难处理石煤提钒工艺及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国石煤资源丰富,石煤提钒具有极大的经济价值。传统的石煤提钒工艺能耗高,温室气体排放量大,环境污染严重。全湿法浸出提钒流程可有效避免温室气体大量排放,减少污染,但目前工艺存在诸如浸出速度低与钒回收率不高等缺陷;另一方面,现有石煤资源的处理难度越来越大。因此,开发高效、低排放石煤提钒技术,特别是开发难处理矿的提钒技术,对环境保护与矿产资源的综合利用意义重大。论文以难处理石煤作为研究对象,主要研究了湿法处理该种矿物的浸出过程动力学、钒的强化浸出工艺以及高铁浸出液的钒富集技术,并将实验室研究成果进行了中试试验。所获得主要的结论如下:
     (1)石煤硫酸浸出过程动力学研究表明,石煤的浸出初期受表面化学反应控制,反应活化能为103.26kJ/mol;随着浸出过程的进行,浸出渣表面出现硅氧质浸出残核,硫酸需要穿过硅氧质浸出残核与内部的钒组分继续反应,反应的控制步骤逐渐由表面化学反应控制向固膜扩散控制转变。
     (2)采用含氟添加剂与电磁场加热的双效强化措施,可有效提高难处理石煤中钒的浸出;强化浸出的动力学原因是外场与氟化物强化了浸出后期浸出渣表面硅氧质残核中云母相的破坏,使残核中的钒可较容易地转移到溶液中。创造性地设计了一种新型加热浸出装置,该装置加热时可产生交变电磁场,交变电磁场的采用可使钒浸出率提高2%左右。得到了一个合理的难处理石煤矿浸出工艺条件:在外场作用下采用二段逆流工艺浸出,且当每段浸出时间4h、浸出时总耗酸量55%、氟化物添加剂量1.9wt.%、温度95℃以及液固比1:1时,可获得高达83.27%的钒浸出率。但浸出液中含有大量的铁、铝等杂质离子。
     (3)研究了沉淀—转溶法从高铁含钒浸出液中回收钒的工艺,结果表明:①碳酸钠直接中和沉淀富集钒工艺存在过滤困难等缺陷;②先通过还原—沉淀法得到含钒约10%的富集渣,后用碳酸钠与氢氧化钠转溶时,钒的回收率分别约为59%与69%。沉淀—转溶法的钒回收率较低。
     (4)采用P204萃取工艺,可从高铁浸出液中高效回收钒。当萃取相比Vo:VA=1:1,水相电位-100mV左右,pH 2.2,两相接触时间8 min,4级萃取后,99%以上钒进入有机相;采用浓度1.5mol/L稀硫酸作反萃剂,反萃相比Vo:VA=10:1,接触时间15min,5级反萃时,反萃率可达99%以上;反萃液用氯酸钠氧化后,用氨水将溶液的pH调至1.5左右、并在95℃左右搅拌3h可沉淀出合格的多钒酸铵,沉淀效率为96.5%。当采用离子交换工艺回收沉钒母液中钒时,可进一步提高总的钒回收率。
     (5)研究了工艺流程中废水的处理工艺。离子交换尾液与其它含铵废水通过石灰中和—氨吹脱—折点氯化处理后,可达标排放或循环利用;不含铵废水采用简单石灰中和处理后,可达标排放或循环利用。
     (6)根据实验室研究结果,确定了一个包括硫酸强化浸出、溶剂萃取、铵盐沉钒以及离子交换回收沉钒母液中钒等工序在内的石煤提钒工业化中试生产流程,硫酸强化浸出中的强化措施主要包括电磁场加热浸出体系以及添加含氟添加剂。中试结果表明,在酸耗18%与强化浸出剂用量1.5%情况下,可获得高于68%的五氧化二钒总回收率,五氧化二钒产品的各项指标均达到GB3283-87冶金98级标准。与传统工艺相比,该湿法流程具有不排放温室气体与总钒回收率高等优点。
Our country is rich in stone coal resources, and consequently vanadium extraction from stone coal is of great economic value. The traditional vanadium extraction processes are of high energy consumption, great greenhouse gases emissions and serious environment pollution. The hydrometallurgical process of vanadium extraction can effectively avoid greenhouse gas emissions and reduce pollution, but at present, the process has its shortcoming, such as small leaching velocity and low recovery. On the other hand, it is increasingly difficult to extract vanadium from stone coal. Therefore, the development of vanadium extraction process with high efficiency and low emission, especially vanadium extraction process from refractory stone coal, are of great significance to environment protection and comprehensive utilization of mineral resources. In this paper, leaching dynamics, strenthening leaching process of refractory stone coal, separation of vanadium from leaching liquid with high iron concentration were studied; and pilot test was conducted on the base of bench experiment. The main experimental results obtained were as follows.
     Sulfuric acid leaching dynamics research showed that the leaching process was controlled by surface chemical reaction in the early stage, and activation energy was 103.26 kJ/mol. With the leaching process going on, siliceous residues appeared on the surface of stone coal particles. Sulfuric acid need diffuse through siliceous residues to react with internal vanadium compound, and the controling step of the reaction gradually transformed from surface chemical reaction controlled to solid membrane diffusion controlled.
     Electromagnetic field and additive were used to strengthen vanadium leaching. Research results showed that they can effectively strengthen vanadium leaching from refractory stone coal. The reason of electromagnetic field and additive strengthening vanadium leaching was that they can strengthen the destory of micas in siliceous residues, and vanadium in the micas was easier to be transferred to the solution. A new kind of heating device was designed, this device can generate alternating electromagnetic field when heating, the alternating electromagnetic field enabled vanadium leaching efficiency increase by 2% or so. The economic and reasonable leaching condition was:two stages countercurrent leaching process used, leaching time of each stage 4h, total consumption of acid 55%, fluoride addition 1.9%, temperature 95℃, liquid-solid ratio 1:1, vanadium leaching efficiency can reach 83.27%. The leachate contained lots of impurities, such as iron and aluminum.
     Precipitating-dis solving method was used to purify vanadium leaching solution with high iron concentration. Results showed that:①enriching effect of direct precipitation with sodium carbonated was poor, and the filtration was slow.②precipitation containing 10%vanadium can obtained when reducing-precipitating method used. Leaching efficiency were about 59% and 69% respectively when the precipitate dissolved by sodium carbonated and sodium hydroxide. In a word, vanadium recovery was low when precipitating-dissolving method used.
     Solvent extraction with P204 can efficiently seperate vanadium from iron containing leaching solution. When phase ratio Vo:VA=1:1, solution electric potential about -100mV, pH 2.2, phase contact time 8 min,99% of vanadium entered organic phase after 4 stage extraction. When 1.5 mol/L sulphuric acid used as the stripping agent, phase ratio Vo: VA= 10:1, contact time 15min, stripping ratio reached 99% after 5 stages. The stripped solution was oxidized by sodium chlorate, adjusted pH value with ammonia solution to 1.5, and agitated at 95℃for 3h, ammonium polyvanadate can precipitate, and precipitating ratio was 96.5%. Ion exchange process was used to recover vanadium from the mother liquid after vanadium precipitation, which can increase vanadium recovery.
     Treatment technology of wastewater generated in the process was studied. The ion exchange raffinate and other waste water containing ammonium can meet the discharge standard or be recyled after neutralization with lime, ammonia stripping and fold point-chlorodizing. While waste water not containing ammonium can meet the discharge standard or be recyled after neutralization with lime.
     Pilot test was conducted on the base of laboratory experiment. Technics process of the pilot test contained sulfuric acid leaching, solvent extraction, vanadium precipitation with ammonium salt, vanadium recovery with ion exchange process. Vanadium leaching was strengthened with the electromagnetic field and additive. The result showed that when acid consumption 18%, leaching strengthening agent addition 1.5%, total yield of vanadium pentoxide was more than 68%, each index of vanadium pentoxide reached GB3283-87 metallurgy grade 98. Compared with other traditional processes, hydrometallurgical process can reduce environment pollution, especially avoid greenhouse gas emissions.
引文
[1]Weeks M E. Discovery of the elements,6th. Ed, Ezston. Journal of chemical Education,1960.
    [2]邴桔.从石煤中提取五氧化二钒的工艺研究[D].长沙:中南大学冶金科学与工程学院,2008.
    [3]胡建锋.从废钒触媒中提钒新工艺的研究[D].昆明:昆明理工大学材料与冶金工程学院,2006.
    [4]朱保仓.高碳石煤提钒新工艺研究[D].西安:西安建筑科技大学冶金学院,2007.
    [5]何东升.石煤型钒矿焙烧-浸出过程的理论研究[D].长沙:中南大学资源加工与生物工程学院,2009.
    [6]《有色金属提取冶金手册》编辑委员会.有色金属冶金提取手册[M].北京:冶金工业出版社,1999.
    [7]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985.
    [8]朱训.中国矿情第二卷金属矿产[M].北京:科学出版社,1999.166~172.
    [9]赵红杰,任学佑.美国的钒工业[J].稀有金属,1994,18(3):220~224.
    [10]Amer A M. Processing of Egyptian boiler-ash for extraction of vanadium and nickel[J]. Waste Management,2002,22 (5):515~520.
    [11]杨绍利,刘国钦,陈厚生.钒钛材料[M].北京:冶金工业出版社,2007.
    [12]Zeng Li, Cheng Chuyong. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts:Part Ⅱ:Separation and purification[J]. Hydrometallurgy,2009,98(1~2):10~20.
    [13]Zeng Li, Cheng Chuyong. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts:Part I:Metallurgical processes[J]. Hydrometallurgy 2009,98(1~2):1~9.
    [14]Zeng Li, Cheng Chuyong. Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction[J].Hydrometallurgy,2010,101(3~4):141~147.
    [15]Shao Yanhai, Feng Qiming, Chen Yun, et al. Studies on recovery of vanadium from desilication residue obtained from processing of a spent catalyst[J].Hydrometallurgy,2009,96, (1~2):166~170.
    [16]Chen Y un, Feng Qiming, Shao Yanhai, et al. Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst[J]. International Journal of Mineral Processing,2006,79(1):42~48.
    [17]傅文章.攀西钒钛磁铁矿资源特征及综合利用问题的基本分析[J].矿产综合利用,1996,1:27~34.
    [18]王铁明,王新平.承德钛资源的开发应用情况[C].见:2007年度冀、皖、川第二届钒钛技术交流会论文集.河北唐山:河北省冶金学会,2007:64~72.
    [19]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,72(4):1~10.
    [20]宾智勇.石煤提钒研究进展与五氧化二钒的市场状况[J].湖南有色金属,2006,22(1):16~17.
    [21]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用,1993,5:30~33.
    [22]煤炭科学院地质勘探分院地质研究所.中国南方石煤资源综合考察报告[R].1982.
    [23]锡淦,雷鹰,胡克俊,等.国外钒的应用概况[J].世界有色金属,2000,2:13~21.
    [24]史倩.硅酸盐型钒矿提钒工艺实验研究[D].西安:西安建筑科技大学冶金学院,2009.
    [25]杜厚益.俄罗斯钒工业及其发展前景(续)[J].钢铁钒钛,2001,22(4):61~68.
    [26]于兴哲,宋月清,崔舜,等.钒基合金的研究现状和进展[J].材料开发与应用,2006,12:36~40.
    [27]Fujiwara M, Takanashi K, Satou M, et al. Influence of Cr, Ti concentrations on oxidation and corrosion resistance of V-Cr-Ti type alloys[J] Journal of Nuclear Materials,2004,329~333:452~456.
    [28]Reichman S H, Kosin J E, Meyerink J F. Titanium-aluminum-vanadium alloy and products made using such alloys[P]. United States, US6053993, 2000-04-25.
    [29]Lipamikov V N, Ettmayer P. Effect of vacancy ordering on structure and some properties of vanadium carbide.14th international plansee seminar,97,12~16.
    [30]任学佑.金属钒的应用现状及市场前景[J].世界有色金属,2004,(2):34~36.
    [31]Fetisov A A,II IN VI,Kirichkov A A, Kuzovkov A J A. Method of smelting low-carbon vanadium-containing steel of increased strenth and cold resistance [P]. United States, US2186125,2002-07-27.
    [32]Navarro R, Guzman J, Saucedo I, et al. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction process [J]. Waste management, 2007,27(3):425~438.
    [33]谭若斌.钒合金的开发应用[J].钒钛,1995,16(1):1~6.
    [34]Thorn D L,Herron N. Vanadium catalysts and their precursors[P]. United States, US 5932746,1999-08-03.
    [35]刘素琴,郭小义,黄可龙,等.钒电池电极材料聚丙烯腈石墨毡的研究[J].电池,2005,35(3):183~184.
    [36]李宇展,任慢慢,吴青端,等.锂离子蓄电池钒系正极材料研究进展[J].电源技术,2005,29(2):124~127
    [37]褚德成,姚立为.全钒氧化还原贮能电池的制备方法研究[J].应用能源技术,2000,2:13~14.
    [38]李华,常守文,严川伟.全钒氧化还原液流电池中电极材料的研究评述[J].电化学,2002,8(3):257~261.
    [39]文永植.钒抗糖尿病作用研究的最新动向[J].世界元素医学,2005,12(2):33~35.
    [40]王传旺,陶春元.钒的有机配合物及其抗糖尿病活性[J].江西化工,2004,2:9~14.
    [41]Krzanowski, J E. Chemical, mechanical and tribological prpperties of pulsed-laser-deposited titanium carbide and vanadium carbide [J]. Journal of Americal ceramic society,1997,80(5):1277~1280.
    [42]蒋优才,钒及其在陶瓷工业中的应用[J].陶瓷研究,1998,13(1):28~31.
    [43]张强,胡善洲,周学东.钒-锆蓝陶瓷色料的制备及其性能[J].陶瓷工程,2000,3:14~16.
    [44]唐安平, 秦毅红.钒酸秘颜料的制备研究[J].稀有金属,2003,27(1):199~201.
    [45]包申旭,张一敏,刘涛,等.全球钒的生产、消费及市场分析[J].中国矿业,2009,18(7):12~15.
    [46]USGS.2007 mineral yearbook, vanadium. U. S. Department of the Interior, U. S. Geological Survery, April 2009.
    [47]Bunting R M. The recession's effect on vanadium.preaentation on metal bulletion Asian ferro-alloys conferrence, Hong Kong, March 27,2009.
    [48]Baja, B V R. Vanadium market in the world-present status, price trends& future prospects. Steelworld, February,2007, Feature,19~22.
    [49]Bunting R M. Vanadium-Recent developments in supply and demand:The International Titanium Association Annual Conference, Orlando, FL, October 9, 2007.
    [50]刘建朋,张一敏,陈铁军,等.石煤提钒水浸过程的动力学研究[J].有色金属(选矿部分),2008,4:15~17.
    [51]吕纪霞,张一敏,刘涛,等.石煤提钒水浸渣酸浸液的除杂试验研究[J].金属矿山.2008,4:149~151.
    [52]欧阳国强,张小云,田学达,等.微波焙烧对石煤提钒的影响[J].中国有色金属学报,2008,18(04):750~754.
    [53]王学文,刘万里,张贵清,等.石煤氯化钠焙烧水浸液纳滤提钒过程[J].过程工程学报,2009,2:289~292.
    [54]王学文,张贵清,王明玉,等.一种石煤钠化焙烧提钒方法:中华人民共和国,CN101215636[P].2007.08.09.
    [55]王学文,王明玉,肖连生.一种高温烟气净化方法:中华人民共和国,CN101234288[P].2008.08.06.
    [56]王明玉,王学文,李青刚,等.一种含钒石煤氯盐焙烧方法:中华人民共和国,CN101240373[P].2008.08.13.
    [57]王学文,张贵清,王明玉.一种含钒石煤钠化焙烧烟气净化方法:中华人民共和国,200710034618.X[P].2007.11.14.
    [58]Xu Guozhen,Ge Nai'e, Chen Jianping, et al. Valency study of vanadium in stone coal of south China[J]. Rare Metal,1990,9 (2):110~116.
    [59]Xu Guozhen,Ge Nai'e, Li Jigui. Valency study of vanadium in stone coal ash of Jiangxi province[J]. Journal of Chian University of Geoscience,1990,6: 122~130.
    [60]许国镇,李吉贵.浙江塘坞石煤中钒的价态研究[J].矿冶工程,1986,6(4):50~54.
    [61]许国镇,陈波珍,韩晓梅,等.淅川石煤钒矿提取技术的研究[J].矿产地质,1992,6(5):399~405.
    [62]许国镇,陈波珍,韩晓梅,等.黄山石煤中钒价态及提钒技术研究[J].有色金属(冶炼部分),1994,1:32~36.
    [63]彭声谦,侯兰杰,刘福生,等.四川广旺石煤提钒焙烧过程中钒价态的变化[J].中国矿业,1999,8(1):69~72.
    [64]许国镇.氯化钠在石煤提钒中的作用[J]矿冶工程,1988,8(4):44~47.
    [65]周应余.石煤提取五氧化二钒的食盐配比问题[J]无机盐工业,1979,4:40~41.
    [66]许国镇,夏华,李权.湖北崇阳石煤中钒的价态分配[J].北京钢铁学院学报,1988,10(2):257~262.
    [67]钱定福.湖北广石崖石煤钠化焙烧提钒相变机理的研究[J].矿产综合利用,1982,3:8~15.
    [68]彭声谦,许国镇.石煤提钒中钠盐的作用[J].西南工学院学报,1998,13(2):9~12.
    [69]许国镇,潘茂昌,司徒安力,等.石煤中钒的氧化动力学初步研究[J].现代地质,1988,2(4):507~515.
    [70]林海玲,范必威.方山口石煤提钒焙烧相变机理的研究[J].稀有金属,2001,25(4):273~277.
    [71]李国良,童庆云,王永双.九狮坪钒钼矿的焙烧相变[J].钢铁钒钛,1993,5:12~18.
    [72]许国镇,王锐兵.八都、浙川石煤烧结、包裹与钒转化的研究[J].稀有金属,1994,18(6):422~427.
    [73]许国镇,张秀荣,尹光衡.江西玉山石煤烧结包裹与钒转化的研究[J].现代地质,1993,7(1):109~117.
    [74]何东升,冯其明,张国范,等.石煤钠化焙烧料酸浸动力学[J].北京科技大学学报,2008,30(9):977~980.
    [75]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛,2006,27(1):21~26.
    [76]田永淑,朱靖.石煤灰渣中提取五氧化二钒的新工艺[J].矿产综合利用,2006,3:22~24.
    [77]刘利军,李继壁,宾智勇,卫亚儒.陕西某碳硅质钒矿提钒工艺研究[J].有色金属:选矿部分,2006,3:28~30.
    [78]He Dong-sheng, Feng Qi-ming, Zhang Guo-fan, et al. An environmentally-friendly technology of vanadium extraction from stone coal[J]. Minerals Engineering,2007,20:1184~1186.
    [79]邴桔,龚胜,龚竹青.从石煤中提取五氧化二钒的工艺研究[J].稀有金属,26(3):670~676.
    [80]何东升,冯其明,张国范,等.碱法从石煤中浸出钒试验研究[J].有色金属:选矿部分,2007,4:15~17.
    [81]王雄,陈白珍,肖文丁,等.五氧化二钒的提取和氮化[J].湖南有色金属,2009,25(1):20~22.
    [82]徐永新,杨欢.石煤提钒的最佳焙烧酸浸条件[J].有色金属,2008,60(3):74~76.
    [83]漆明鉴.酸浸法从石煤中提钒的中间试验研究[J].湿法冶金,2000,19(2): 7~17.
    [84]陆芝华,周邦娜.石煤氧化焙烧—稀碱溶液浸出提钒工艺研究[J].稀有金属,1994,18(5):321~327.
    [85]庄树新.硅质盐钒矿中无污染提取五氧化二钒的新工艺研究[D].长沙: 中南大学化学化工学院,2007.
    [86]李许玲,肖连生,肖超.石煤提钒原矿焙烧-加压碱浸工艺研究[J].矿业工程,2009,29(5):70~73.
    [87]谌东开,谌建开,罗振先.一种从含钒矿石焙烧料中提钒的浸出方法以及在石煤空白焙烧-直接浸取提钒工艺中的应用:中华人民共和国,CN1254023[P].2000.05.24.
    [88]谌东开,谌建开.一种从含钒石煤或含钒灰渣中提取五氧化二钒以及综合提取铵明矾和铁红的方法:中华人民共和国,CN101230419[P].2008.07.30.
    [89]Wang Mingyu, Xiang Xiaoyan,Zhang, Liping,et al.Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal[J]. Rare Metals,2008,27(2):112~115.
    [90]陈铁军,邱冠周,朱德庆.石煤循环氧化法提钒焙烧过程氧化机理研究[J].金属矿山,2008,6:62~66.
    [91]何东升,冯其明,张国范,等.含钒石煤的氧化焙烧机理[J].中国有色金属学报,2009,19(1):195~200.
    [92]李元高,曾孟祥,张平民.钒离子指示电极在石煤焙烧料浸出动力学研究中的应用[J].中南大学学报(自然科学版),2009,40(3):620~625.
    [93]张萍,蒋馥华,何其荣.低品位钒矿钙化焙烧提钒的可行性[J].钢铁钒钛,1993,14(2):18~20.
    [94]张中豪, 王彦恒.硅质钒矿氧化钙化焙烧提钒新工艺[J].化学世界,2000,41(6):290~292.
    [95]李静,李朝建,吴雪文,等.提钒焙烧工艺及机理探讨[J].湖南有色金属,2007,23(6):7~11.
    [96]李昌林,周向阳,王辉,等.强化氧化对石煤钙化焙烧提钒的影响[J].中南大学学报(接受待刊)
    [97]邹晓勇,彭清静,欧阳玉祝,等.高硅低钙钒矿的钙化焙烧过程[J].过程工程学报,2001,1(2):189~192.
    [98]韦文虎.一种高效提钒添加剂及其制造方法:中华人民共和国,CN1328164[P],2001.12.26.
    [99]程立、吴涛.用于从钒石煤矿中提钒的复合添加剂及其使用方法:中华人 民共和国,CN101215648[P],2008.07.09.
    [100]洪声,施正伦,王勤辉.用于含钒矿物质钙化焙烧工艺的原料配制方法:中华人民共和国,CN101240376[P],2008.08.13.
    [101]傅立,苏鹏.复合焙烧添加剂从石煤中提取钒的研究[J].广西民族学院学报:自然科学版,2006,12(2):105~107.
    [102]古映莹,庄树新,钟世安,等.硅质岩钒矿中提取钒的无污染焙烧工艺研究[J].稀有金属,2007,31(1):102~106.
    [103]李中军、庞锡涛、刘长让.淅川钒矿以NaCl和MnO2为添加剂的钠化焙烧过程研究[J].稀有金属,1994,18(5):328~333.
    [104]黄银霞.五氧化二钒与氧氯化锆的湿法提取研究[D].郑州:郑州大学化学系,2006.
    [105]邹晓勇,田仁国.含钒石煤复合添加剂焙烧法生产五氧化二钒工艺的研究[J].湖南冶金,2005,33(5):3~6.
    [106]胡杨甲,张一敏,刘涛,等.复合添加剂对石煤提钒焙烧过程影响的研究[J].金属矿山,2009,1:166~168.
    [107]戴文灿,朱柒金,陈庆邦,等.石煤提钒综合利用新工艺的研究[J].有色金属:选矿部分,2000,3:15~17.
    [108]陈铁军,邱冠周,朱德庆.循环氧化法石煤提钒新工艺试验研究[J].煤炭学报,2008,33(4):454~458.
    [109]肖文丁.广西上林石煤的矿物学和湿法提钒研究[J].有色金属,2007,59(3):85~90.
    [110]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践[J].湿法冶金,2002,21(4):175~183.
    [111]李晓健.酸浸—萃取工艺在石煤提钒工业中的设计与应用[J].湖南有色金属,2000,16(3):21~23.
    [112]李浩然,冯雅丽,罗小兵,等.湿法浸出粘土矿中钒的动力学[J].中南大学学报(自然科学版),2008,39(6):1181~1184.
    [113]张小云,田学达.石煤提钒湿法工艺的动力学研究[J].湘潭大学自然科学学报,2005,27(2):104~107.
    [114]Li Min-ting, Wei Chang, Fan Gang, et al. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy,2009,98,(3-4):308~313.
    [115]魏昶,李存兄,李旻廷,等.在压力场下从石煤中浸取钒和浸出渣综合利用[J].矿冶,2009,18(3):33~39.
    [116]李旻廷,魏昶,李存兄,等.低碳石煤加压浸取钒新工艺研究[J].铀矿冶,2008, 27(3):129~133.
    [117]魏昶 邓志敢 李旻廷,等.石煤直接氧压酸浸提钒新工艺[J].有色金属,2009,31(3):94~97.
    [118]魏昶,邓志敢,樊刚,等.贵州铜仁含钒石煤氧压酸浸萃取提钒研究[J].矿冶工程,2009,29(4):54~58.
    [119]司士辉,戚斌斌.微波场对石煤湿法提钒过程的影响[J].常熟理工学院学报,2009,23(2):50~54.
    [120]戴文灿,孙水裕.石煤湿法提钒新工艺研究[J].湖南有色金属,2009,25(3):22~25.
    [121]梁江龙,方正,李浩然,等.酸浸法从黏土钒矿中提钒[J].有色金属,2008,60(1):80~82.
    [122]陈庆根.石煤钒矿提钒工艺技术的研究进展[J].矿产综合利用,2009,2:30~34.
    [123]刘万里,王学文,王明玉,等.石煤提钒低温硫酸化焙烧矿物分解工艺[J].中国有色金属学报,2009,19(5):943~948.
    [124]郑祥明,田学达,张小云,等.湿法提取石煤中钒的新工艺研究[J].湘潭大学自然科学学报,2003,25(1):43~45.
    [125]郑祥明.石煤提钒新工艺研究[D].湘潭:湘潭大学化工学院,2003.
    [126]黎吉星.石煤气相提钒法:中华人民共和国,CN101078064[P],2007,11,28.
    [127]冯孝善,叶立扬,王献凤,等.氧化硫硫杆菌或氧化铁硫杆菌溶浸含钒石煤的研究[J].浙江农业大学学报,1981,7(2):99~112
    [128]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].2006,北京:冶金工业出版社.
    [129]李莉芝.连苯三酚分光光度法测定合金钢中的总钒量[J].吉林师范学院学报,1995,16(8):28~31.
    [130]龚莹.德兴铜矿酸碱废水水质分析方法[J].有色金属,2002,54(2):114~117.
    [131]Mehtap Hursit, Oral Lacin, Hanifi Sarac. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent[J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(1):6~12.
    [132]Miroslav D S, Branislav M, Dragana Z. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid[J]. Hydrometallurgy,2009,95(3~4):273~279.
    [133]Bingol D, Canbazoglu M. Dissolution kinetics of malachite in sulphuric acid[J]. Hydrometallurgy,2004,72(1~2):159~165.
    [134]Abdel-Aal E A. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore[J]. Hydrometallurgy,2000,55(3):247-254.
    [135]Mine Ozdemir, Halil Cetisli. Extraction kinetics of alunite in sulfuric acid and hydrochloric acid[J]. Hydrometallurgy,2005,76(3~4):217~224.
    [136]Ju Shaohua, Tang Motang, Yang Shenghai,et al.Dissolution kinetics of smithsonite ore in ammonium chloride solution[J].Hydrometallurgy,2005, 80(1~2):67~74.
    [137]SOHN H Y, WADSWORTH M E.提取冶金速率过程[M].郑蒂基, 译.北京:冶金工业出版社,1984.
    [138]Amer, A.M.,1994. Hydrometallurgical processing of Egyptian black shale of the Quseir-Safaga region. Hydrometallurgy 36 (1),95~107.
    [139]梁江龙,方正,李浩然,等.酸浸法从黏土钒矿中提钒[J].有色金属,2008,60(1):80~82.
    [140]张小云,田学达.石煤提钒湿法工艺的动力学研究[J].湘潭大学自然科学学报,2005,27(2):104~107.
    [141]Qiu Tingsheng,Fang Xihui,Cui Lifeng,et al. Behavior of leaching and precipitation of weathering crust ion-absorbed type by magnetic field[J]. Journal of Rare Earths,2008,26 (2):274~278.
    [142]Jemai A B,Vorobiev E. Enhanced leaching from sugar beet cossettes by pulsed electric field[J]. Journal of Food Engineering,2003,59(4):405~412.
    [143]Castellote M,Llorente I, Andrade C, et al. Accelerated leaching of ultra high performance concretes by application of electrical fields to simulate their natural degradation[J]. Materials and Structures/Materiaux et Constructions,2003,36 (256):81~90.
    [144]郑平.难浸金矿石电场强化电离-氰化提金试验[J].岩矿测试,2000,19(3):228~231.
    [145]邱廷省,罗仙平,方夕辉,等.风化壳淋积型稀土矿磁场强化浸出工艺[J].矿产综合利用,2002,5:14~16.
    [146]刘立军,柯家骏.白钨矿电场碱分解的研究[J].稀有金属,1991,15(2)81~85.
    [147]Zhou Xiangyang, Li Changlin, Li Jie, et al. Leaching of vanadium from carbonaceous shale, Hydrometallurgy,2009,99 (1~2):97~99.
    [148]李梦龙.化学数据速查手册[M].北京:化学工业出版社,2002.
    [149]冯雅丽、李浩然、罗小兵,等.粘土矿湿法提钒工艺:中华人民共和国, CN101215646A[P].2008.07.09.
    [150]新开公社钒冶炼厂,湖南冶金研究所.新开公社钒冶炼厂水浸渣酸浸制取偏钒酸铵工艺试验[J].湖南冶金,1997,3:33~47.
    [151]陈家铺,于淑秋,伍志春.湿法冶金中铁的分离与应用[M].北京:冶金工业出版社,1991,82~92.
    [152]阳征会.黄钠铁矾渣提取镍铁工艺及软磁高频镍锌铁氧体的制备研究[D].长沙:中南大学,2007.
    [153]Claassen J.O., Meyer E.H.O., Rennie J., et al. Iron precipitation from zinc-rich solutions:defining the Zincor Process[J], Hydrometallurgy,2002,67 (1-3): 87~108.
    [154]陈云.碱性体系中铝钒钼的溶液化学性质及分离技术研究[D].长沙:中南大学,2006.
    [155]邓志敢,魏昶,李旻廷,等.石煤氧压酸浸液萃钒除铁工艺研究[J].稀有金属,2009,33(2):290~294.
    [156]廖元双,鲁顺利,杨大锦,等.从石煤浸出液中萃取钒[J].有色金属:冶炼部分,2009,4:13~16.
    [157]曹耀华,高照国,刘红召,等.萃取法从含钒酸浸液中提取钒的研究[J].河南化工,2007,24(6):20~23.
    [158]杨静翎,金鑫.酸浸法提钒新工艺的研究[J].北京化工大学学报,2007,34(3):254~257.
    [159]胡建锋,朱云.P204萃取硫酸体系中钒的性能研究[J].稀有金属,2007,31(3):367~370.
    [160]Debasish Mohapatra, Kim Hong-In, Chul-Woo Nam, et al. Liquid-liquid extraction of aluminium(III) from mixed sulphate solutions using sodium salts of Cyanex 272 and D2EHPA[J]. Separation and Purification Technology,2007, Volume 56(3):311-318.
    [161]Meyer G, Fekete S O, Wicker G R. Selective extraction of iron and aluminium from acidic solutions, U.S. Patent 4,233,273, November 11,1980.
    [162]杨彦新.用萃取法回收五氧化二钒的研究[J].铀冶金,1993,12(3):174~180.
    [163]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2000.
    [164]唐展,汤惠民.从钛铁渣中回收有价成分钛和铝的研究-(一)回收钛的研究[J].环境工程,1995,13(3):34~38.
    [165]陈建锋,朱云.P204萃取硫酸体系中钒的性能研究[J].稀有金属,2007,31 (3):367~370.
    [166]祝万鹏,叶波清,杨志华,等.溶剂萃取法提取电镀污泥氨浸出渣中的金属资源[J].环境科学,1998,19(3):35~38.
    [167]徐美燕,马燕,孙贤波,等.萃取法回收水厂污泥中铝的技术研究Ⅰ.清液萃取法[J].华东理工大学学报(自然科学版),2007,33(3):369~374.
    [168]王雄.五氧化二钒提取和氮化的工艺研究[D].长沙:中南大学,2009.
    [169]李志伟,宋翔宇,张建乐.河南某钒矿湿法提取五氧化二钒试验研究[J].矿冶工程2009,29(3):33~36.
    [170]武文斐,郄俊英,连伟.吹脱法处理稀土硫氨废水试验研究[J].内蒙古石油化工,2009,(19):18~19.
    [171]黄海明,肖贤明,晏波.氨吹脱处理稀土分离厂中氨氮废水试验研究[J].环境工程学报,2008,2(8):1062~1065.
    [172]宁平,曾凡勇,胡学伟.中高浓度氨氮废水综合处理[J].2OO3,55 (supplement): 130-132.
    [173]Lei Xiaohui, Sugiura Norio, Feng Chuanping,et al. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. Journal of Hazardous Materials,2007,145(3):391~397.
    [174]Cheung K. C. Ammonia stripping as a pretreatment for landfill leachate. W ater, Air and Soil Pollution,1997,94:209~221.
    [175]Liao P H,Chen A,Lo. K V. Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresource Technology,1995,54(l):17~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700