石煤氧压酸浸萃取提钒新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石煤属黑色炭质页岩,是一种含钒矿物,是我国除钒钛磁铁矿外另一种重要钒矿资源。我国的石煤资源十分丰富,遍布20余省,广泛分布于云南、贵州、湖南、浙江、江西、广西、甘肃、新疆等省(区)。石煤含钒总量约1.18亿吨,是我国钒钛磁铁矿中钒总量的7倍,超过世界其他国家钒储量的总和。因此,如何合理利用石煤中钒资源具有重大的研究意义。
     我国石煤提钒的传统工艺为平窑钠化焙烧—水浸,该工艺流程主要包括钠盐氯化焙烧—水浸—酸沉粗钒—碱溶—铵盐沉钒—热解。传统工艺的主要缺点为:钒回收率低(<50%),生产成本高;食盐焙烧过程中所放出的Cl2、HCl等有害气体,以及生产过程中排出的废水、废渣等严重污染环境。伴随环境问题的日益增长,2003年国家强行取缔了该工艺,从而限制了我国石煤资源的利用。因此,新型高效环保工艺的研发迫在眉睫。
     本文研发了一种新型、低耗、环保、高回收率的提钒工艺。文中对含钒石煤氧压酸浸萃取提钒新工艺进行了系统的研究。首先利用扫描电子显微镜、电子探针、能谱分析、X-射线衍射分析、热重分析等检测手段,研究贵州铜仁某地石煤矿中钒的矿物学特征;在此基础上,开展了探索性试验,然后进行了正交试验和条件试验,研究考察了影响钒浸取率的各种因素:浸出时间、浸出温度、浸出剂浓度、浸出液固比、矿石粒度、添加剂种类及用量等,试验结果表明在浸出时间3-4h、浸出温度150℃、硫酸用量25%-35%、液固比1.2:1、矿石粒度0.074mm、Po2为1.2MPa、添加剂用量3%-5%的条件下,经两段氧压酸浸后,钒的浸出率可达90%以上。
     同时,本文还研究了石煤氧压酸浸液中萃钒除铁的工艺过程,从萃取和反萃的相比、试剂组成、pH值、澄清时间等方面进行了详细试验研究。研究表明:浸出液经酸回收、还原除铁处理后,采用10%P204+5%TBP+85%煤油萃取钒时,经六级逆流萃取后萃取率为95%以上;负载有机相用15%H2S04反萃时,经五级逆流反萃后反萃率可达99%以上。经萃取后,浸出液中的钒可富集到37g/L以上,铁可缩减至0.6g/L以下,反萃水相中钒铁质量比大于60,钒铁分离效果较好。
     反萃液用氨水进行沉钒处理,得到的钒酸铵在550℃下煅烧3h即可得到V205含量为99.5%的粉状产品,钒的总回收率达80%左右。
     本工艺具有流程短、操作简单、回收率高、成本低、污染少等优点,具有较好的经济效益、环境效益和社会效益。
Stone coal is black carbonaceous shale which contains vanadium. It is an alternative resource of vanadium in China, besides the vanadium and titanium magnetite ore. Our country is rich in stone coal resources, more than 20 around the province. This mineral extensively exists in Yunnan, Guizhou, Hunan, Zhejiang, Jiangxi, Guangxi, Gansu, Xinjiang, etc province or autonomous region. Total of vanadium reserves is about 118 million tons in stone coal vanadium mine, is 7 times of the vanadium total amount in China's vanadium and titanium magnetite, and is more than the sum of vanadium reserves in other countries. So how rationally to use the vanadium resources in the stone coal which has great significance.
     In our country, sodium salt roasting and water leaching is the traditonal technology of extract vanadium from stone coal.The brief flowof the classical technology includes chloridizing roasting, water leaching, deposition vanadium, alkali dissolution, ammonium salt precipitation vanadium and thermal decomposition. This classical technology has two main problems, low recovery of vanadium (<50%), high cost of the product and serious environment pollution.Serious poisonous gases, HCl and Cl2, are produced in the roasting process because sodium chloride is used as an additive, and the waste water and solid residues. Increasing environmental concerns and legislation concerning environmental protection, China banned the application of this technology in 2003, thus, the utilization of stone coal was limited. Therefore, it is extremely urgent to research and develop a new higher recovery of vanadium and no pollution to environment technology of extracting vanadium from stone coal.
     The aim of this paper is to research and develop a new process of extracting vanadium from stone coal, characterized by higher recovery of vanadium and which was environmentally-friendly. The new technology on vanadium extraction from stone-coal by sulfuric acid oxygen pressure leaching and solvent extraction was studied in this paper. Firstly, the mineralogy of the stone-coal from Tongren of Guizhou was investigated by various determination methods, scanning electronic microscope, electron probe analysis, energy spectrum analysis,Ⅹ-ray diffraction, thermogravimetric analysis, and so on. Based on the mineralogy, the investigative test was carried out. Then orthogonal and conditional experiments were designed. The effects of leaching time, leaching temperature, leaching agent concentration, leaching L/S, granularity of material, additive consumption, which were the influential factors of extraction of vanadium, were investigated. The results showed that under the conditions of leaching time for 3-4h, temperature at 150℃, sulfuric acid consumption was 25%-35%, ratio of liquid-solid was 1.2:1, the granularity was 0.074mm, Po2 was 1.2MPa and additive consumption was 3%-5%, vanadium leaching percent was over 90% by the method of two-step reverse flow oxygen pressurized acid leaching.
     At the same time, the technological process of extracting vanadium from the stone-coal oxygen pressure acid-leaching solution is reseached in this paper. Some parameters of extraction and anti-extraction, such as organic phase to aqueous phase (O/A), the composition of solvent, pH and the setting time, are optimized by a series of tests. The results show that after Pretreatment of acid recovery, removing iron by reduction process, adjusting pH to oxygen pressure acid leached solution, the extraction percent can be up to 95% under the conditions of 6-stage counter-flow extraction with 10%P204+5%TBP+85%coal oil, and the stripping efficiency will exceed 99% when 15%H2SO4 solution is taken as the stripping agent. By way of extraction, the concentration of vanadium can be raised to 37g/L or more, and the concentration of iron can be reduced to 0.6g/L or less. The mass ratio of V and Fe can be up to 60 in aqueous phase of stripping, the effect of separation is well.
     Ammonia was added to stripping liquor to precipitate vanadium, and then the precipitates (ammonium mult-vanadate) was calcined at 550℃for 3 h. The powdery V2O5 product with 99.5% in V2O5 content was obtained by this flowsheet. The total recovery efficiency of vanadium was about 80%.
     The advantages of this process are:short route, simple operation, high coefficient of recovery and with better economic efficiency, society benefits and environment acceptability.
引文
[1]廖世明,柏谈论.国外钒冶金.北京:冶金工业出版社,1985
    [2]黄道鑫.提钒炼钢.北京:冶金工业出版社,2000
    [3]林杰.钒及其化合物与中毒防治.北京:中国标准出版社,2000
    [4]《有色金属提取冶金于册》编辑委员会.有色金属提取冶金手册—稀有高熔点金属(下).北京:冶金工业出版社,1999
    [5]杜鹤桂.高炉冶炼钒钛磁铁矿原理.北京:科学出版社,1996
    [6]陈厚生.钒钛发展现状及展望.钒钛资源综合利用国际学术交流会论文集,四川,2005
    [7]谭若斌.国内外钒资源的开发利用.钒钛,1994(5):4-11
    [8]漆明鉴.从石煤中提钒现状及前景.湿法冶金,1999(4):1-10
    [9]唐修义,黄文辉著.煤中微量元素.北京:商务印书馆,2004
    [10]LAN Yaozhong, LIU Jin. Review of vanadium processing in China. Engineer Sciences,2005,3 (3):58-62
    [11]王永双,李国良.我国石煤提钒及综合利用综述.钒钛,1993(4):21-31
    [12]顾坚.石煤的综合利用和石煤提钒.能源政策研究通讯,1989(3):32-36
    [13]符迈群.石煤提钒.钒钛,1992(5):12-14
    [14]Dongsheng He, Qiming Feng, Guofan Zhang, et al. An environmentally-friendly technology of vanadium extraction from stone coal. Minerals Engineering,2007 (20):1184-1186
    [15]杨昌英,邹雪,赵儒铭.微量元素钒铬生理生化功能对比.微量元素与健康研究, 1998,15(1):76-77
    [16]WANG Mingyu, XIANG Xiaoyan, ZHANG Liping, et al. Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal. Rare Metals,2008,27 (2):112-115
    [17]Meryem Seferinoglu, Mehtap Paul, Ake Sandstromb, et al. Acid leaching of coal and coal-ashes. Fuel,2003 (82):1721-1734
    [18]蔡晋强,巴陵.石煤提钒的几种新工艺.矿产保护与利用,1998(5):30-33
    [19]蒋馥华,张萍,申照全.石煤中提钒的无污染新工艺.化学世界,1992(12): 538-540
    [20]戴文灿,朱柒金,陈庆邦等.石煤提钒综合利用新工艺的研究.有色冶金(选矿部分),2000(3):14-17
    [21]Habib Shelwit, Moussa Alibrahim. Extraction of sulfur and vanadium from petroleum coke by means of salt-roasting treatment. Fuel,2006(85):878-880
    [22]鲁兆伶.用酸法从石煤中提取五氧化二钒的试验研究与工业实践.湿法冶金,2002,21(4):175-183
    [23]郑祥明,田学达,张小云.湿法提取石煤中钒的新工艺研究.湘潭大学自然科学学报,2003,25(1):43-45
    [24]杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,1998
    [25]宋复伦,宁模功.加压湿法冶金的过去、现在和未来.湿法冶金,2001(9):165-166
    [26]Komnitsas K. Pressure Hydrometallurgy. Mineral Engineering.2001,14(8): 106
    [27]柯家骏,陈家镛.湿法冶金中加压浸出过程的进展.湿法冶金,1996(2):1-5
    [28]蒋开喜,王海北.加压湿法冶金:可持续发展的资源加工利用技术.中国创业投资与高科技,2004(12):73-75
    [29]Hofirek Z, Kefoot D G. Pressure leaching of copper-nickel matte. Hydrometallurgy,1992,29 (3):357
    [30]杨钢,王吉坤.高铁硫化锌精矿加压浸出技术应用.云南冶金,2006(1):83-85
    [31]Mclnnes C M, Sparrow G J, Woodcock J T. Extraction of platinum, palladium and gold by cyanidation of coronation hill ore. Hydrometallurgy,1994,35 (2): 141
    [32]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压酸浸新工艺研究.有色金属(冶炼部分),2004(1):5-8
    [33]陈家镛,杨守志,柯家骏等.湿法冶金的研究与发展.北京:冶金工业出版社,1998
    [34]李小康,许秀莲.低品位铜锌混合矿加压浸出研究.南方冶金学院学报,2004(4):5-9
    [35]黄昆,陈景.加压湿法冶金处理含铂族金属铜镍硫化矿的应用及研究进展.稀有金属,2003(6):752-757
    [36]Huang Kun, Chen Jing. Pressure Oxide leaching of Low-grade Pt-Pd Sulfide Flotation Concentrates. Manziekeds. Precious Metals 2001. Canada:IPMI, 2001
    [37]R. Navarro, J. Guzman, I. Saucedo, et al. Vanadium recovery from oil fly ash by leaching, precipitationand solvent extraction processes. Waste Management.2007 (27):425-438
    [38]肖文丁.广西上林石煤的矿物学和湿法提钒研究.有色金属,2007,59(3):85-90
    [39]彭声歉,侯兰杰,刘福生.四川广旺石煤提钒焙烧过程中钒价态的变化.中国矿业,1999,8(1):69-72
    [40]许国镇.石煤中钒的价态及物质组成对提钒工艺的指导作用.煤炭加工与综合利用,1989(5):5-8
    [41]Justyna Poledniok, Fran ciszek Buhl. Speciation of Vanadium in soil. Talanta, 2003 (59):1-8
    [42]沈喜恩.上饶八都石煤直接酸浸提钒工艺研究.江西煤炭科技,1997(3):57-59
    [43]邹晓勇,欧阳玉祝,彭清静等.含钒石煤无盐焙烧酸浸生产五氧化二钒工.艺的研究.化学世界,2001(3):117-119,141
    [44]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验.钢铁钒钛,2006,27(1):21-26
    [45]林海玲,范必威,庚化龙等.石煤中影响钒转浸率的主要因素研究.成都理工学院学报,1999,26(3):317-320
    [46]R. R. Moskalyk, A. M. Alfantazi. Processing of vanadium:a review. Minerals Engineering,2003,16 (9):793-805
    [47]Sandra Vitolo, Maurizia Seggiani, Sara Filippi, et al. Recovery of vanadium from heavy oil and Orimulsion fly ashes. Hydrometallurgy, September 2000,57(2): 141-149
    [48]Sandra Vitolo, Maurizia Seggiani, Francesco Falaschi. Recovery of vanadium from a previously burned heavy oil fly ash. Hydrometallurgy, December 2001, 62 (3):145-150
    [49]庄树新.硅质岩钒矿中无污染提取五氧化二钒的新工艺研究[硕士学位论文].湖南长沙:中南大学,2007
    [50]张小云,田学达.石煤提钒湿法工艺的动力学研究.湘潭大学自然科学学报,2005,27(2):104-107
    [51]何东升,冯其明,张国范等.碱法从石煤中浸出钒试验研究.有色金属(冶炼部分),2007(4):14-17
    [52]Shang-Lin Tsai, Min-Shing Tsai. A study of the extraction of vanadium and nickel in oil-fired fly ash. Resources, Conservation and Recycling 1998 (22): 163-176
    [53]张云,范必威,彭达平等.从石煤酸浸液中萃取钒的工艺研究.成都理工学院学报,2001,28(1):107-110
    [54]曾理,李青刚,肖连生.离子交换法从石煤含钒浸出液中提钒的研究.稀有金属,2007,31(3):362-366
    [55]胡建锋,朱云.P204萃取硫酸体系中钒的性能研究.稀有金属,2007,31(3):367-370
    [56]LOZANO L J, JUAN D. Technical note leaching of vanadium from spent sulphuric acid catalysts. Minerals Engineering,2001,14 (5):543-546
    [57]Olazabal M A, Fernandez M M, Madariaga L A, et al. Selective extraction of vanadium(Ⅴ) from solution containing molybdenum(Ⅳ) by ammonium salts dissolved in toluene. Solvent Extraction and Ion Exchange,1992(10):623-635
    [58]Zhang P W, Inoue K, Yoshizuka K, et al. Extraction and selective stripping of molybdenum(IV) and vanadium(V) from sulfuric acid solution containing aluminum(Ⅲ), cobalt(Ⅱ), nickel(Ⅱ) and iron(Ⅲ) by LIX63 in Exxsol D80. Hydrometallurgy,1996 (41):45-53
    [59]M. Rakib, G. Durand. Study of complex formation of vanadium(Ⅴ) with sulphate ions using a solvent extraction method. Hydrometallurgy,1996(43):355-366
    [60]朱屯,李洲.溶剂萃取.北京:化学工业出版社,2008
    [61]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展.湖南有色金属, 2006,22(6):17-20
    [62]刘旭娃,吴海鹰,戴子林等.硫酸浸出钒矿的萃原液预处理对萃取的影响研究.矿冶工程,2006,26(5):65-67
    [63]曹耀华,高照国,刘红召等.萃取法从含钒酸浸液中提取钒的研究.河南化工,2007,24(6):20-23
    [64]杨静翎,金鑫.酸浸法提钒新工艺的研究.北京化工大学学报,2007,34(3):254-256
    [65]Y. Bal, K-E. Bal, G. Cote, et al. Characterization of the solid third phases that precipitate from the organic solutions of Aliquat 336 after extraction of molybdenum(VI) and vanadium(V). Hydrometallurgy,2004 (75):123-134
    [66]徐铜文.扩散渗析法回收工业酸性废液的研究进展.水处理技术,2004,30(2):63-66
    [67]Jinki Jeong, Min-Seuk Kim. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method. Journal of Hazardous Materials,2005(B124):230-232
    [68]Z. Palaty, A. Zakova. Separation of H2SO4 and CuSO4 mixture by diffusion dialysis. Journal of Hazardous Materials,2004 (B114):69-74.
    [69]赵宜江,邢卫红,徐南平.扩散渗析法从钛白废酸中回收硫酸.高校化学工程学报,2002,16(2):218
    [70]唐建军,陈建军,张伟.扩散渗析法回收硫酸稀土溶液中硫酸研究.膜科学与技术,2005,25(2): 50-53
    [71]钱锦堂.酸扩散渗析过程中的盐效应.水处理技术,1996,22(2):88-90
    [72]J. Saji, T. Prasada Rao, T. R. Ramamohan, et al. Studies on the liquid-liquid extraction of iron(Ⅲ) and titanium(IV) with 3-phenyl-4-benzoyl-5-isoxazolone. Talanta,1999 (50):1065-1071
    [73]古国榜,程飞,杨新荣等.P204-PSO协同萃取钒(V)的机理.华南理工大学学报(自然科学版),1997,25(2):85-91
    [74]A. Bhatnagar, Ashwani Kumar Minocha, Deepak Pudasainee, et al. Vanadium removal from water by waste metal sludge and cement immobilization. Chemical Engineering Journal,2008 (5):1-8
    [75]田永淑,朱靖.石煤灰渣中提取五氧化二钒的新工艺.矿产综合利用,2006 (6):22-24
    [76]A. M. Amer. Processing of Egyptian boiler-ash for extraction of vanadium and nickel. Waste Management,2002 (22):515-520
    [77]李晓健.酸浸—萃取工艺在石煤提钒工业中的设计与应用.湖南有色金属,2000,16(3):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700