具有潜在免疫调节功能Lactobacillus菌株的体外筛选及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物对人类免疫系统发挥着重要的影响,具有免疫调节功能的益生菌株的研究和筛选是目前功能食品研究的一个热点。Lactobacillus属的一些菌株可以增强机体特异性和非特异性免疫功能,有助于维护机体健康。
     本研究采集甘肃、青海、新疆、西藏传统发酵食品及健康婴儿粪便,分离其中的乳酸菌,并采用体外研究方法从分离获得的菌株中筛选具有潜在免疫调节功能的Lactobacillus益生菌株。
     采用半选择性培养基,从传统发酵食品和婴儿粪便中分离得到具有产酸能力的168株革兰氏阳性杆菌、39株革兰氏阳性球菌,过氧化氢酶试验为阴性,杆菌经果糖-6-磷酸盐磷酸酮酶试验均为阴性,初步鉴定为乳酸杆菌,在传统发酵发酵食品分离过程中也发现有酵母存在。
     以分离得到的168株杆菌为筛选具有潜在免疫调节功能的目标菌株,与人外周血单核细胞(PBMCs)共同培养,采用酶联免疫法(ELISA)测定培养上清液中白细胞介素-12(IL-12, p~(70))的浓度。从168株杆菌中筛选出刺激PBMCs产生IL-12 (p~(70))浓度较高的菌株34株。并采用ELISA方法测定初筛获得的34株杆菌刺激PBMCs产生肿瘤坏死因子-α(TNF-α)、γ-干扰素(IFN-γ)的浓度,筛选出8株刺激PBMCs产生IL-12 (p~(70))、IFN-γ和TNF-α3种细胞因子浓度较高的菌株,作为具有潜在免疫调节功能的菌株,分别编号为J23ANL、J5ANL、IN1ANL、SB5AL、SB31AL、M5AL、G15AL、T3AL。采用Biolog微生物鉴定系统将菌株J23ANL、M5AL和G15AL鉴定为Lactobacillus paracasei supsp. paracasei;菌株J5ANL、IN1ANL、SB5AL、SB31AL鉴定为Lactobacillus rhamnosus;T3AL鉴定为Lactobacillus coryniformis supsp. torquens。
     采用模拟胃、肠液研究获得的8株Lactobacillus菌株在人体胃肠道环境中的耐受性,在人结肠癌腺细胞系HT-29上的粘附能力以及对致病菌增殖的抑制能力。8株Lactobacillus菌株在模拟胃液中暴露1 h,仍能保持一定的活菌数,在模拟胃液中暴露3 h,活菌数进一步下降,只有菌株J23ANL、J5ANL、IN1ANL、SB5AL和M5AL仍可检出活菌,而G15AL、T3AL、SB31AL不能检出活菌。8株菌在模拟肠液中的耐受性较好,在模拟肠液中暴露4 h,仍能保持较高的活菌数。不同菌株在HT-29细胞上的粘附能力不同,其中菌株IN1ANL、M5AL和G15AL有较强的粘附性,其余菌株粘附性较差。8株Lactobacillus菌株对致病菌E.coli、S.typhimurium和S.sonnei繁殖有抑制作用。
     进一步研究筛选获得的8株Lactobacillus菌株活菌体、热灭活菌体、细胞壁及DNA对人PBMCs增殖、细胞因子(IL-12 (p~(70))、IFN-γ和TNF-α)的产生及NK细胞杀伤活性的影响,说明不同菌体成分的免疫调节功能。结果表明菌株J23ANL、J5ANL、IN1ANL、SB5AL、SB31AL、M5AL、G15AL、T3AL活菌体细胞、热灭活菌体细胞及细胞壁均使人PBMCs增殖,且当完整菌体与细胞壁作用浓度增大时,对PBMCs增殖系数减小,而菌体DNA对PBMCs增殖的影响均小于完整菌体和细胞壁对PBMCs增殖的影响。菌株J23ANL、J5ANL、IN1ANL、SB5AL、SB31AL、M5AL、G15AL、T3AL活菌体细胞、菌体细胞壁均能显著增强NK细胞杀伤活性。除菌株SB31AL,其它菌株DNA均显著增强NK细胞杀伤活性。菌株增强NK细胞杀伤活性与菌株刺激免疫细胞产生细胞因子有关。菌株J23ANL、J5ANL、IN1ANL、SB5AL、SB31AL、M5AL、G15AL、T3AL活菌体细胞、热灭活菌体、细胞壁和DNA均能刺激人PBMCs产生细胞因子IL-12(p~(70))、TNF-α和IFN-γ,但各菌株细胞壁、DNA刺激PBMCs产生IL-12和TNF-α的水平均低于活菌体刺激产生细胞因子的水平。
     采用3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)法研究8株Lactobacillus菌株菌体成分(包括热灭活完整菌体细胞、菌体细胞壁和菌体DNA)对人结肠癌细胞系HT-29及人慢性髓原白血病细胞K562增生的抑制作用,并采用单细胞凝胶电泳(Single cell gel electropherosis,SCGE)研究菌体成分是否诱导肿瘤细胞凋亡。结果表明,筛选得到的8株Lactobacillus菌株热灭活菌体细胞、菌体细胞壁和菌体DNA均对HT-29细胞的增生产生显著抑制。其中,菌株Lactobacillus coryniformis ss torquens T3AL对HT-29细胞的抑制率显著高于其它菌株的抑制率。单细胞凝胶电泳结果表明菌株T3AL菌体各成分诱导HT-29细胞凋亡,从而抑制HT-29细胞的增生。各菌株热灭活菌体均抑制K562细胞增生;IN1ANL、SB5AL、SB31AL、M5AL、G15AL、T3AL菌株细胞壁对K562细胞的增生具有不同程度的抑制作用,而菌株J23ANL、J5ANL细胞壁对K562细胞增生无抑制作用;菌株G15AL、M5AL、SB31AL的菌体DNA抑制K562细胞增生,其它菌株DNA均对K562细胞的增生无抑制作用。
     体外试验结果表明,从传统发酵食品和健康婴儿粪便中筛选获得的8株Lactobacillus菌株具有潜在的免疫调节功能,在胃、肠道环境有一定耐受性,能够抑制病原菌生长以及抑制肿瘤细胞的增生。但它们在益生功能方面表现出不同差别,需要针对这些特点进一步深入研究其免疫调节等益生功能。
The study of probiotic bacteria, especially the probiotic bacteria having the immunostimulating ability is promising and has gained most interesting. Some Lactobacillus strains could exerted their immunity enhancing effects by augmenting both non-specific and specific host immune responses.
     The purpose of this study was to isolate Lactobacillus strains from traditional fermented foods made by locals in Gansu, Qinghai, Xinjiang and Tibet and the feces of healthy infants, and to screen potential probiotics having immunostimulating activity from the isolates.
     The total of 168 bacilli strains and 39 coccus strains were isolated from the traditional foods and infant feces. The bacilli and coccus strains were gram-positive, catalase-negative and F6PPK-negative, so they were presumedly considered as lactic acid bacteria. Yeasts were also isolated from the traditional foods.
     The isolated bacilli strains were co-cultured with human peripheral blood mononuclear cells (PBMCs) and the interleukin 12 (IL-12, p~(70)) concentration of the culture supernate were determined by ELISA method. The total of 34 bacilli strains, which stimulated PBMCs to produce IL-12(p~(70)) at higher concentration, were screened from 168 strains of isolated bacilli. The concentrations of interferon gamma (IFN-γ)and tumor necrosis factor alpha (TNF-α), which were produced by PBMCs co-cultured with the 34 strains, were determined by ELISA method. Among the 34 bacilli strains, eight bacilli strains stimulated PBMCs to produce IL-12(p~(70)), IFN-γand TNF-αat higher concentrations compared to rest strains. The eight bacilli strains, J23ANL, J5ANL, IN1ANL, SB5AL, SB31AL, M5AL, G15AL and T3AL were screened as potential probiotics having immunostimulating activity. Using Biolog MicroLog2 system, the strains J23ANL, M5AL and G15AL were identified as Lactobacillus paracasei supsp. paracasei, J5ANL, IN1ANL, SB5AL and SB31AL as Lactobacillus rhamnosus, T3AL as Lactobacillus coryniformis supsp. torquens.
     The eight Lactobacillus strains were examined in vitro for resistance to simulated gastro and intestinal juice, adhesion to HT-29 cells, and antagonistic activity against pathogens. All eight strains retained their viability after 1 h of exposure to simulated stomach juice with some reduction of the log of viable colony counts (1.94~3.48); after 3 h of exposure to simulated stomach juice, the viability of the strains was lost markedly and the strain G15AL, T3AL and SB31AL didn’t maintain viability. All eight strains retained their viability even after 4 h of exposure to simulated small intestinal juice just with slightly reduction of the log of viable cology counts (0.18~1.64). The strains IN1ANL, M5AL and G15AL had adhesive ability with more than 40 bacteria per 100 HT-29 cells; the rest strains didn’t have adhesive ability with fewer 40 bacteria per 100 HT-29 cells. All the eight strains had antagonistic activity against E.coli, S.typhimurium and S.sonnei.
     The effects of live bacteria, heat-killed bacteria, cell wall and genomic DNA of the eight Lactobacillus strains on PBMCs proliferation, cytokine secretion and NK cell activity were determined to study the immunostimulating activities of the bacteria cellular components. The live bacteria, heat-killed bacteria and cell walls of the eight strains exerted proliferative effect on PBMCs and the stimulate index of PBMCs declined with the increase of concentrations of the bacteria and cell walls. The stimulate index of PBMCs exerted by genomic DNA of the strains were little than those of PBMCs exerted by live bacteria, heat-killed bacteria and cell walls. The live bacteria of all the eight strains could significantly augment natural killer cell (NK) activity and the effect varied with different strain and dose. The cell wall of the strains could significantly augment NK cell activity the effect varied with different strain and dose. Except the DNA of strain SB31AL, other strains’DNA could enhance NK cell activity significantly. The enhancement of NK cell activity by the strains was related with the PBMCs cytokine secretion induced by the strains. The live bacteria, heat-killed bacteria, cell wall and genomic DNA of the eight strains stimulated PBMCs to produce IL-12(p~(70)), IFN-γand TNF-α.The concentrations of IL-12(p~(70)) and TNF-αstimulated by bacterial cell wall and DNA of the eight strains was lower than those stimulated by live bacteria of the strains.
     The antiproliferative effects of the heat-killed bacteria, bacterial cell wall and genomic DNA of the eight strains on HT-29 and K562 cancer cells were examined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The heat-killed bacteria, bacterial cell wall and genomic DNA of the eight strains all inhibited the growth of HT-29 cells significantly. The heat-killed bacteria of the eight strains inhibited the growth of K562 cells; except J23ANL and J5ANL, the cell wall of the other strains inhibited the growth of K562 cells; the DAN of the strain G15AL, M5AL and SB31AL inhibited the growth of K562 cells. Among of the eight stains, the inhibition rates of HT-29 by Lactobacillus coryniformis ss torquens T3AL were significantly higher than those by the rest strains. The results of Single cell gel electropherosis assay showed that t he strain T3AL exerted markedly antiproliferative effect on HT-29 cell through the induction of cell apoptosis.
     The results of in vitro assays showed that the eight Lactobacillus strains had immunostimulating activities, could be tolerant to gastrointestinal conditions, exerted antagonistic activity against pathogens and inhibited the growth of cancer cells. The probiotic potential of the eight Lactobacillus strains will be further studied in vivo.
引文
Aattouri N., Lemonnier D. Production of interferon induced by Streptococcus thermophilus: role of CD4+ and CD8+ lymphocytes [J]. J. Nutr. Biochem. 1997, 8: 25-31.
    Ahrne S., Nobaek S., Jeppsson B., et al. The normal Lactobacillus flora of healthy human rectal and oral mucosa [J]. J. Appl. Microbiol. 1998, 85: 88-94.
    Altonsy M.O., Andrews S.C., Tuohy K.M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway [J]. Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2009.11.015.
    Ammor S., Tauveron G., Dufour E., et al. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1—Screening and characterization of the antibacterial compounds [J]. Food Control. 2006, 6: 454-461.
    Amrouche T., Boutin Y., Fliss I. Effects of bifidobacterial cytoplasm peptide and protein fraction on mouse lymphocyte proliferation and cytokine production [J]. Food Agr. Immunol. 2006b, 17: 29-42.
    Amrouche T., Boutin Y., Prioult G., et al. Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production [J]. Int. Dairy J. 2006a, 16: 70-80.
    Ayebo A.D., Shahani K.M., Dam R. Antitumor component(s) of yogurt: fractionation [J]. J. Dairy Sci. 1981, 64: 2318-2323.
    Balansky R., Gyosheva B., Ganchev G., et al. Inhibitory effects of freeze-dried milk fermented by selected Lactobacillus bulgaricus strains on carcinogenesis induced by 1,2-dimethylhydrazine in rats and by diethylnitrosamine in hamsters. Cancer Lett. 1999, 147: 125-137.
    Bandaru, S.R. Possible mechanisms by which pro- and prebiotics influence colon carcinogenesis and tumor growth [J]. J. Nutr. 1999, 129: 1478S-1482S.
    Baricault L., Denariaz G., Houri J.J., et al. Use of HT-29, a cultured human coloncancer cell line, to study the effect of fermented milks on colon cancer cell growth and differentiation [J]. Carcinogenesis. 1995; 16:245-252.
    Barrow P.A., Brooker B.E., Fuller R., et al. The attachment of bacteria to the gastric epithelium of pig and its importance in the microecology of the intestine [J]. J. Appl. Microbiol. 1980, 48: 147-154.
    Bernet M.F., Brassart D., Neeser J.R., et al. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions [J]. Appl. Environ. Microb. 1993, 59: 4121-4128.
    Bernet M.F., Brassart D., Neeser J.R., et al. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria [J]. Gut. 1994, 35: 483-489.
    Bevilacqua L., Ovidi M. Screening of Bifidobacterium strains isolated from human faeces for antagonistic activities against potentially bacterial pathogens [J]. Microbiol. Res. 2003, 158: 179-185.
    Bezkorovainy A. Probiotics: determinants of survival and growth in the gut [J]. Am. J. Clin. Nutr. 2001, 73 (suppl): 399S-405S.
    Biasco G., Paganelli G.M., Brandi G., et al. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics and fecal pH [J]. Ital. J.Gastroenterol. 1991, 23: 142.
    Biffi A., Coradini D., Larsen R., et al. Antiproliferative effect of fermented milk on the growth of a human breast cancer cell line. Nutr. Cancer. 1997, 28: 93-99.
    Bolognani F., Rumney C.J., Rowland I.R. Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens [J]. Food Chem. Toxicol. 1997, 35: 535-545.
    Borchers A.T., Selmi C., Meyers F.J., et al. Probiotics and immunity [J]. J. Gastroenterol. 2009, 44: 26-46.
    Brady L.J, Gallaher D.D, Busta F.F. The Role of probiotic cultures in the prevention of colon cancer [J]. J. Nutr. 2000, 130: 410s-414s.
    Burns A.J., Rowland I.R. Anti-carcinogenicity of probiotics and prebiotics [J]. Curr. Issues Intest. Microbiol. 2000, 1: 13-24.
    Candela M., Perna F., Carnevali P., et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: Adhesion properties, competition against enteropathogens and modulation of IL-8 production [J]. Int. J. Food Microbiol. 2008, 125: 286-292.
    Cebra J.J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 1999, 69: 1046S-1051S.
    Charteris W.P., Kelly P.M., Morelli L., et al. Development of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract [J]. J. Appl. Microbiol. 1998, 84: 759-768.
    Chen T., Isom?ki P., Rimpil?inen M., et al. Human cytokine responses induced by gram-positive cell walls of normal intestinal microbiota [J]. Clin. Exp. Immunol. 1999, 118: 261-267.
    Chiang B.L., Sheih Y.H., Wang L.H., et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses [J]. Eur. J. Clin. Nutr. 2000, 54: 849-855.
    Christensen H.R., Frokiaer H., Pestka J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168: 171-178.
    Chuang L., Wu K., Pai C., et al. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated cells [J]. J. Agr. Food Chem. 2007, 55: 11080-11086.
    Coconnier M.H., Klaenhammer T.R., Kernéis S., et al. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucussecreting cell lines in culture [J]. Appl. Environ. Microbiol. 1992, 58: 2034-2039.
    Commane D., Hughes R., Shortt C., et al. The potential mechanisms involved in the anti-carcinogenic action of probiotics [J]. Mutat. Res. 2005, 591: 276-289.
    Conway P. L., Gorbach S. L., Goldin B. R. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells [J]. J. Dairy Sci. 1987, 70: 1-12.
    Corthésy B., Gaskins H.R., Mercenier A. Cross-talk between probiotic bacteria and the host immune system [J]. J. Nutr. 2007, 137: 781S-790S.
    Cross M.L. Immunoregulation by probiotic lactobacilli: pro-Th1 signals and their relevance to human health [J]. Clin. Appl. Immunology Rev. 2002, 3: 115-125.
    Cross M.L., Ganner A., Teilab D., et al. Patterns of cytoline induction by gram-positive and gram-negative probiotic bacteria [J]. FEMS Immunol. Med. Mic. 2004, 42: 173-180.
    Cross M.L., Gill H.S. Can immunoregulatory lactic acid bacteria be used as dietary supplements to limit allergies? [J]. Int. Arch. Allergy Immunol. 2001, 125:112-119.
    Cross M.L., Stevenson L.M., Gill H.S. Anti-allergy properties of fermented foods: an important immunoregulatory mechanism of lactic acid bacteria [J]. Int. Immunopharmacol. 2001, 1: 891-901.
    De Moreno de LeBlanc A., Chaves S., Carmuega E., et al. Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages [J]. Immunobiology. 2008, 213:97-108
    De Simone C., Vesely R., Bianchi Salvadori B., et al. The role of probiotics in modulation of the immune system in man and in animals [J]. Int. Immunotherapy. 1993, 9: 23-28.
    Dethlefsen L., Eckburg P.B., Bik E.M., et al. Assembly of the human intestinal microbiota [J]. Trends Ecol. Evol. 2006, 21: 517-523.
    Diop L., Guillou S., Durand H. Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial [J]. Nutr. Res. 2008, 28: 1-5.
    Du Toit M., Franz C.M.A.P., Dicks L.M.T., et al. Characterization and selection of probiotic lactobacilli for a preliminary mini pig feeding trial and their effect on serum cholesterol levels, feces pH and feces moisture content [J]. Int. J. Food Microbiol. 1998, 40: 93-104. Dunne C.O., Mahony L. In vitro selection criteria for probiotic bacteria of human origin: correlation in vivo findings [J]. Am. J. Clin. Nutr. 2001, 73: 386-392.
    Fernández M.F., Boris S., Barbés C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract [J]. J. Appl. Microbiol. 2003, 94: 449-455.
    Fichera G.A., Giese G. Non-immunologically-mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines [J]. Cancer Lett. 1994, 85: 93-103.
    Fuller R. Epithelial attachment and others factor controlling the persistence of the intestine of the gnotobiotic chicken by lactobacilli [J]. J. Appl. Bacteriol. 1978, 45: 147-154.
    Ghadimi D., F?lster-Holst R., De Vrese M., et al. Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects [J]. Immunobiology. 2008, 213: 677-692.
    Gill H.S. Stimulation of the immune system by lactic cultures [J]. Int. Dairy J. 1998, 8: 535-544.
    Gill H.S., Rutherfurd K.J., Cross M.L. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes [J]. J. Clin. Immunol. 2001b, 21: 264-71.
    Gill H.S., Rutherfurd K.J., Cross M.L., et al. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019 [J]. Am. J. Clin. Nutr. 2001a, 74: 833- 839.
    Gill H.S., Rutherfurd K.J., Prasad J., et al. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) [J]. Br. J. Nutr. 2000, 83: 167-176.
    Goldin B.R, Gorbach.S.L. Alterations in fecal microflora enzymes related to diet, age, Lactobacillus supplements, and dimethylhydrazine [J]. Cancer. 1977, 40: 2421-2426.
    Goldin B.R., Gorbach S.L. Effect of Lactobacillus acidophilus dietary supplements on 1, 2-dimethylhydrazine dihydrochlorideinduced intestinal cancer in rats [J]. J. Natl. Cancer Inst. 1980, 64: 263-265.
    Goldin B.R., Gualtieri L.J., Moore R.P. The effect of Lactobacillus GG on theinitiation and promotion of DMH-induced intestinal tumors in the rat [J]. Nutr. Cancer. 1996, 25: 197-204.
    Gopal P.K., Prasad J., Smart J., et al. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli [J]. Int. J. Food Microbiol. 2001, 67: 207-216.
    Gorbach S.L., Chang T.W., Goldin B. Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG [J]. Lancet. 1987, 26: 1519.
    Gronlund M.M., Arvilommi H., Kero P., et al. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months [J]. Arch. Dis. Child Fetal. Neonatal. Ed. 2000, 83: F186-F192.
    Gu R.X., Yang Z.Q., Li Z.H., et al. Probiotic properties of lactic acid bacteria isolated from stool samples of longevous people in regions of Hotan, Xinjiang and Bama, Guangxi, China [J]. Anaerobe. 2008, doi:10.1016/j.anaerobe.2008.06.001
    Guarner F., Malagelada J.R. Gut flora in health and disease [J]. Lancet. 2003, 361: 512-519.
    Guarner F., Shaafsma G.J. Probiotics [J]. Int. J. Food Microbiol. 1998, 39: 237-238.
    Haller D., Blum S., Bode C., et al. Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets [J]. Infect. Immun. 2000, 68: 752-759.
    Haller D., Serrant P., Granato D., et al. Activation of human NK cells by staphylococci and lactobacilli requires cell contact-dependent costimulation by autologous monocytes [J]. Clin. Dlagnostic Lab. Immunol. 2002, 9: 649-657.
    Harmsen H.J., Wildeboer-Veloo A.C., Raangs G.C., et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods [J]. J. Pediatr. Gastroenterol. Nutr. 2000, 30: 61-67.
    Hartemink R., Domenech V.R., Rombouts F.M. LAMVAB—A new selective medium for the isolation of lactobacilli from faeces [J]. J. Microbiol. Meth. 1997, 29: 77-84.
    Hatakka K., Holma R., El-Nezami H., et al. The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon [J]. Int. J. Food Microbiol. 2008, 128: 406-410.
    He F., Morita H., Kubota A., et al. Effect of orally administered non-viable Lactobacillus cells on murine humoral immune responses [J]. Microbiol. Immunol. 2005, 49: 993-997.
    Hemmi H., Takeuchi O., Kawai T., et al. A toll-like receptor recognizes bacterial DNA [J]. Nature. 2000, 408: 740- 745.
    Henriksson A., Szewzyk R., Conway P. Characteristics of the adhesive determinants of Lactobacillus fermentum 104 [J]. Appl. Environ. Microb. 1991, 57: 499-502.
    Hessle C., Andersson B., Wold A.E. Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production [J]. Infect. Immun. 2000, 68: 3581-3586.
    Hessle C., Hanson L.A., Wold A.E. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production [J]. Clin. Exp. Immunol. 1999, 116: 276-282.
    Heumann D., Barras C., Severin A., et al. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes [J]. Infect. Immun. 1994, 62: 2715-2721.
    Hirai O., Fujitsu T., Mori J., et al. Antitumor activity of purified arabinogalactanpeptidoglycan complex of the cell wall skeleton of Rhodococcus lentifragmentus [J]. J. Gen. Microbiol. 1987: 133: 369-373.
    Hirayama K., Rafter J. The role of lactic acid bacteria in colon cancer prevention: mechanistic considerations [J]. Anton. Leeuw. 1999, 76: 391-394.
    Hirayama K., Rafter J. The role of probiotic bacteria in cancer prevention [J]. Microbiol. Infect. 2000, 2: 681-686.
    Hirose Y., Murosaki S., Yamamoto Y., et al. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults [J]. J. Nutr. 2006, 136: 3069-3073.
    Holzapfel W.H., Haberer P., Snel J., et al. Overview of gut flora and probiotics [J]. Int. J Food Microbiol. 1998, 41: 85-101.
    Hong W.S., Chen H.C., Chen Y.P., et al. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage [J]. Int. Dairy J. 2009, 19: 244-251.
    Huang L.Y., Krieg A.M., Eller N., et al. Induction and regulation of Th1-inducing cytokines by bacterial DNA, lipopolysaccharide, and heat-inactivated bacteria [J]. Infect. Immun. 1999, 67: 6257-6263.
    Iliev I.D., Kitazawa H., Shimosato T., et al. Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern [J]. Cell Microbiol. 2005, 7: 403-414.
    Iliev I.D., Tohno M., Kurosaki D., et al. Immunostimulatory oligodeoxynucleotide containing TTTCGTTT motif from Lactobacillus rhamnosus GG DNA potentially suppresses OVA-specific IgE production in mice [J]. Scand. J. Immunol. 2008, 67: 370-376.
    Imai K., Matsuyama S., Miyake S., et al. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population [J]. Lancet. 2000, 356: 1795-1799.
    Isolauri E. Probiotics [J]. Best Pract. Res. Cl. Ga. 2004, 18: 299-313.
    Isolauri E., Sütas Y., Kankaanp?? P., et al. Probiotics: effects on immunity [J]. Am. J. Clin. Nutr. 2001, 73 (suppl): 444S-450S.
    Jacobsen C.N., Rosenfeldt Nielsen V., Hayford A.E., et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans [J]. Appl. Environ. Microb. 1999, 65: 4949-4956.
    Jeong S.Y., Park S.Y., Kim Y.H., et al. Cytotoxicity and apoptosis induction of Bacillus vallismortis BIT-33 metabolites on colon cancer carcinoma cells [J]. J. Appl. Microbiol. 2008, 104: 796-807.
    Kaila M., Isolauri E., Soppi E., Virtanen, E., Laine, S. And Arvilommi, H. Enhancement of the circulating antibody secreting cell response in human diarrhoeaby a human Lactobacil1us strain [J]. Pediatr. Res. 1992, 32: 141-144.
    Kalka-Moll W.M., Tzianabos A.O., Bryant P.W., et al. Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions [J]. J. Immunol. 2002, 169: 6149-6153.
    Kato I., Tanaka K., Yokokura T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γby mouse splenocytes [J]. Int. J. Immunopharmacol. 1999, 21: 121-131.
    Kato I., Tanaka K., Yokokura T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γby mouse splenocyte [J]. Int. J. Immunopharmacol. 1999, 21: 121-131.
    Kayser H., Meisel H. Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins [J]. FEBS Lett. 1996, 383: 18-20.
    Kelly D., King T., Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity [J]. Mutat. Res. 2007, 622: 58-69.
    Kim J.Y., Woo H.J., Kim Y.S., et al. Screening for antiproliferative effects of cellular components from lactic acid bacteria against human cancer cell lines [J]. Biotechnol. Lett. 2002, 24: 1431-1436.
    Kirjavainen P.V., Tuomola E.M., Crittenden R.G., et al. In vitro adhesion and platelet aggregation properties of bacteremia-associated lactobacilli [J]. Infect Immun. 1999, 67: 2653- 2655.
    Kitazawa H., Itoh T., Tomioka Y., et al. Induction of IFN-γand IL-1αproduction in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris [J]. Int. J. Food Microbiol. 1996, 31: 99-106.
    Kitazawa H., Itoh T., Yamaguchi T. Induction of macrophage cytotoxicity by slime products produced by encapsulated Lactococcus lactis ssp. cremoris [J]. Anim. Sci. Technol. 1991, 62: 861-866.
    Kitazawa H., Ueha S., Itoh S., et al. AT oligonucleotides inducing B lymphocyte activation exist in probiotic Lactobacillus gasseri [J]. Int. J. Food Microbiol. 2001, 65: 149-162.
    Kitazawa H., Watanabe H., Shimosato T., et al. Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6 [J]. Int. J. Food Microbiol. 2003, 85, 11-22.
    Kitazawa H., Yamaguchi T., Miura M., et al. B-cell mitogen produced slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, Viili [J]. J. Dairy Sci. 1993, 76: 1514-1519.
    Klinman D.M., Currie D., Gursel I., et al. Use of CpG oligodeoxynucleotides as immune adjuvants [J]. Immunol. Rev. 2004, 199: 201-216.
    Koller V.J., Marian B., Stidl R., et al. Impact of lactic acid bacteria on oxidative DNA damage in human derived colon cells [J]. Food Chem. Toxicol. 2008, 46: 1221-1229.
    Końca K., Lankoff A., Banasik A. A cross-platform public domain PC image-analysis program for the comet assay [J]. Mutat. Res. 2003, 534: 15-20.
    Kulkarni N., Reddy B.S. Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial β-glucuronidase [J]. Proc. Soc. Exp. Biol. Med. 1994, 207: 278-283.
    Kumura H., Tanoue Y., Tsukahara M., et al. Screening of dairy yeast strains for probiotic applications [J]. J. Dairy Sci. 2004, 87: 4050-4056.
    Lammers K.M., Helwig U., Swennen E., et al. Effect of probiotic strains on interleukin 8 production by HT29/19A cells [J]. Am. J. Gastroenterol..2002, 97: 1182–1186.
    Lammers K.M., Brigidi P., Vitali B., et al. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells [J]. FEMS Immunol. Med. Mic. 2003, 38: 165-172.
    Lankaputhra W.E.V., Shah N.P. Antimutagenic properties of probiotic bacteria and of organic acids [J]. Mutat. Res. 1998, 397: 169-182.
    Lebeer S., Vanderleyden J., De Keersmaecker S.C.J. Genes and molecules of lactobacilli supporting probiotic action [J]. Microbiol. Mol. Biol. R. 2008, 72: 728-764.
    LeBlanc J.G., Matar C., Valdez J.C., et al. Immunomodulating effects of peptidicfractions issued from milk fermented with Lactobacillus helveticus [J]. J. Dairy Sci. 2002, 85: 2733-2742.
    Lee J.W., Shin J.G., Kim E.H., et al. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum [J]. J. Vet. Sci. 2004, 5: 41-48.
    Lidbeck A., Geltner-Allinger U., Orrhage K.M., et al. Impact of Lactobacillus acidophilus supplements on the faecal microflora and soluble faecal bile acids in colon cancer patients [J]. Microb. Ecol. Health Disease. 1991, 4: 81-88.
    Lievin V., Peiffer I., Hudault S., et al. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity [J]. Gut. 2000, 47: 646-652.
    Lowry O.H., Rosebrough N.J., Farr A.L., et al. Protein measurement with the folin phenol reagent [J]. J. Biol. Chem. 1951, 193: 265-275
    Maassen C.B., van Holten-Neelen C., Balk F., et al. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains [J]. Vaccine. 2000, 18: 2613-2623.
    Majamaa H., Isolauri E., Saxelin M., et al. Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis [J]. J. Pediatr. Gastr. Nutr. 1995, 20: 333-338.
    Makino S., Ikegami S., Kano H., et al. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 [J]. J. Dairy Sci. 2006, 89: 2873-2881.
    Galdeano C.M., De Moreno De LeBlanc A., Vinderola G., et al. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria [J]. Clin. Vaccine Immunol. 2007, 14: 485-492.
    Manjunath N., Ranganathan B. A cytotoxic substance produced by a wild culture of Lactobacillus casei D-34 against tumor cells [J]. Indian J. Exp. Biol. 1989, 27: 141-145.
    Maragkoudakis P.A., Zoumpopoulou G., Miaris C., et al. Probiotic pontential of Lactobacillus strains isolated from dairy products [J]. Int. Dairy J. 2006, 16: 189-199.
    Marinova S., Tchorbadjiiska L., Petrunov B. Immunostimulating and protective effects of an oral polybacterial immunomodulator‘Dentavax’in a rabbit experimental model [J]. Int. J. Immunopharmacol. 2000, 22: 843-854.
    Marin M.L., Lee J.H., Murtha J., et al. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria [J]. J. Dairy Sci. 1997, 80: 2713-2720.
    Marteau P., Pochart P., Dore J., et al. Comparative study of bacterial groups within the human cecal and fecal microbiota [J]. Appl. Environ. Microbiol. 2001, 63: 4939-4942
    Martin R., Jimenez E., Olivares M., et al. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair [J]. Int. J. Food Microbiol. 2006, 112: 35-43.
    Mathara J.M., Schillinger U., Kutima P.M., et al. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya [J]. Int. J. Food Microbiol. 2004, 94: 269-278.
    Matsumoto S., Hara T., Hori T., et al. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the downregulation of pro-inflammatory cytokines in lamina propria mononuclear cells [J]. Clin. Exp. Immunol. 2005, 140: 417-426.
    Matsuzaki T. Immunomodulation by treatment with Lactobacillus casei strain Shirota [J]. Int. J. Food Microbiol. 1998, 41: 133-140.
    Matsuzaki T., Chin J. Modulating immune responses with probiotic bacteria [J]. Immunol. Cell Biol. 2000, 78: 67-73.
    Matsuguchi T., Takagi A., Matsuzaki T., et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activitives in macrophages through Toll-like receptor 2 [J]. Clin. Diagn. Lab. Immunol. 2003, 10: 259-266.
    Mattila-Sandholm T., Blum S., Collins J. K., et al. Probiotics: towards demonstrating efficacy [J]. Trends Food Sci. Tech. 1999, 10: 393-399.
    McIntosh G.H., Royle P.J., Playne M.J. A probiotic strain of L.acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats [J]. Nutr.Cancer. 1999, 35: 153-159.
    Menard S., Candalh C., Bambou J.C., et al. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport [J]. Gut. 2004, 53: 821-828.
    Meydani S.N., Ha W.K. Immunologic effects of yogurt [J]. Am. J. Clin. Nutr. 2000, 71: 861-872.
    Miettinen M., Matikainen S., Vuopio-Varkila J., et al. Lactobacilli and streptococci induce interleukin-12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells [J]. Infect. Immun. 1998, 66: 6058-6062.
    Miettinen M., Vuopio-varkila J., Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria [J]. Infect. Immun. 1996, 64: 5403-5405.
    Modler G.W., McKellar R.C., Yaguchi M. Bifidobacteria and bifidogenic factors [J]. Can. Institute Food Sci. Technol. J. 1990, 23: 29-41.
    Mohamadzadeh M., Olson S., Kalina W.V., et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization [J]. Proc. National Acad. Sci. U.S.A. 2005, 102: 2880-2885.
    Morelli L. In vitro assessment of probiotic bacteria: from survival to functionality [J]. Int. Dairy J. 2007, doi:10.1016/j.idairyj.2007.01.015
    Morimoto K., Takeshita T., Nanno M., et al. Modulation of natural killer cell activity by supplementation of fermented milk containing Lactobacillus casei in habitual smokers [J]. Prev. Med. 2005, 40: 589-594.
    Morotomi M., Mutai M. In vitro binding of potent mutagenic pyrolyzates to intestinal bacteria [J]. J.Natl.Cancer Inst. 1986, 77: 195-201.
    Murosaki S., Yamamoto Y., Ito K., et al. Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice [J]. J. Allergy Clin. Immunol. 1998, 102: 57-64.
    Muyanja C.M.B.K., Narvhus J.A., Treimo J., et al. Isolation, characterization and identification of lactic acid bacteria from bushera a Ugandan traditional fermented beverage. [J] Int. J. Food Microbiol. 2003, 80: 201-210.
    Nader De Macias M.E., Apella M.C., Romero N.C., et al. Inhibition of Shigella sonnei by Lactobacillus casei and Lact. acidophilus [J]. J. Appl Bacteriol. 1992, 73: 407-411.
    Nagao F., Nakayama M., Muto T., et al. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy subjects [J]. Biosci. Biotechnol. Biochem. 2000, 64: 2706-2708.
    Nagata S. Apoptotic DNA fragmentation [J]. Exp. Cell Res. 2000, 256: 12-18.
    Naidu, A. S., Bidlack W.R., Clemens R.A.. Probiotic spectra of lactic acid bacteria [J]. Crit. Rev. Food Sci. Nutr 1999, 39:13-126.
    Ng S.C., Hart A.L., Kamm M.A., et al. Mechanisms of action of probiotics: recent advances [J]. Inflamm. Bowel. Dis. 2009, 15: 300-310.
    O’Mahony L., O’Callaghan L., McCarthy J., et al. Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans [J]. Am. J. Physiol. Gastrointest Liver Physiol. 2006, 290: 839-845.
    Oda M., Hasegawa H., Komatsu S., et al. Anti-tumor polysaccharide from Lactobacillus sp [J]. Agric. Biol. Chem. 1983, 47: 1623-1625.
    Ogata K, An E, Shioi Y, et al. Association between natural killer cell activity and infection in immunologically normal elderly people [J]. Clin. Exp. Immunol. 2001, 124: 392-397.
    Ogawa T., Asai Y., Tamai R., et al. Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran [J]. Clin. Exp. Immunol. 2005, 143: 103-109.
    Ogawa T., Hashikawa S., Asai Y., et al. A new symbiotic, Lactobacillus casei subsp.casei together with dextran, reduces murine and human allergic reaction [J]. FEMS Immunol. Med. Microbiol. 2006, 46: 400-409.
    Ohashi Y., Nakai S., Tsukamoto T., et al. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer [J]. Urol. Int. 2002, 68: 273-280.
    Orrhage K., Sillerstrom E., Gustafsson J.?., et al. Binding of mutagenic heterocyclicamines by intestinal and lactic acid bacteria [J]. Mutat. Research. 1994, 311: 239-248.
    Ortu S., Felis G.E., Marzotto M., et al. Identification and functional characterization of Lactobacillus strains isolated from milk and Gioddu, a traditional Sardinian fermented milk [J]. Int. Dairy J. 2007, doi:10.1016/j.idairyj.2007.02.008.
    Ouwehand A.C., Nieni P., Salminen S.J. The normal faecal microflora does not affect the adhesion of probiotic bacteria in vitro [J]. FEMS Microbiol. Lett. 1999, 177: 35-38.
    Ouwehand A.C., Kirjavainen P.V., Shortt C., et al. Probiotics: mechanisms and established effects [J]. Int. Dairy J. 1999b, 9: 43-52.
    Pan X., Chen F., Wu T., et al. The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT [J]. Food Control. 2009, 20: 598-602.
    Parracho H.M.R.T., Bingham M.O., Gibson G.R., et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children [J]. J. Med. Microbiol. 2005, 54: 987-991.
    Paturi G., Phillips M., Jones M., et al. Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice [J]. Int. J. Food Microbiol. 2007, 115: 115-118.
    Perdigon G., Alvarez S. Probiotics and the immune state. In: Probiotics, the scientific basis (Fuller R. Ed) Chapman and Hall, London. 1992, 146-176.
    Perdigon G., Nader de Macias M.E., Alvarez S., et al. Effect of perorally administered lactobacilli on macrophage activation in mice [J]. Infect Immun. 1986, 53: 404-410.
    Perdigón G., Vintini E., Alvarez S., et al. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria [J]. J. Dairy Sci. 1999, 82: 1108-1114.
    Pahwa A., Mathur B.N. Assessment of a bifidus containing infant formula. Part II. Implantation of Bifidobacterium bifidum [J]. Indian J. Dairy Sci. 1987, 40: 364-367.
    Pochard P., Gosset P., Grangette C., et al. Lactic acid bacteria inhibit TH2 cytokineproduction by mononuclear cells from allergic patients [J]. J. Allergy Clin Immunol. 2002, 110: 617-623.
    Puertollano E., Puertollano M.A., Cruz-Chamorro L., et al. Effects of concentrated supernatants recovered from Lactobacillus plantarum on Escherichia coli growth and on the viability of a human promylocytic cell line [J]. J. Appl. Microbiol. 2009, 106: 1194-1203.
    Rachmilewitz D., Katakura K., Karmeli F., et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis [J]. Gastroenterology. 2004, 126: 520-528.
    Rafter J. Probiotics and colon cancer [J]. Best Pract. Res. Cl. Ga. 2003, 17: 849-859.
    Raitano A., Korc M. Growth inhibition of a human colorectal carcinoma cell line by interleukin-1 is associated with enhanced expression of interferon receptors [J]. Cancer Res. 1993, 53: 636-640.
    Ramiah K., Carol A van Reenen, Leon MT Dicks. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis [J]. Res. Microbiol. 2008, 150: 470-475.
    Reddy B. Prevention of colon cancer by pre-and probiotics: evidence from laboratory studies [J]. Brit. J. Nutr. 1998, 80: S219-S223.
    Reddy B.S., Rivenson A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo [4, 5-f] quinoline, a food mutagen [J]. Cancer Res. 1993, 53: 3914-3918.
    Reid G. The scientific basis for probiotic strains of Lactobacillus [J]. Appl. Environ. Microbiol. 1999, 65: 3763-3766.
    Reid G., Jass J., Sebulsky M.T., et al. Potential uses of probiotics in clinical practice [J]. Clin. Microbiol. Rev. 2003, 16: 658-672.
    Rhee K.J., Sethupathi P., Driks A., et al. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire [J]. J. Immunol. 2004, 172: 1118-1124.
    Roman M., Martin-Orozco E., Goodman J. S., et al. Immunostimulatory DNA sequences function as T helper-1 promoting adjuvants [J]. Nat. Med. 1997, 3: 849-854.
    Ruiz-Moyano S., Martin A., Benito M.J., et al. Screening of lactic acid bacteria and bifidobacteria for potential probiotic use in iberian dry fermented sausages [J]. Meat Sci. 2008, doi: 10.1016/j.meatsci. 2008.03.01 1.
    Russo F., Orlando A., Linsalata M., et al. Effects of Lactobacillus Rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells [J]. Nutr. Cancer. 2007, 59: 106-114.
    Saarela M., L?hteenm?ki L., Crittenden R., et al. Gut bacteria and health foods—the European perspective [J]. Int. J. Food Microbiol. 2002, 78: 99-117.
    Sakamoto K., Konishi K. Antitumor effect of normal microflora on Ehrlich Ascites [J] Tumor. Jpn. J. Cancer Res. 1988, 79: 109-116.
    Salinas I., Meseguer J., Esteban M.A. Antiproliferative effects and apotosis induction by probiotic cytoplasmic extracts in fish cell lines [J]. Vet. Microbiol. 2008, 126: 287-294.
    Sashihara T., Sueki N., Ikegami S. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases [J]. J. Dairy Sci. 2006, 89: 2846-2855.
    Sawamura A., Yamaguchi Y., Toge T., et al. Enhancement of immuno-activities by oral admistration of Lactobacillus casei in colorectal cancer patients [J]. Biotherapy. 1994, 8: 1567-1572.
    Schiffrin E.J., Brassart D., Servin A.L, et al. Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection [J]. Am.J. Clin. Nutr. 1997, 66: 515S-520S.
    Schiffrin E.J., Rochat F., Link-Amster H., et al. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria [J]. J. Dairy Sci. 1995, 78: 491-497.
    Schwandner R., Dziarski R., Wesche H. Peptidoglycan- and lipoteichoic acidinduced cell activation is mediated by toll-like receptor 2 [J]. J Biol Chem 1999, 274:1746-1749.
    Sekine K., Toida T., Saito M., et al. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice [J]. Cancer Res. 1985, 45: 1300-1307.
    Seow S.W., Rahmat J.N.B., Mohamed A.A.K., et al. Lactobacillus species is more cytotoxic to human bladder cancer cells than Mycobacterium bovis (Bacillus calmette-guerin) [J]. J. Urol. 2002, 168: 2236-2239.
    Shah N.P. Functional cultures and health benefits [J]. Int. Dairy J. 2007, doi:10.1016/j.idairyj.2007.01.014.
    Sheih Y.H., Chiang B.L., Wang L.H., et al. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001 [J]. J. Am. Coll. Nutr. 2001, 20: 149-156.
    Shida K., Takahashi R., Iwadate E., et al. Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model [J]. Clin. Exp. Allergy. 2002, 32: 563-570.
    Shida K., Suzuki T., Kiyoshima-Shibata J., et al. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity [J]. Clin. Vaccine Immunol. 2006, 13: 997-1003.
    Shornikova A.V., Casas I.A., Isolauri E., et al. Lactobacillus reuteri as a therapeutic agent in acute diarrhoea in young children [J]. J. Pediatr. Gastroenterol. Nutr. 1997, 24: 399-404.
    Silvi S., Verdenelli M.C., Orpianesi C., et al. Isolation and identification of Lactobacillus and Bifidobacterium strains from faecal samples of elderly subjects for a possible probiotic use in functional foods [J]. J. Food Eng. 2003, 56: 195-200.
    Singh J., Rivenson A., Tomita M., et al. Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis [J]. Carcinogenesis. 1997, 18: 833-841.
    Solis Pereyra B., Lemonnier D. Induction of human cytokines by bacteria used in dairy foods [J]. Nutr. Res. 1993, 13: 1127-1140.
    Spanhaak S., Havenaar R., Schaafsma G. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur. J. Clin. Nutr. 1998, 52: 899-907.
    Sreekumar O., Hosono A. Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and Bifidobacterium longum cells to amino acid pyrolozates [J]. J. Dairy Sci. 1998, 81: 1508-1516.
    Sun S., Zhang X., Tough D.F., et al. Type I interferon-mediated stimulation of T cells by CpG DNA [J]. J. Exp. Med. 1998, 188: 2335-2342.
    Taguchi H., Takahashi M., Yamaguchi H., et al. Experimental infection of germ-free mice with hyper-toxigenic enterohaemorrhagic Escherichia coli O157:H7, strain 6. J. Med. Microbiol. 2002, 51: 336-343.
    Takagi A., Matsuzaki T., Sato M., et al. Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism [J]. Carcinogenesis. 2001, 22: 599-605.
    Takaishi H., Matsuki T., Nakazawa A., et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease [J]. Int. J. Med. Microbiol. 2007, doi:10.1016/j.ijmm.2007.07.016.
    Takeda K., Suzuki T., Shimada S.I., et al. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota [J]. Clin. Exp. Immunol. 2006, 146: 109-115.
    Takeuchi H., Maehara Y., Tokunaga E., et al. Prognostic significance of natural killer cell activity in patients with gastric carcinoma: A multivariate analysis, Am. J. Gastroenterol. 2001, 96: 574-578.
    Temmerman R., Scheirlinck I., Huys G., et al. Culture-independent analysis of probiotic products by denaturing gradient gel electrophoresis [J]. Appl. Environ. Microb. 2003, 69: 220-226.
    Thirabunyanon M., Boonprasom P., Niamsup P. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferration of colon cancercells [J]. Biotechnol. Lett. 2009, 31: 571-576.
    Tomita K., Akaza H., Nomoto K., et al. Influence of Lactobacillus casei on rat bladder carcinogenesis [J]. Jpn. J. Urol. 1994, 85: 655-663.
    Trejoa F.M., Minnaard J., Perez P.F., et al. Inhibition of Clostridium difficile growth and adhesion to enterocytes by Bifidobacterium supernatants [J]. Anaerobe. 2006, 12: 186-193.
    Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes [J]. Blood. 1994, 84: 4008-4027.
    Trinchieri G., Gerosa F. Immunoregulation by interleukin-12 [J]. J. Leukoc. Biol. 1996, 59: 505-511.
    Tsai Y.T., Cheng P.C., Fan C.K., et al. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU101 [J]. Int. J. Food Microbiol. 2008, 128: 219-225.
    Tuomola E.M., Ouwehand A.C., Salminen S.J. Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics [J]. Lett. Appl. Microbiol. 1999, 28: 159-163.
    Tzianabos A.O., Finberg R.W., Wang Y., et al. T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria [J]. J. Biol. Chem. 2000, 275: 6733.
    Vaarala O. Immunological effects of probiotics with special reference to lactobacilli [J]. Clin. Exp. Allergy. 2003, 33: 1634-1640.
    Valeur N., Engel P., Carbajal N. et al. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract [J]. Appl. Environ. Microbiol. 2004, 70: 1176-1181.
    Varcoe J.J. Lactobacillus acidophilus NCFM: an evaluation of its probiotic properties [D]. USA: The University of Minnesota, 2003: 97-98.
    Vesely R., Negri R., Bianchi Salvadori B.B., et al. Influence of a diet additioned with yogurt on the immune system [J]. EOS J. Immunol. Immunopharmacol. 1985, 1: 30-35.
    Vinderola C.G., Perdigón G., Duarte J., et al. Effects of the oral administration of the products derived from milk fermentation by kefir microflora on the immune stimulation [J]. J. Dairy Res. 2006, 73: 472-479.
    Vinderola G., Matar C., Perdigón G. Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice [J].Immunobiology. 2007a, 212: 107-118.
    Vinderola G., Matar C., Palacios J., et al. Mucosal immunomodulation by the non-bacterial fraction of milk fermented by Lactobacillus helveticus R389 [J]. Int. J. Food Microbiol. 2007b, 115: 180-186.
    Watson J.L., McKay D.M. The immunophysiological impact of bacterial CpG DNA on the gut [J]. Clin. Chim. Acta. 2006, 364: 1-11.
    Wold A.E. Immune effects of probiotics [J]. Scand. J. Nutr. 2001, 45: 76-85.
    Wollowski I., Ji S.T., Bakalinsky A.T., et al. Bacteria used for the production of yogurt inactivate carcinogens and prevent DNA damage in the colon of rats [J]. J. Nutr. 1999, 129: 77-82.
    Woodmansey E.J. Intestinal bacteria and ageing [J]. J. Appl. Microbiol. 2007, 102: 1178-1186.
    Yasui H., Kiyoshima J., Hori T., et al. Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064 [J]. Clin. Diagn. Immunol. 1999, 6: 186-192.
    Yi H.X., Zhang L.W., Tuo Y.F., et al. A novel method for rapid detection of class IIa bacteriocin-producing lactic acid bacteria [J]. Food Control. 2010, 21: 426-430.
    Yoshimura A., Lien E., Ingalls R.R., et al. Recognition of gram-positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2 [J]. J. Immunol. 1999, 163: 1-5.
    You H.J., Oh D.K., Ji G.E. Anticancerogenic effect of a novel chiroinositol-containing polysaccharide from Bifidobacterium bifidum BGN4 [J]. FEMS Microbiol. Lett. 2004, 240: 131-136.
    Zanini K., Marzotto M., Castellazzi A., et al. The effects of fermented milks withsimple and complex probiotic mixtures on the intestinal microbiota and immune response of healthy adults and children [J]. Int. Dairy J. 2007, 17: 1332-1343.
    Zhang L., Li N., Caicedo R., et al. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor—indumed interleukin-8 production in Caco-2 cells [J]. J. Nutr. 2005, 135: 1752-1756.
    Zhang X. B., Ohta Y. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens [J]. J. Dairy Sci. 1991, 74, 1477-1481.
    Zhang X.B., Ohta Y., Hosono A. Antimutagenicity and binding of lactic acid bacteria from a Chinese cheese to mutagenic pyrolyzates [J]. J. Dairy. Sci. 1990, 73: 2702-2710.
    Zoumpopoulou G., Foligne B. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models [J]. Int. J. Food Microbiol. 2008, 121: 18-26.
    敖敦格日勒.科尔沁草原牧区牛乳乳酸菌生物学特性研究[D].呼和浩特:内蒙古农业大学, 2001.
    陈忠军.内蒙古河套地区酸粥中发酵菌生物学特性研究[D].呼和浩特:内蒙古农业大学, 2001.
    雷霞.伊敏河和海拉尔河两岸牧乳及乳制品中益生乳酸菌的分离鉴定及体外筛选[D].呼和浩特:内蒙古农业大学, 2005.
    李迎雪,杨林,王立生.双歧杆菌的完整肽聚糖对巨噬细胞AP-1的影响确[J].中国微生态学杂志. 2007, 19 (2): 129-131.
    凌代文.乳酸菌分离鉴定手册[M].北京:轻工业出版社. 1995.
    孙进,施用晖,乐国伟,等.乳酸杆菌通过定植和提供免疫信号调节宿主免疫反应[J].科技导报. 2006, 24 (2): 43~46.
    孙天松.中国新疆地区传统发酵酸马奶的化学组成及乳酸菌生物多样性研究[D].呼和浩特:内蒙古农业大学, 2006.
    王立平.内蒙古传统酸马奶酒中乳杆菌潜在益生特性的研究[D].呼和浩特:内蒙古农业大学, 2005.
    王立生,朱惠明,杨林.双歧杆菌的完整肽聚糖对巨噬细胞产生IL-18的影响[J].中国微生态学杂志. 2004, 16 (4): 195-196.
    徐杰.青海部分地区自然发酵酸牦牛奶的化学与微生物组成分析及乳酸菌的分离鉴定[D].呼和浩特:内蒙古农业大学, 2006.
    燕平梅,张慧,薛文通,等. 16SrRNA基因序列方法分析传统发酵菜中乳酸菌多样性[J].中国食品学报. 2007, 7: 119-123.
    袁清珠.都尔伯特半荒漠草原牧区绵山羊乳及乳制品中乳酸菌的生物学特性的研究[D].呼和浩特:内蒙古农业大学, 2001.
    张英春,张兰威,王静.益生菌功能特性研究[J].中国乳品工业. 2006, 34 (2): 13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700