钒渣中尖晶石生长规律及钒渣钙化焙烧机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国际铁矿石价格逐年上涨,2011年4月品位在63%的铁矿石现货价格甚至超过了187美元/吨。相比较而言,国内铁矿石价格低廉,且运输成本低。为了缓解因进口矿价格上涨带来的压力,攀枝花成都钢铁公司(简称“攀成钢”)于2006年开展了高炉配加部分钒钛磁体矿工业试验并取得成功,不仅节约了成本,而且通过铁水提钒,实现了钒资源等有价金属的提取,培育了新的经济增长点。然而,由于高炉中钒钛磁铁矿配比较低,导致钒渣中V_2O_5品位仅为10%左右,对于这种低品位钒渣中的主要含钒物相—尖晶石相的生长规律及钒渣钙化焙烧机理研究,国内外鲜有报道,需要进行细致的研究。
     本文在分析攀成钢钒渣化学成分及物相结构基础上,采用实验与理论相结合的方法探究了钒铁尖晶石析出和长大的最佳热力学和动力学条件,得到了其结晶过程的表观活化能;同时,针对传统的钠化提钒法引起的环境污染问题,通过改变添加剂,即用CaO代替钠盐,达到了既降低环境污染又减少钠盐消耗的双重目的;并进一步系统研究了钒渣钙化焙烧—酸浸提钒工艺过程中各反应参数及主要组分对钒浸出率的影响,得到如下结论:
     ①钒渣中尖晶石最佳生长温度为1523K左右;1523K保温5min,尖晶石平均粒径为9.83μm,随着保温时间的延长,尖晶石尺寸逐渐增大,100min时其平均粒径达到31.6μm,此时尖晶石生长基本完成;尖晶石生长过程可用JMAK方程近似描述,其表观活化能约为575kJ·mol~(-1)。
     ②采用D. Turnbull模型计算得到钒渣中尖晶石最佳生长温度区间为1507-1557K,与实验结果吻合较好;当渣中CaO、SiO_2、TiO_2分别在1.80-3.80%、16.4-20.4%、10.5-14.5%范围内变化时,成分变化对尖晶石最佳生长温度区间影响较小,但对其结晶速率常数影响较大。
     ③钒渣钙化焙烧过程主要包括三个阶段:300-500℃,Fe_2SiO_4等橄榄石相的氧化分解及渣中少量自由FeO的氧化;500-600℃,FeV_2O_4等尖晶石的分解氧化;600-900℃,钒酸钙的形成及辉石分解;焙烧过程中CaO可与V_2O_5反应生成CaV_2O_6、Ca_2V_2O_7、Ca_3V_2O_8等多种形式的钒酸钙。
     ④钒渣钙化焙烧—酸浸过程中,CaO/V_2O_3在1.1左右时,钒浸出率达到69.95%,接近钠化焙烧工艺水平;SiO_2在20%左右时有利于提高钒浸出率;TiO_2不利于钒浸出率的提高。
Recently, a sharp increase in the price of international iron ore can be seen, and even exceeded 187 dollars per ton for the iron ore grade of 63% in April, 2011. In contrast, the price and transportation cost of the domestic iron ore are relatively lower. Thus, some vanadium-titanium magnetite was added into blast furnace in order to alleviate the pressure from the rise of import ore price in Pangang group Chengdu steel co., LTD in 2006. Fortunately, it was successful and resulted in both reducing the production cost and extracting the valuable metals. However, the grade of V_2O_5 in vanadium slag is only about 10% due to the low ratio of vanadium-titanium magnetite in the blast furnace. The growth law of V-containing spinels and roasting mechanism of vanadium slag with low V_2O_5 concentration are seldom reported. Therefore, a systematic research on those is worthwhile to be conducted.
     On the basis of vanadium extraction from hot metal process of Pan-steel (Chengdu), composition and phase structure of the vanadium slag were analyzed. Furthermore, thermodynamic and kinetic conditions which benefit the nucleation and growth of V-containing spinels were explored with both experimental and theoretical methods. The apparent activation energy of crystallization of the V-containing spinels was obtained. Moreover, CaO was treated as a new kind of additive to take the place of sodium salt and it contributed to reduce the environmental pollution as well as the consumption of sodium salt. Effect of reaction parameters and main components on the vanadium leaching ratio in the process of calcification-roasting and acid leaching was discussed. The main conclusions are as follows:
     ①The best temperature which benefits the growth of spinels is around 1523K. The mean diameter of the spinels is 9.83μm when the holding time is 5 minutes, and it increases with the prolongation of holding time. The spinels growes completely and its mean diameter reaches 31.6μm when being held for 100 minutes. The isothermal growth process of spinels can be approximately illustrated by the JMAK equation. The apparent activation energy is obtained as 575kJ·mol~(-1).
     ②The best temperature interval which benefits the nucleation and growth of spinels is 1507-1557K calculated by D. Turnbull model and it shows a good agreement with the experimental data. No significant change in the best temperature interval can be seen when the contents of CaO、SiO_2、TiO_2 is respectively in the range of 1.80-3.80%、16.4-20.4%、10.5-14.5% in vanadium slag. But the effect of the composition on the crystallization rate constant is relatively remarkable.
     ③The calcification-roasting process of vanadium slag can be divided into three different overlapping stages. Specifically, they are the oxidative decomposition of olivine phases and oxidative of seldom free FeO at 300-500℃, oxidative decomposition of spinel phases such as FeV_2O_4 at 500-600℃, and the formation of calcium vanadate with the decomposition of pyroxene at 600-900℃.The various calcium vanadate namely CaV_2O_6, Ca_3V_2O_8, CaV_3O_7 would formed between CaO and V_2O_5.
     ④The vanadium leaching ratio could reaches 69.95% when the CaO/V_2O_3 is controlled at around 1.1 during the process of roasting and acid leaching of vanadium slag. The content of SiO_2 round 20% can be beneficial for improving the leaching ratio of vanadium. High concentration of TiO_2 in vanadium slag shows a negative effect on the leaching ratio of vanadium.
引文
[1]黄道鑫.提钒炼钢[M].北京:冶金工业出版社, 2000.
    [2] P.S.米歇尔.世界钒的生产与使用[R].英国Kent TN16 1AQ国际钒技术委员会报告, 1999, 1-5.
    [3] R.Lagneborg, T.Siwecki, S.Zajac, and B.Hutchinson. The use of vanadium in high strength steels[J]. Scandinavian journal of metallurgy, 1999, 28(5) :186-189.
    [4]周家琮.中国钒工业的发展[R].国际钒技术会议上的报告. 1999, 1-4.
    [5] Titanium-aluminum-vanadium alloys and products made using such alloys[P]. US58671070 1999, 54-75.
    [6] Angelos M.Evangelou. Vanadium in cancer treatment[J]. Critical reviews in oncology/Hematology, 2002, 42 :249-265.
    [7] MHN Golden, BE Golden. Trace elements: potential importance in human nutrition with particular reference to zinc and vanadium[J]. British council, 1981,37(1) :31-36.
    [8]高丽辉.微量元素锌,铬,钒与糖尿病[J].国外医学卫生学分册, 2007, 34(2) :106-110.
    [9]胡克俊等.国外钒的应用现状及对攀钢钒产品开发的建议[J].四川冶金, 2000, 4: 50-55.
    [10]潘树范.国内外氧气顶吹转炉提钒现状及对攀钢转炉提钒的探讨[J].钢铁钒钛, 1995,资料16(1) :6-16.
    [11]樊永忠.承钢转炉提钒、炼钢工艺发展四十五年历程之回顾[J].承钢技术, 2004, 3(1) :5-7.
    [12]段炼,天庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属, 2006, 22(6) :17-20.
    [13]钒渣YB/T008-2006[S],中华人民共和国发展与改革委员会, 2007, 1-5.
    [14]青雪梅,谢兵,李丹柯,黄青云.铁水中钒氧化及尖晶石形成的研究[J].过程工程学报, 2009, 9 :122-125.
    [15] Diao Jiang, Xie Bing, Ji Cheng-qing, Guo Xu, Wang Yong-hong and Li Xiao-jun. Growth of spinel crystals in vanadium slag and their characterization[J]. Cryst. Res.Technol, 2009, 44(7): 707-712.
    [16] Diao Jiang, Xie Bing, Ji Cheng-qing. Mineralogical characterization of vanadium slag under different conditions[J]. Ironmaking and Steelmaking, 2009, 36(6) :476-480.
    [17]陈勇,张大德.转炉提钒工艺的开发与优化[J].中国冶金, 2003, 1 :36-38.
    [18]陈东辉.钒渣质量的系统评价[J].河北冶金, 1993, 1 :19-23.
    [19]张国平.钒渣物相结构和化学成分对焙烧转化率的影响[J].铁合金, 1991, 5 :17-19.
    [20]郑燕青,施尔胃,李纹军.晶体生长理论研究现状与发展[J].无机材料学报, 1999, 14(3) :321-332.
    [21]王新华.钢铁冶金-炼钢学[M].北京:高等教育出版社, 2007.
    [22] Urakarev F K, Bazarov L S, Mesgeryakov I N, Kinetics of homogeneous nucleation of monodisperse spherical sulphur and anatase particles in water-acid systems[J]. J.Cryst.Growth, 1999, 205 :223-232.
    [23] Liu X Y. A new kinetic model for three-dimensional heterogeneous nucleation[J]. J.Chem. Phy, 1999, 111 :1628-1635.
    [24] Bennema P. Theory of growth and morphology applied to organic crystal :possible application to protein crystals[J]. J. Cryst. Growth, 1992, 122 :110-119.
    [25] James P F. Nucleation and Crystallization in Glasses. The American Ceramic Society[J], Inc. Columbus Ohio, 1982 :18-22.
    [26] M T Mangan. Crystal size distribution systematic and the determination of magma storage times: The 1959 eruption of Kilauea volcano[J]. Hawaii.J.Volcan.Geol.Res, 1990, 44 :295-302.
    [27]娄太平,李玉海,马俊伟,夏玉虎,隋智通.等温过程含Ti炉渣中钙钛矿相弥散颗粒长大研究[J],金属学报, 1999, 35(8):834-836.
    [28]娄太平,李玉海,李辽沙,隋智通.含钛炉渣中钙钛矿相析出动力学研究[J].硅酸盐学报, 2000, 28(3) :255-258.
    [29]李大纲,王佳夫,娄太平,隋智通.含稀土高炉渣中铈钙硅石相的析出动力学[J].钢铁研究学报, 2004, 16(4):64-67.
    [30] Satyam S.Sahay, Karthik Krishnan. Modeling the isochronal crystallization kinetics[J]. Physica B, 2004, 348 :310-316.
    [31]牛胜利,韩奎华,路春美.非等温条件下丙酸钙热解的动力学参数计算[J].科学通报, 2010, 55(23) :2350-2355.
    [32]陈敏孙,江厚满,刘泽金.玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J].强激光与粒子束, 2010, 22(9) :1969-1972.
    [33]雷云,谢兵,齐飞,刁江. MnO对保护渣结晶动力学特性的影响[J].过程工程学报, 2008, 6(8) :185-188.
    [34]陈厚生.钒渣石灰焙烧法提取V_2O_5工艺研究[J].钢铁钒钛, 1999, 13(6) :1-7.
    [35]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金, 1999,(4) :1-3.
    [36]陈庆根.石煤钒矿工艺技术的研究进展[J].矿产综合利用, 2009, (2) :30-32.
    [37] Dongsheng He, Qiming Feng*, Guofan Zhang, Leming Ou, Yiping Lu. An environmentally-friendly technology of vanadium extraction from stone coal[J]. Minerials Engineering, 2007, 20 :1184-1186.
    [38]冯其明,何东升等.石煤提钒过程中钒氧化和转化对钒浸出的影响[J].中国有色金属学报, 2007, 17(8) :1348-1351.
    [39]戴文灿.石煤资源清洁利用及固废资源化研究[D]. 2003. 37-45.
    [40] Li Min-ting, Wei Chang, Fan Gang, Li Cun-xiong, Deng Zhi-gan, Li Xin-bin. Pressure acid leaching of black shale for extraction of vanadium[J]. Trans.Nonferrous Met. Soc. 2010, 20 :112-117.
    [41] Li Min-ting, Wei Chang, Fan Gang, Li Cun-xiong, Deng Zhi-gan, Li Xin-bin. Extraction of vanadium from black shale using pressure acid leaching[J]. Hydrometallurgy, 2009,98 :308-313.
    [42] Li Min-ting, WeiChang, Fan Gang, Li Cun-xiong, Deng Zhi-gan, Li Xin-bin. Kinetics of vanadium dissolution from black shale in pressure acid leaching[J], Hydrometallurgy, 2010,104 :193-200.
    [43]王明玉,王学文.石煤提钒浸出过程研究现状与展望[J].稀有金属, 2010, 34(1) :90-95.
    [44]王金超,管英富,曾志勇.沉钒液泡沫的消除[J].化工冶金, 2000, 21(2) :171-175.
    [45]董文生,王心葵,彭少逸.尖晶石的性质、制备及在催化中的应用[J].石油化工高等学校学报, 1996, 9(4) :10-15.
    [46]林仕伟,段文杰,李建保.尖晶石型化合物的制备及光催化性能[J].硅酸盐学报, 2010, 38(3) :527-533.
    [47] Faungawakij Kajomsak, Shimoda Naohiro, Fukunaga Tetsuya, et al. Cu-based spinel catalysts CuB2O4(B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether[J]. Appl Catal A: Gen, 2008,341:139-145.
    [48] Siapkas D I, Mitsas C L, Samaras I, et al. Syntheis and Characterization of LiMn2O4 for use in Li-ion Batterise[J]. J. Power Sources, 1998,72(1) :22-26.
    [49] Tarascon J M, Mckingnon W R, Coowar F, et al. Synthesis Conditions and Oxygen Stoicometry Effects on Li Insertion into Spinel LiMn2O4[J]. J. Electrochem. Soc, 1994, 141(6) :1421-1431.
    [50]孙淑英,张钦辉,于建国.尖晶石型LiMn2O4的水热合成及其锂吸附性能[J].过程工程学报, 2010, 10(1): 185-189.
    [51] A.罗森菲尔德等.数字图像分析[M],北京:国防工业出版社, 1991.
    [52]胡德林.金属学原理[M].西安:西北工业大学出版社, 1987.
    [53] Eberl D D, Drits V A , S'rodon'. Deducing growth mechanisms for minerals from the shapes of crystal size distributions[J]. Ameri.J.Sci, 1998, 298 :499-452.
    [54]郝世明(译).微观组织热力学[M].化学工业出版社, 2006.
    [55] Kalu P N, Waryoba D R. A JMAK-microharaness model for quantifying the kinetics ofrestoration mechanisms in inhomogeneous microstructure[J]. Materials Science and Engineering. 2007, 464(25): 68-72.
    [56] Li J J, Wang J C, Xu Q, Yang G C. Comparison of Johnson-Mehl-Avrami-Kologoromov(JMAK) kinetics with a phase field simulation for polycrystalline solidification[J]. Acta Materialia. 2007, 55(3): 825-828.
    [57]张文俊,邵刚勤,余晓华,王天国,李喜宝,王剑,顾红星. YSZ/MgAl_2O_4复合粉末的合成及其材料的烧成活化能[J].硅酸盐学报,2009,37(11):1813.
    [58] D.Turnbull,Contemp.Phys, 1969, 10 :473-477.
    [59] H.S.Chen, L.C.Kimerling, J.M.Poate, W.L.Brown. Appl. Phys. Letter, 1978, 32(8) :461-464.
    [60] D.R.Uhlmann, J Non-cryst Solids, 1974, 16 :325-327.
    [61] K.C.Mills, S.Sridhar. Viscosities of Ironmaking and steelmaking slags[J]. Ironmaking and Steelmaking. 1999, 26(4): 262-268.
    [62]郭怡城,王震西.非晶态物理学[M].北京:科学技术出版社, 1984 .
    [63]李会莉.热处理温度对含钛炉渣中钙钛矿相结晶的影响[J].沈阳工业学院学报, 2000, 19(2) :91-94.
    [64]李彬,隋智通. CaO-MgO-Fe_2O_3-Al_2O_3-SiO_2渣系玻璃晶化动力学[J].材料研究学报, 1999, 13(4) :412-415.
    [65]徐瑞,荆天辅.材料热力学与动力学[M].哈尔滨:哈尔滨工业大学出版社, 2003.
    [66]陈厚生.钒渣石灰焙烧法提取V_2O_5工艺研究[J].钢铁钒钛, 1999, 13(6) :1-7.
    [67] C.P.J.van Vuuren, P.P.Stander. The oxidation kinetics of FeV_2O_4 in the range 200-580℃[J]. Thermochimica Acta, 1994, 254 :227-233.
    [68] ] M.Nohai, D.Aymes, P.Perriat, B.Gillot. Infrared spectra-structure correlation study of vanadium-iron spinels and of their oxidation products[J]. M.Nohair et al, 1995, 9 :181-190.
    [69] B.Voglauer, A.Grausam, H.P.Jorgl. Reaction-kinetics of the vanadium roast process using steel slag as a sendary raw material[J]. Minerals Engineering, 2004, 17 :317-321.
    [70]王耀宁,马红周,陈向阳,兰新哲.石煤中钒酸浸出工艺研究[J].稀有金属, 2009, 33(6) :940-943.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700