C_2~C_4醇类燃料的热解及低温等离子体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用同步辐射真空紫外单光子电离、分子束取样和反射式时间质谱相结合的技术,详细地研究生物质醇类燃料(C_2~C_4醇)的热解反应及低温等离子体放电反应。
     在第一章中,首先阐述了开展生物质燃料热解研究的重要性和必要性。简要介绍了一些与热解相关的概念。综述和评价了热解研究中的实验方法,与其它的热解诊断方法相比较,分子束质谱结合可调的真空紫外光电离技术有更多的优点,这包括:高的信噪比、软电离以及在很宽的范围内连续可调的光子能量。这些优点将有利于热解反应中各物种的鉴定和浓度测量。
     在第二章中,主要介绍了热解研究所用的实验装置。首先介绍了同步辐射的优点和特点,国家同步辐射实验室储存环和U10和U14C的结构性能和相关参数,并介绍了U14C光束线新增加的气体滤波器。然后,描述了实验站的工作原理和实验程序。最后,简单介绍热解研究中用到的一些理论计算方法。
     在第三章中,我们研究了低压条件下的乙醇热解反应:(1)通过测量和分析热解产物的光电离效率谱,鉴定了稳定的生成物和不稳定的自由基,并区分了它们的同分异构体。产物包括H_2、CH_3、CH_4、H2_O、C_2H_2、C_2H_4、CO、H_2CO、C_3H_4、C_2H_2O、C_2H_4O、C_2H_4O、C_4H_6和C_4H_8;(2)通过选择合适的光子能量以保证近阈值电离,测量了每一种产物随温度变化的曲线,从而推导出了它们的摩尔分数曲线;(3)用G383的方法对乙醇解离通道和消耗反应路径进行了理论计算,结合实验数据,详细分析了热解产物的生成机理。
     在第四章中,我们讨论了低压条件下的C_3系列醇——正/异丙醇的热解反应,并结合理论计算结果,详细分析了产物的形成机理。并概括了正/异丙醇热解反应的异同点。总体来看,两者的“同”在于:在低温时,以母体脱H_2O生成丙烯的反应为主;在高温时,自由基参与的分解反应及其引发的链式反应占主导地位;至于H_2消去和CH_4消去反应,与母体解离反应及自由基参与反应相竞争。至于两者热解产物的种类不同,浓度不同,出现温度和最高浓度对应温度的不同,理论计算给出了合理的解释。归根到底,这些不同的原因是由热解母体正/异丙醇的结构的不同所致,特别是与羟基的位置有直接关系。
     在第五章中,我们探测了低压条件下的C_4系列醇——正/仲/异/叔丁醇的热解反应:确定了热解产物的具体结构,推导出了它们的摩尔分数曲线。并结合G3B3的理论计算结果,讨论了热解产物的反应通道。同时比较了四种丁醇中产生的热解产物及其形成机理的异同点。结果表明:比较容易产生的物质来自于热解的初级反应,包括四元环消去反应和直接的母体解离反应;由热解初级反应产生的热解产物的种类不同,浓度不同,出现温度和最高摩尔分数对应的温度的不同,是由热解母体丁醇的结构所致;而由二次及多次反应生成的物质往往比较相似,与母体丁醇的结构关系不大。
     在第六章中,我们利用低温等离子体条件模拟星际等离子体环境,特别是恒星形成区域的热核环境,并将同步辐射单光子电离技术作为一种等离子体化学诊断的新方法,在醇类物质的等离子体介质阻挡放电过程中探测到了C_2至C_4系列的烯醇。研究发现,放电过程中产生的烯醇及其醛类和酮类的同分异结构体与醇类母体在分子结构上,特别是碳链中羟基的位置上具有很强的关联性。这表明烯醇等不饱和含氧有机分子可以由醇类物质直接在等离子体环境中产生,结合近年来在星际环境中对乙烯醇及醇类物质的检测,可以推断出更大的烯醇——丙烯醇和丁烯醇在星际环境中存在的可能性。这些实验结果对判断星际物质中新的化学分子及其生成途径有重要的指导意义。
In this dissertation, the pyrolysis and cold plasma discharges of biomass fuels, including C_2, C_3 and C_4 alcohols, have been investigated by the tunable synchrotron vacuum ultraviolet (VUV) photoionization combined with molecular-beam mass spectrometry (MBMS).
     In the first chapter, the importance and necessity of pyrolysis studies of biomass fuels are described. Some basic concepts related to pyrolysis are briefly introduced. The development of the experimental methods on pyrolysis diagnostic technology is reviewed and evaluated. The advantages of tunable synchrotron VUV photoionization combined with molecular beam mass spectrometry offer significant improvements over previous methods, which are superior signal-to-noise, soft ionization, and tunability of photon energy for isomeric identification of complex pyrolysis products.
     In Chapter 2, the experiment setup of pyrolysis is introduced in detail. Firstly, the advantages of synchrotron radiation light source, the parameters of storage ring of National Synchrotron Radiation Laboratory (NSRL) and the structures of U10 and U14C beamlines are presented. Secondly, the operation principle of the endstation and the experimental procedures are described. Finally, the theoretical methods used in this thesis are briefly introduced.
     In Chapter 3, the pyrolysis study of ethanol at low pressure is presented in detail. Products Observed from ethanol pyrolysis, including H_2、CH_3、CH_4、H_2O、C_2H_2、C_2H_4、CO、H_2CO、C_3H_4、C_2H_2O、C_2H_4O、C_2H_4O、C_4H_6 and C_4H_8, are identified unambiguously by measurements of photoionization efficiency spectra. Mole fraction profiles of these pyrolysis species are measured at the selective photon energies near ionization thresholds. The dissociation channels and consumption reactions of ethanol are calculated by ab initio Gaussian-3 (G3) procedure. The experimental results are in good agreement with theoretical predictions
     Pyrolysis of C_3 alcohols (1-propanol and 2-propanol) has been studied in Chapter 4. The formation pathways of pyrolysis species are investigated with the help of G3B3 method. In general, the decomposition of the two precursors occurs primarily by the dehydration reaction at low temperature, and the production of radicals becomes dominant and the decomposition reaction is controlled by chain processes at high temperature. Different types of H_2- and CH_4-molecular elimination processes are involved in radical reactions. The pyrolysis species in the two systems are strongly affected by the structures of their precursors, especially the position of OH in 1-/2-propanol.
     Pyrolysis studies of C_4 alcohols including 1-butanol, 2-butanol, i-butanol and t-butanol at low pressure have been reported in Chapter 5. The identification of reaction species, the measurements of mole fraction and the theoretical calculations of decomposition pathways are discussed in detail. The species produced by primary reactions have a strong relationship with the structures of pyrolysis precursors, while the species generated by the secondary reactions are independent of the butanol structures. The dissociation mechanisms of the butanols include complex fission, simple fission and H-atom abstraction, which are in roughly good agreement with previous results.
     In the last chapter, low-pressure cold plasma discharges, which are used to simulate some hot core environments in the star-forming region, have been investigated by employing single-photon vacuum ultraviolet photoionization mass spectrometry. Enols with two to four carbon atoms are detected in plasma discharges of alcohols, indicating that enols can result from alcohol destructions induced by ultraviolet and cosmic radiation and accelerated electrons that are abundant in the interstellar medium. This observation, together with the detection of ethenol toward Sgr B2, suggests that larger enols, such as propenols and butenols, could be in the search list of potential molecular species to be identified in interstellar space. The laboratorial effort presented here shows that VUV photoionization sampling of plasma discharges is a potential method for understanding new interstellar molecules and their formation mechanisms.
引文
1.朱亚杰,孙兴文.能源世界之窗,清华大学出版社,北京,2001:13.
    
    2.袁振宏,吴创之,马隆龙等编著.生物质能利用原理与技术,化学工业出版社,北京, 2005:211.
    
    3.谢克昌,李忠.化工学报,2004,55:6.
    
    4.中国统计年鉴.能源生产与消费,中国统计出版社,北京,2000
    
    5.王孟杰,鲁楠,顾树华.中国生物质能开发利用与战略,中国农业出版社,北京,2000: 139.
    
    6.中国环境总局.2003中国环境质量状况,2003
    
    7.杨中强.当代财经,2002,10:48.
    
    8.Palz,W.能源过程,1997,1:35.
    
    9. Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M., Turkenburg, W. C. Prog. Energ. Combust., 2007, 33: 56.
    
    10.张素平,颜涌捷.生物质制液体燃料的研究(博士学位论文),华东理工大学,上海,2002
    
    11.董良杰.生物质热裂解制取生物油的研究(博士学位论文),浙江大学,杭州,1999
    
    12.Birol,F.,Argiri,M.Energy,1999,24:905.
    
    13.肖波,周英彪,李建芬.生物质能循环经济技术,化学工业出版社,北京,2006:71.
    
    14. Cukierman, A. L., Rocca, P. A. D., Bonelli, P. R., Cassanello, M. C. Trends in Chemical Engineering, 1996, 3: 129.
    
    15. Demirbas, A. Prog. Energ. Combust., 2007,33:1.
    
    16. Kintisch, E. Science, 2007, 315: 747.
    
    17. Atsumi, S., Hanai, T., Liao, J. C. Nature, 2008,451: 86.
    
    18. Reijnders, L. Energ. Policy, 2006, 34: 863.
    
    19. Ekstrom, C. Fundamental of Thermochemical Biomass Conversion, Elsevier Applied Science, London and NewYork, 1985: 601.
    
    20.杨立忠,杨钧锡,别义勋.新能源技术,中国科学技术出版社,北京,1994
    
    21. New and Renewable Energy in China, White Book 1999, State Development and Planning Commission, China Planning Press, 2000
    
    22.姚向君,田宜水,生物质能资源清洁转化利用技术,化学工业出版社,北京,2005
    
    23. Beatrice, C., Bertoli, C., Giacomo, N. D. Combust. Sci. Technol, 1998, 137: 31.
    
    24. Wagner, T., Wyszynski, M. L. Proc. Inst. Mech. Eng.: J. Automob. Eng., 1996, 210: 109.
    
    25. Koshland, C. P. Proc. Combust. Inst., 1996, 26: 2049.
    
    26. Cordero, T., Rodriguez-Maroto, J. M., Rodriguez-Mirasol, J. Thermochimica Acta, 1990, 164: 135.
    
    27. Orfao, J. J. M., Antunes, F. J. A., Figueiredo, J. L. Fuel, 1999, 78: 349.
    
    28.潘丽娜.应用能源技术,2004,2:7.
    
    29. Bridgwater, A. V., Peacocke, G. V. C. Renew. Sust. Energ. Rev, 2000, 4:1.
    
    30. Varhegyi, G., Antal, M. J., Jakab, E., Szabo, P. J. Anal. Appl. Pyrolysis, 42: 73.
    
    31. Gani, A., Naruse, I. Renew. Energ., 2007,32: 649.
    
    32. Cetin, E., Gupta, R., Moghtaderi, B. Fuel, 2005, 84: 1328.
    
    33.神户博太朗.热分析,化学工业出版社,北京,1982:4-6.
    
    34.刘振海.化学分析手册,化学工业出版社,北京,2000:11-23.
    
    35. Unapumnuk, K. A Study of the Pyrolysis of Tire Derived Fuels and an Analysis of Derived Chars and Oils (PhD. Thesis), 2006
    
    36. Song, J. M., Jagannathan, R., Stokes, D. L., Vo-Dinh, T., Hajaligol, M. R. Polycycl. Aromat. Comp., 2003, 23: 429.
    
    37. Wong, D. M., Dagdigian, P. J. Spectrochim. Acta A, 2007, 67: 1019.
    
    38. Keown, D. M., X. Li, J. H., Li, C. Z. Energ. Fuel, 2007,21:1816.
    
    39. Voorhees, K. J. Analytical Pyrolysis: Techniques and Applications, Butterworth, 1984
    
    40. Jensen, A., Dam-Johansen, K., Wojtowicz, M. A., Serio, M. A. Energ. Fuel, 1998, 12: 929.
    
    41. Yang, M., Tsukame, T., Saitoh, H., Shibasaki, Y. Polymer Degratdtion and Stability, 2000,67: 479.
    
    42. Bassilakis, R., Carangelo, R. M., Wojtowicz, M. A. Fuel, 2001, 80: 1765.
    
    43. Marcilla, A., Gomez, A., Menargues, S. J. Anal. Appl. Pyrolysis, 2005, 74: 224.
    
    44. Smyth, K. C., Crosley, D. R. Applied Combustion Diagnostics, Taylor & Francis, New York, 2002
    
    45. Zieba-Palus, J., Zadora, G., Milczarek, J. M. J. Chromatogr. A, 2008,1179: 47.
    
    46. Lizarraga, L., Verdejo, T., Molina, F. V. J. Anal. Appl. Pyrolysis, 2007, 80: 485.
    
    47. Nakra, S., Green, R. J., Anderson, S. L. Combust. Flame, 2006, 144: 662.
    
    48. Brown, A. L., Dayton, D. C., Daily, J. W., Mahalingam, S., Milford, J. Molecular Beam/Mass Spectrometer Analysis of Primary Pyrolysis Products of Black Spruce Fuel Samples from the Frostfire Controlled Burn near Fairbanks Alaska, July 1999, 2000
    
    49. O'Keeffe, P., Scotti, G., Stranges, D., Rodrigues, P., Barros, M. T., Costa, M. L. J. Phys. Chem. A, 2008,112:3086.
    
    50. Moens, L., Evans, R. J., Looker, M. J., Nimlos, M. R. Fuel, 2004, 83: 1433.
    
    51. Weber, K. H., Zhang, J. J. Phys. Chem. A, 2007:11487.
    
    52. Cool, T. A., Mcllroy, A., Qi, F. Rev. Sci. Instrum., 2005, 76: 94102.
    
    53. Qi, F., Yang, R., Yang, B., Huang, C. Q., Wei, L. X., J. Wang, Sheng, L. S., Zhang, Y. W. Rev. Sci. Instrum., 2006, 77: 084101.
    
    54. Huang, C. Q., Yang, B., Yang, R., Wang, J, Wei, L. X., Shan, X. B., Sheng, L. S., Zhang, Y. W., Qi, F. Rev. Sci. Instrum., 2005, 76:126108.
    
    55. Taatjes, C. T., Hansen, N., Mcllroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., Sheng, L., Zhang, Y., Cool, T. A., Wang, J., Westmoreland, P. R., Law, M. E., Rasper, T., Kohse-Hoinghaus, K. Science, 2005, 308: 1887.
    
    56. Cool, T. A., Nakajima, K.., Mostefaoui, T. A., Qi, F., Mcllroy, A., Westmoreland, P. R., Law, M.E., Poisson, L., Peterka, D. S., Ahmed, M. J. Chem. Phys., 2003,119: 8356.
    
    57. Yang, B., OBwald, P., Li, Y, Wang, J., Wei, L., Tian, Z., Qi, F., Koshe-Hoinghaus, K. Combust. Flame,2007, 148: 198.
    
    58. http://www.ca.sadia.gov/CRF/news_pdf/CRFV26N3.pdf, Sandia National Laboratories, Combustion Research Facility News, 2004,26.
    
    59. Tang, Z. C., Lu, G. X. Prog. Chem., 2007, 19: 1301.
    
    60. Qi, L., Xie, X. F., Xu, J. M., Zhou, Q. F. Prog. Chem., 2006,18: 1725.
    
    61. Wang, L. D., Liang, J. S., Liu, C., Sun, G. Q. Key Eng. Mater, 2007, 329: 607.
    
    62. Song, C. L., Zhang, W. M., Pei, Y. Q., Fan, G. L., Xu, G. P. Atmos. Environ., 2006, 40: 1957.
    
    1.马礼敦,杨福家.同步辐射应用概论,复旦大学出版社,上海,2001:5.
    
    2. Elder, F. R., Gurewitsch, A. M., Langmuir, R. V., Pollack, H. D. Phys. Rev., 1947, 71: 829.
    
    3. Ivanenko, D., Pomeranchuk, I. Phys. Rev., 1944,65: 343.
    
    4. Ivanenko, D., Sokolov, A. A. Dokl. Akad. Nauk SSSR, 1948: 1551.
    
    5. Sokolov, A. A., Klepikov, N. P., Ternov, I. M. Dokl. Akad. Nauk SSSR, 1953, 89: 665.
    
    6. Sokolov, A. A., Ternov, I. M. Sov. Phys. JETP, 1955,1: 227.
    
    7. Schwinger, J. Phys. Rev., 1949, 75: 1912.
    
    8. Zhu, H. Y. Proc. Roy. Soc. London A, 1948, 192: 231.
    
    9. He, X. Y, Jin, Y. N. Annual Report, 1992-1993, NSRL, USTC, Hefei, China
    
    10.张泰昌,朱爱国,洪新,潘洋,单晓斌,盛六四,张允武,齐飞.中国科学技术大学学报, 2007,37:582.
    
    11. Scoles, G. Atomic and Molecular Beam Methods, Oxford University, 1988
    
    12. Demtroder, W. Laser Spectroscopy, Springer, 1996
    
    13. Schlag, E. W. Time-of-Flight Mass Spectrometry and Its Applications, 1994
    
    14. Mamyrin, B. A., Karatacv, V. I., Shmikk, D. V., Zagulin, V. A. Sov. Phys. JETP, 1973,37: 45.
    
    15. Bergmann, T., Martin, T. P., Schaber, H. Rev. Sci. Instrum., 1989,60: 792.
    
    16. Boesl, U., Weinkauf, R., Schlag, E. W. Int. J. Mass Spectrom. Ion. Processes, 1992,112: 121.
    
    17. Berg, L. E., Erman, P., Kallne, E., Sorensen, S., Sundstrom. Phys. Scripta, 1991, 44: 184.
    
    18. Cameron, A. E., al., e. Rev. Sci. Instrum., 1948, 19: 605.
    
    19. Willy, W. C., McLaren, I. H. Rev. Sci. Instrum., 1955,26: 1150.
    
    20. Bear, T., Squires, L., Werner, A. Chem. Phys., 1974, 6: 325.
    
    21. Dewar, M., Thiel, E. J. Am. Chem. Soc, 1977, 99: 4499.
    
    22. Szabo, A., Ostlund, N. S. Modern Quantum Chemistry, McGraw-Hill, New York, 1982
    
    23. Foresman, J. B., Frisch, A. E. Exploring Chemistry with Electronic Structure Methods, Second Edition, Gaussian, Inc. Pittsburgh, PA, 1996
    
    24. Vosko, S. H., Wilk, L., Nusair, M. Canadian J. Phys., 1980, 58: 1200.
    
    25. Lee, C., Yang, W., Parr, R. G. Phys. Rev. B, 1988, 37: 785.
    26. Becke, A. D. Phys. Rev. A, 1988, 38: 3098.
    27. Becke, A. D.J. Chem. Phys., 1993, 98: 1372.
    28. Becke, A. D. J. Chem. Phys., 1993, 98: 5648.
    29. Curitiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., Pople, J. A. J. Chem. Phys., 1998, 109: 7764.
    30. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A, Cheeseman, J. R., Zakrzewski, V. G., Jr., J. A. M., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Pikorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nakayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzales, C., Head-Gordon, M., Replogle, E. S., Pople, J. A. Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2004
    31. Petersson, G. A., Al-Laham, M. A. J. Chem. Phys., 1991,94: 6081.
    32. Baboul, A. G., Curtiss, L. A., Redfern, P. C., Raghavachari, K. J. Chem. Phys., 1999, 110: 7650.
    
    
    1.袁振宏,吴创之,马隆龙等编著.生物质能利用原理与技术,化学工业出版社,北京, 2005:211.
    
    2.2007-2008年中国燃料乙醇行业分析及投资咨询报告(上下卷),中国投资咨询网 http://www.ocn.com.cn/,2007
    
    3.肖波,周英彪,李建芬.生物质能循环经济技术,化学工业出版社,北京,2006:71.
    
    4. Kazakov, A., Conley, J., Dryer, F. L. Combust. Flame, 2003, 134: 301.
    
    5. Smith, S. R., Gordon, A. S. J. Phys. Chem., 1959,60:1059.
    
    6. Lieb, D. F., Roblee, L. H. S., Jr. Combust. Flame, 1970,14:285.
    
    7. Tanoff, M. A., Schear, D. M., Olsson, J. O., Andersson, L. A. Bull. Soc. Chim. Belg., 1992, 101:839.
    
    8. Cullis, C. F., Newitt, E. J. Proc. Royal Soc. London 1956,237A 530 and 242S, 516.
    
    9. Freeman, G. R. Proc. Royal Soc. London, 1960, 245A: 75.
    
    10. Barnard, J. A., Hughes, H. W. D. Trans. Faraday Soc, 1960: 55.
    
    11. Bansal, K. M., Freeman, G. R. J. Am. Chem. Soc, 1968,90: 7190.
    
    12. Brown, J., Tipper, C. F. H. Proc. Royal Soc. London, 1969, 312A: 399.
    
    13. Borisov, A. A., Zamanskii, V. M., Konnov, A. A., Lisyanskii, V. V., Rusakov, S. A., Skachkov, G. I. Soviet J. Chem. Phys., 1991, 8: 121.
    
    14. Borisov, A. A., Zamanskii, V. M., Konnov, A. A., Lisyanskii, V. V., Rusakov, S. A., Skachkov, G. I. Soviet J. Chem. Phys., 1992, 9: 2527.
    
    15. Rotzoll, G. J. Anal. Appl. Pyrol., 1985, 9: 43.
    
    16. Norton, T. S., Dryer, F. L. Int. J. Chem. Kinet., 1992, 24: 319.
    
    17. Norton, T. S., Dryer, F. L. Proc. Combust. Inst., 1990, 23: 179.
    
    18. Li, J., Kazakov, A., Dryer, F. L. Int. J. Chem. Kinet., 2001, 33: 859.
    
    19. Li, J., Kazakov, A., Dryer, F. L. J. Phys. Chem. A, 2004,108: 7671.
    
    20. Natarajan, K., Bhaskaran, K. A. Thirteenth International Shock Tube Symposium, Niagara Falls, 1981:834.
    
    21. Dunphy, M. P., Simmie, J. M. J. Chem. Soc. Faraday Trans., 1991, 87: 1691 and 2549.
    22. Curran, H. J., Dunphy, M. P., Simmie, J. M., Westbrook, C. K., Pitz, W. J. Proc. Combust. Inst. , 1992, 24: 769.
    23. Herzler, J., Tsang, W., Manion, J. A. J. Phys. Chem. A, 1997, 101: 5500.
    24. Marinov, N. M. Int. J. Chem. Kinet., 1999, 31: 183.
    25. Tsang, W. in Proceeding of the Second Joint Meeting of the US Sections of the Combustion Institute 92 (Oakland, CA, 2001).
    26. Park, J., Chen, R., Chen, J., Lin, M. C. in Eastern States Section Fall Technical Meeting of the Combustion Institute 4 (Hilton Head, SC, 2001).
    27. Park, J., Zhu, R. S., Lin, M. C. J. Chem. Phys., 2002, 117: 3224.
    28. Park, J., Zhu, R. S., Lin, M. C. J. Chem. Phys., 2003, 118: 9990.
    29. Xu, Z. F., Park, J., Lin, M. C. J. Chem. Phys., 2004, 120: 6593.
    30. Cool, T. A., Nakajima, K., Taatjes, C. A., Mcllroy, A., Westmoreland, P. R., Law, M. E., Morel, A. Proc. Combust. Inst., 2004, 30: 1681.
    31. Linstrom, P. J., Mallard, W. G. (http://webbook.nist.gov, National Institute of Standards and Technology, Gaithersburg, MD, 2003).
    32. Cool, T. A., Nakajima, K., Mostefaoui, T. A., Qi, F., Mcllroy, A., Westmoreland, P. R., Law, M. E., Poisson, L., Peterka, D. S., Ahmed, M. J. Chem. Phys., 2003, 119: 8356.
    33. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Jr., J. A. M., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Pikorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nakayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzales, C., Head-Gordon, M., Replogle, E. S., Pople, J. A. Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2004
    34. Curitiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., Pople, J. A. J. Chem. Phys., 1998,109:7764.
    35. Baboul, A. G., Curtiss, L. A, Redfern, P. C., Raghavachari, K. J. Chem. Phys., 1999, 110: 7650.
    36. Yamabe, T., Koizumi, M., Yamashita, K., Tachibana, A. J. Am. Chem. Soc., 1984, 106: 2255.
    37. Butkovskaya, N. I., Zhao, Y., Setser, D. W. J. Phys. Chem. A, 1994,98:10779.
    38. Lewars, E., Bonnycastle, I. J. Mol. Struct., 1997,418:17.
    39. Hart, H. Chem. Revs., 1979,79: 515.
    40. Turecek, F., Havlas, Z. J. Org. Chem., 1986, 51:4066.
    41. Zhu, L., Bozzelli, J. W., Ho, W.-P. J. Phys. Chem. A, 1999,103: 7800.
    42. Hidaka, T., Higashihara, T., Ninomiya, N., Masaoka, H., Nakamura, T., Kawano, H. Int. J. Chem. Kinet., 1996,28: 137.
    
    
    1.日本能源学会编.生物质和生物能源手册,化学工业出版社2007:72.
    
    2. Newitt, E. J. Proc. Combust. Inst., 1954, 5: 558.
    
    3. Smith, S. R., Gordon, A. S. J. Phys. Chem., 1956, 60: 1059.
    
    4. Barnard, J. A., Hughes, H. W. D. Trans. Faraday Soc, 1960, 56: 64.
    
    5. Barnard, J. A. Trans. Faraday Soc., 1960, 56: 72.
    
    6. Norton, T. S., Dryer, F. L. Proc. Combust. Inst., 1990, 23: 179.
    
    7. Sinha, A., Thomson, M. J. Combust. Flame, 2004,136: 548.
    
    8. Bui, B. H., Zhu, R. S., Lin, M. C. J. Chem. Phys., 2002,117:11188.
    
    9. Tsang, W. Int. J. Chem. Kinet., 1976, 8: 173.
    
    10. Tsang, W. Shock Waves in Chemistry, Marcel Dekker, New York, 1981: 59-129.
    
    11. Linstrom, P. J., Mallard, W. G. (http://webbook.nist.gov, National Institute of Standards and Technology, Gaithersburg, MD, 2003).
    
    12. Cool, T. A., nakajima, K., Mostefaoui, T. A., Qi, F., mcllroy, A., Westmoreland, P. R., Law, M. E., Poisson, L., Ahmed, M. J. Chem. Phys., 2006,119: 8356.
    
    13. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Jr., J. A. M., Stratmann, R. E., Burant, J. C, Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C, Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Pikorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nakayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzales, C., Head-Gordon, M., Replogle, E. S., Pople, J. A. Gaussian 03, Gaussian, Inc., Pittsburgh, PA,2004
    
    14. Curitiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., Pople, J. A. J. Chem. Phys., 1998, 109: 7764.
    15. Westmoreland, M. S., Dean, A. M., Howard, J. B., Longwell, J. P. J. Phys. Chem., 1989, 93: 8171.
    16. Frenklach, M., Clary, D. W., Gardiner, W. C, Stein, S. E. Proc. Combust. Inst., 1984,20: 887.
    17. Lindstedt, R. P., Skevis, G. Proc. Combust. Inst., 1996, 26: 703.
    18. Vlasov, P. A., Warnatz, J. Proc. Combust. Inst., 2002, 29: 2335.
    19. Maccoll, A., Thomas, P. J. Prog. React. Kinet., 1967,4:119.
    20. Trenwith, A. B. J. Chem. Soc, Faraday Trans., 1975,71:2405.
    21. Park, J., Zhu, R., Lin, M. C. J. Chem. Phys., 2002, 117: 3224.
    22. Xia,W.S.,Zhu,R.S.,Lin,M.C.,Mebel,A.M. Faraday Discuss.,2001, 119:191.
    
    
    1. Ladisch, M. R. Enzyme Microb. Tech., 1991, 13: 280.
    
    2.车用燃料未来预测 (至2020年),中国汽车咨询网,http://www.auto-china.cn/baogao_view.asp?id=277,2008
    
    3. Qureshi, N., CSaha, B., Cotta, M. A. Biomass Bloenerg., 2008, 32: 176.
    
    4. Qureshi, N., Sahaa, B. C., Hector, R. E., Hughes, S. R., Cotta, M. A. Biomass Bloenerg., 2008, 32:168.
    
    5. Izak, P., Schwarz, K., Ruth, W., Bahl, H., Kragl, U. Appl. Microbiol. Biot., 2008,78:597.
    
    6. Dupont and BP will produce butanol for motor fuel, Industrial Bioprocessing, 2006
    
    7. BP, Dupont to develop biofuels, Feedstuffs, 2006
    
    8. DuPont, BP expand butanol research, TCE, 2008: 6.
    
    9. Choudhury, T. K., Lin, M. C., Lin, C.-Y., Sanders, W. A. Combust. Sci. Technol., 1990, 71: 219.
    
    10. McEnally, C. S., Pfefferle, L. D. Proc. Combust. Inst., 2005,30: 1363.
    
    11. Yang, B., OBwald, P., Li, Y. Y, Wang, J., Wei, L. X, Tian, Z. Y., Qi, F., Kohse-Hoinghaus, K. Combust. Flame, 2007, 148: 198.
    
    12. Norton, T. S., Dryer, F. L. Proc. Combust. Inst., 1990,23:179.
    
    13. Tsang, W. Int. J. Chem. Kinet., 1976, 8: 173.
    
    14. Marinov, N. M. Int. J. Chem. Kinet., 1999, 31: 183.
    
    15. Park, J., Zhu, R. S., Lin, M. C. J. Chem. Phys., 2002,117: 3224.
    
    16. Bui, B. H., Zhu, R. S, Lin, M. C. J. Chem. Phys., 2002, 117: 11188.
    
    17. Linstrom, P. J., Mallard, W. G. (http://webbook.nist.gov, National Institute of Standards and Technology, Gaithersburg, MD, 2003).
    
    18. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Jr., J. A. M., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Rega, N., Salvador, P., Dannenberg, J. J., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Baboul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Pikorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nakayakkara, A., Challacombe, M, Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Andres, J. L., Gonzales, C., Head-Gordon, M., Replogle, E. S., Pople, J. A. Gaussian 03, Gaussian, Inc., Pittsburgh, PA, 2004
    
    19. Curitiss, L. A., Raghavachari, K., Redfern, P. C., Rassolov, V., Pople, J. A. J. Chem. Phys., 1998, 109:7764.
    
    20. Frenklach, M., Clary, D. W., Gardiner, W. C., Stein, S. E. Proc. Combust. Inst., 1984,20: 887.
    
    21. Lindstedt, R. P., Skevis, G. Proc. Combust. Inst., 1996,26:703.
    
    22. Vlasov, P. A., Warnatz, J. Proc. Combust. Inst., 2002,29: 2335.
    
    
    1. Chen, F. F., Chang, J. P. Lectures notes on principles of plasma processing, Kluwer Academic, New York, 2003: 1-3,79,151-164.
    
    2.赵化侨.等离子体化学与工艺,中国科学技术大学出版社,合肥,1998:1-2,108-116.
    
    3.许根慧,姜恩永,盛京等.等离子体技术与应用,化学工业出版社,北京,2006: 1,11,17,25-26.
    
    4. Peratt, A. L. Physics of the Plasma Universe, Springer-Verlag, New York, 1992
    
    5. Fridman, A., Chirokov, A., Gutsol, A. J. Phys. D: Appl. Phys., 2005, 38: R1.
    
    6.营井秀郎.等离子体电子工程学,科学出版社,2002:3-4.
    
    7.陈杰珞.低温等离子体化学及其应用,科学出版社,2001:2-3.
    
    8. Sugawara, M, Sansfield, B. L., Handa, S., Fujita, K., Watanabe, S., Tsukamoto, T. Plasma Etching (Fundamentals and Applications), Oxford University Press Inc., New York, 1998
    
    9. Polack, L., Lebedev, Y. Plasma Chemistry, Cambridge Intern. Sci. Publishing, London, 1998
    
    10. Auciello, O., Flamm, D. L. Plasma Diagnostics, Academic, San Diego, 1989
    
    11. Hutchinson, I. H. Principles of Plasma Diagnostics, Cambridge University Press, London, 1972
    
    12. Huddlestone, R. H., Leonard, S. L. Plasma Diagnostic Techniques, Academic. Press., New York, 1965
    
    13. Cherrington, B. E. Plasma Chem. Plasma Process, 1982, 2: 113.
    
    14. Makowski, M. A., Emmert, G. A. Rev. Sci. Instrum., 1983, 54:830.
    
    15. Young, J. K., Inn-Kya, K. Biomaterials, 2000, 21:121.
    
    16. Restrepo, E., Devia, A. J. Vac. Sci. Technol. A, 2004,22: 377.
    
    17. Sun, M., Wu, Y, Li, J., Wang, N. H., Wu, J., Shang, K. F., Zhang, J. L. Plasma Chem. Plasma P., 2005, 25: 31.
    
    18. Gathen, V. S.-v. d., R(o|¨)pcke, J., Gans, T., K(a|¨)ning, M., Lukas, C., D(o|¨)bele, H. F. Plasma Sources Sci. Technol., 2001, 10:530.
    
    19. Hest, M. F. A. M. v., Graaf, A. d., Sanden, M. C. M. v. d., Schram, D. C. Plasma Sources Sci. Technol.,2000,9:615.
    
    20. Moazzen-Ahmadi, N., Thong, J. J., McKellar, A. R. W. J. Chem. Phys., 1994, 100: 4033.
    
    21. Cruden, B. A., Rao, M. V. V. S., Sharma, S. P., Meyyappan, M. Plasma Sources Sci. Technol., 2002: 77.
    
    22. Ono, R., Oda, T. Ieee. T. Ind. Appl, 2001, 37: 709.
    
    23. Magne, L., Pasquiers, S. C. R. Physique, 2005, 6: 908.
    
    24. Robertson, R., Hills, D., Chatham, H., Gallagher, A. Appl. Phys. Lett., 1983,43: 544.
    
    25. Hikosaka, Y., Toyoda, H., Sugai, H. Jpn. J. Appl. Phys., 1993, 32: L353.
    
    26. Sugai, H., Kojima, H., Ishida, A., Toyoda, H. Appl. Phys. Lett., 1990, 56: 2616.
    
    27. Sugai, H., Toyoda, H. J. Vac. Sci. Technol. A, 1992, 10: 1193.
    
    28. Celii, F. G., Butler, J. E. J. Appl. Phys., 1992, 71: 2877.
    
    29. Hayashi, T, Miyamura, M., Komiya, S. Jpn. J. Appl. Phys., 1982, 21: L755.
    
    30. Ando, S., Shinohara, M., Takayama, K. Vacuum, 1997,49:113.
    
    31. Wang, W. G., Xu, Y., Yang, X. F., Wang, W. C., Zhu, A. M. Rapid Commun. Mass Sp., 2005, 19:1159.
    
    32. Kogelschatz, U. Plasma Chem. Plasma P., 2003, 23: 3.
    
    33.徐学基.气体放电物理,复旦大学出版社,上海,1996:7-9,309-323.
    
    34. Huang, C. Q., Yang, B., Yang, R., Wang, J., Wei, L. X, Shan, X. B., Sheng, L. S., Zhang, Y. W., Qi, F. Rev. Sci. Instrum., 2005, 76: 126108.
    
    35. Qi, F., Yang, R., Yang, B., Huang, C. Q, Wei, L. X., J. Wang, Sheng, L. S., Zhang, Y. W. Rev. Sci. Instrum., 2006, 77: 084101.
    
    36. Linstrom, P. J., Mallard, W. G. NIST Chemistry Webbook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, 2003. http://webbook.nist.gov., 2003
    
    37. Turner, B. E., Apponi, A. J. Astrophys. J., 2001, 561: L207.
    
    38. Charnley, S. B. Adv. Space Res., 2004, 33: 23.
    
    39. Klemperer, W. P. Natl. Acad. Sci. USA, 2006, 103: 12232.
    
    40. Snyder, L. E. P. Natl. Acad. Sci. USA, 2006,103: 12243.
    
    41. Hollis, J. M. Proceedings of the IAU Symposium, 2005, 231: 227.
    
    42. Snyder, L. E., Buhl, D, Zuckerman, B., Palmer, P. Phys. Rev. Lett., 1969, 22: 679.
    
    43. Gottlieb, C. A. Molecules in the Galactic Environment, 1973: 181.
    44. Combes, F., Gerin, M., Wootten, A., Wlodarczak, G., Clausset, F., Encrenaz, P. J. Astron. Astrophys., 1987, 180: L13.
    45. Dickens, J. E., Irvine, W. M, Ohishi, M., Ikeda, M., Ishikawa, S., Nummelin, A., Hjalmarson, A. Astrophys. J., 1997, 489: 753.
    46. Hollis, J. M., Jewell, P. R., Lovas, F. J., Remijan, A., H., M. Astrophys. J., 2004, 610: L21.
    47. Bernarda, J.-M., Colla, P., Coustenisb, A., Raulina, F. Planet. Space Sci., 2003, 51: 1003.
    48. Taatjes, C. A., Hansen, N., McIlroy, A., Miller, J. A., Senosiain, J. P., Klippenstein, S. J., Qi, F., Sheng, L. S., Zhang, Y. W., Cool, T. A., Wang, J., Westmoreland, P. R., Law, M. E., Kasper, T., Kohse-Hoinghaus, K. Science, 2005,308:1887.
    49. Taatjes, C. A., Hansen, N., Miller, J. A., Cool, T. A., Wang, J., Westmoreland, P. R., Law, M. E., Kasper, T., Kohse-Hoinghaus, K. J. Phys. Chem. A, 2006,110: 3254.
    50. Hudson, R. L., Moore, M. H. Astrophys. J., 2003, 586: L107.
    51. Bennett, C. J., Osamura, Y., Lebar, M. D., Kaiser, R. I. Astrophys. J., 2005,634: 698.
    52. Charnley, S. B., Kress, M. E., Tielens, A. G. G. M., Millar, T. J. Astrophys. J., 1995,448: 232.
    53. Klemperer, W., Vaida, V. P. Natl. Acad. Sci. USA, 2006,103:10584-10588.
    54. Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M., Sellgren, K., Tapia, M., Pendleton, Y. Astrophys. J., 1991, 371: 607.
    55. Maeda, A., Lucia, F. C. D., Herbst, E., Pearson, J. C., Riccobono, J., Trosell, E., Bohn, R. K. Astrophys. J. Suppl. S., 2006, 162: 428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700