
    [62] F.Masoero1, M. Moschini1, G.Fusconi,et al.Raw,extruded and expanded pea(Pisum sativum)in dairy cows diets[J]. ITAL.J.ANIM.SCI, 2006, 5: 237-247.
    [63]Frederick M.Ausubel, Roger Brent, Robert E, et al. Short protocals in molecular biology 3rd[M].New York: Cold Spring Harbor Laboratory Press, 1995,32-38.
    [64] G Llamas-Lamas, DK Combs. Effect of forage to concentrate ratio and intake level on utilization of early vegetative alfalfa silage by dairy Cows[J] Am Dairy Sci Assoc ,1991,74(2),526-536.
    [65] G. R. Khorasani, J. J. Kennelly. Influence of CarbohydrateSource and Buffer on Rumen Fermentation Characteristics, Milk Yield, and Milk Composition in Late-Lactation Holstein Cows[J]. Journal of Dairy Science, l(84): 707-1716.
    [66] Hassan AA, Khan IU, Abdulmawjood A, et al. Inter-and intraspecies variations of the 16S~23S rDNA intergenic spacer region of various strep tococcal species[J]. Syst App l Microbiol, 2003, 26: 97-103.
    [67]Horton JD,Bashmakov Y,Shimomura I,et al. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice[J].Proc.Natl.Acad.Sci.USA , 1998, 95(11): 5987-5992.
    [68] Inge Vliegen, Jan A.Jacobs, Erik Beuken, et al. Rapid identification of bacteria by real-time amplification and sequence of the 16SrRNA gene[J]. Journal of Microbiological Methods, 2006, 66: 156-164.
    [69]James G.Wallis, Jennifer L.Watts and John Browse. Polyunsaturated fatty acid synthesis: what will they think of next?[J] TRENDS in Biochemical Sciences, 2002, 27(9): 467~474.
    [70]J.C. Plaizier, D.O. Krause, G.N. Gozho,et al.Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences.[J] The Veterinary Journal, 2008, 176: 21-31.
    [71] J-S. Eun, K. A. Beauchemin, S-H. Hong, et al. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability[J] Animal Feed Science and Technology, 2006, 131(2), 87-102.
    [72] Jumana Saleh,Allan D.Sniderman,Katherine Cianflone. Regulation of plasma fatty acid metabolism[J].Clinica Chimica Acta, 1999, 286: 163-180.
    [73]Keys.A. Diet and the epidemiology of coronary heart disease.[J].Am Med Assoc, 1957, 164: 1912-1919.
    [74] Krause D.O, Russell J.B. How many rumen bacteria are there?[J].Dairy Sci, 1996,79: 1467-1475.
    [75] K. Marie Krause, Garrett R. Oetzel. Understanding and preventing subacute ruminal acidosis in dairy herds: A review[J]. Animal Feed Science and Technology, 2006, 126: 215-236.
    [76]Keith N.Frayn Non-esterified fatty acid metabolism and postprandial lipaemia [J].Atherosclerosis 141 Suppl, 1998, 1: 41-46.
    [77] K. Walsh, P. O’Kiely, A. P. Moloney, et al. Boland Intake, digestibility, rumen fermentation and performance of beef cattle fed diets based on whole-crop wheat or barley harvested at two cutting heights relative to maize silage or ad libitum concentrates[EB/OL], [2007-12-11]. http://www.Sciencedirect.com.
    [78]Lee RG. Nonalcoholic steatohepatitis;a study of 49 patient[J].Human Pathol, 1989, 20(6): 594-598.
    [79] Loor, J.J., K. Ueda, A. Ferlay, et al..Biohydrogenation, duodenal flow,and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage:concentrate ratio and linseed oil in dairy cows.[J] Dairy Sci, 2004, 87: 2472-2485.
    [80]Luke O.Grady, Michael L.Doherty, Finbar J.Mulligan. Subacute ruminal acidosis (SARA) in grazing Irish dairy cows[J].The Veterinary Journal, 2008,176: 44-49.
    [81]Mackie R I, Frances M, Gilchrist C. Changes in lactate-producing and lactate-utilizing bacteria in relation to PH in the rumen of sheep during stepwise adaption to a high-concentrate diet[J].App Environ Microb in 1979,38(3):422-430.
    [82] Marc F. Whitford, Robert J. Forster, Cheryl E. Beard, et al. Phylogenetic analysis of rumen bacteria by comaprative sequence analysis of cloned 16SrRNA genes[J].Anaerobe, 1998, 4: 153-163.
    [83] Marie K K, Oetzel G R. Understanding and preventing subacteruminal acidosis in dairy herds:A review [J].Animal Feed Science and Technology,2006,126:215-236.
    [84]Markantonatos X, Green M H, Varga G A, et al. Use of compartmental analysis to study ruminal fatty acid metabolism under steady state conditions in Holstein heifers [EB/OL]. [ 2007-05-02]http://www.ScienceDirect.com.
    [85] M. Aasif Shahzad, M. Sarwar , Mahr-un-Nisa. Influence of varying dietary cation anion difference on serum minerals, mineral balance and hypocalcemia in Nili Ravi buffaloes[J]. Livestock Science, 2008, 113(1): 52-61.
    [86]M.Tafaj, Q.Zebeli, Ch.Baes, H.Steingass, et al. A meta-analysis examining effects of particle size of total mixed rations on intake, rumen digestion and milk production in high-yielding dairy cows in early lactation[J].Animal Feed Science and Technology, 2007, (138): 137-161.
    [87]Michel Wattitaux.营养与饲喂[M].北京:中国农业科技出版社,2004,124-133.
    [88] N. Denek, A. Can, S. Tufenk,et al. The effect of heat load on nutrient utilization and blood parameters of Awassi ram lambs fed different types and levels of forages[J]. Small Ruminant Research, 2006, 63: 156-161.
    [89] Olsen G J,Woese C R. Ribosomal RNA: a key to phylogeny[J].FASEB,1993, 7: 113-123.
    [90]Paul A.Watkins. Fatty Acid Activation.[J] Progress in Lipid Research , 1997, 36(1): 55-83.
    [91] Q. Zebeli, M. Tafaj, I. Weber, et al. Effects of dietary forage particle size and concentrate level on fermentation profile,in vitro degradation characteristics and concentration of liquid or solid associated bacterial mass in the rumen of dairy cows[J].Animal Feed Science and Technology, 2008,14: 307-325.
    [92]R.E.Pitt, T.L.Cross, A.N.Pell, P.Schofield, et al. Use of in vitro gas production models in ruminal kinetics[J].Mathematical Biosciences, 1999,159: 145-163.
    [93] Ricardo Ayerza,Wayne Coates. Ground chia seed and chia oil effect on plasma lipids and fatty acids in the rat[J].Nutrition Research, 2005, 25: 995-1003.
    [94] Schrade W,Biegler R,Bohle E. Fatty acid distribution in the lipid traction of healthy persons of different age, patients with atheroscherosis and patients with idiopathic hyperlipidaemia[J]. Atherosclerosis Res, 1961, 1: 47-61.
    [95] Secrist D S, Owens F N , Hill W J, et al. Rolled versus whole corn: effect on ruminal fermentation of feedlot steers [M]//Animal Science Research Report Oklahoma state. Nutrtion/Management Feedlot Cattle ,1996:181-188.
    [96] Seymour W M, Campbell D R, Johnson Z B. Relationships between rumen volatile fatty acid concentrations and milk production in dairy cows: a literature study [J].Animal Feed Science and Technology ,2005,119:155-169.
    [97]S.Mignard, J.P.Flandrois. 16SrRNA sequence in routine bacterial identification: A 30-month experiment[J]. Journal of Microbiological Methods, 2006, 67: 574-581
    [98]Stephen C. Cunnane. Problems with essential fatty acids:time for a new paradigm?[J] Progress in Lipid Research , 2003, 42: 544-568.
    [99] Sutton J D, Dhanoa M S, Morant S V,et al. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets [J].Dairy Sci,2003,86:3620-3633.
    [100]Tajima k, Nagamine T. Rumen bacterial diversity as determined by sequenced by sequence analysis of 16SrDNAlibraries[J]. FEMS Microbiology Ecology, 1999, 29 : 159-169.
    [101]Tajima K., Aminov R.I., Nagamine T, et al. Rumen bacterial diversity asdetermined by sequence analysis of 16S rDNA libraries[M].FEMS Microbiol Ecol,1999, 29: 159-169.
    [102]Teyssier C,Marchandin H, Simeon-De-Buochberg M, et al. A typical 16S rRNA gene copies in ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies[J].Bacteriol, 2003, 185: 2901-2909.
    [103]Traub, W.H, Geipel, U. & Leonhard, Antibiotic susceptibility testing (agar disk diffusion and agar dilution) of clinical isolates of Enterococcus faecalis and E.faecium: comparison of mueller-hinton, iso-sensitest,and wilkins-chalgren agar media[J]. Chemotherapy, 1998, 44: 217-229.
    [104] Van Houtert M F J.The production and metabolism of volatile fatty acids by ruminant s fed roughages : A review [J]. Animal Feed Sci Technol , 1993 , 43 :189-225.
    [105] Wildman C D , West J W, et al . Effects of dietary cation~anion difference and potassium to sodium ratio on lactating dairy cows in hot weather[J] Dairy Sci, 2007, 90: 970-977
    [106] Woese C R, Fox G E, Zablen L,et al.Conservation of primarystructure in 16S ribosomal RNA[J].Nature,1975,254: 83~86.
    [107]William Chalupa, David T.Galligan, James D.Ferguson. Animal nutrition and management in the 21st century: dairy cattle[J].Animal Feed Science Techology, 1996, 58: 1-18
    [108] Wu, W.X., et al., Calcium homeostasis, acid–base balance, and health status in periparturient Holstein cows fed diets with low cation-anion difference, Livest. Sci. (2007),doi:10.1016/j. livsci.2007.11.005
    [109]Yang, W.Z.,K.A.Beauchemin,et al.Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pHand digestion by dairy cows.[J] Dairy Sci, 2001, 84: 2203-2216.
    [110] Y.J.Feng, H.M.Zhang. Genetic identification and analysis of muti-resistance of antibiotic conferred by a plasmid isolated from field baterial[J].Journal of Shanxi University of science and Technology, 2003, 5: 168-176.
    [111] Yuheu Ozutsumi, Kiyoshi Tajima, Akio Takenaka, et al. The effect of protoza on the composition of rumen bacteria in cattle using 16SrRNA gene clone libraries[J].Biosci.Biotechnol.Biochem, 2005, 69(3): 499-506.
    [112]Zebeli. Q, Tafet. J, Weber. I, et al., Effects of dietary forage particle size and concentrate level on fermentation profile, in vitro degradation characteristics and concentration liquid or solid-associated bacterial mass in the rumen of dairy cows[J].Animal Feed andTechology, 2008,140: 307-325.
    [113] Nutritional Requirements of Dairy Cattle[M].18 National Research Council 6th rev.ed. Natl. Acad. Sci.,Washington, DC. 1989,58-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700