燃煤电厂CO_2化学吸收及同微藻油提取工艺的耦合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由化石燃料燃烧释放出的CO2等温室气体导致的气候变化,给地球的生态环境和人类的生存条件带来严重的威胁。化石燃料在供热发电和重工业制造领域将仍然发挥重要的作用。CO2捕集和存储(固定)(CCS)技术是短期内有效减少CO2排放的可能途径。适用于具有低压低浓度CO2特点的燃煤电厂燃烧后烟道气CO2捕集的低操作成本和低能耗的新技术非常具有研究价值和应用前景。本论文采用膜气吸收高效CO2吸收器和离子液体低能耗吸收液,并提出耦合CO2吸收的微藻油高效提取新工艺,围绕烟道气杂质影响、系统连续运行稳定性、工艺能耗降低等问题,进行了实验研究和理论计算。本文的主要研究内容和结论有以下三个方面:
     建立了实验室规模的CO2连续吸收-解吸实验装置。采用中空纤维膜接触器作为CO2吸收器,单乙醇胺(MEA)水溶液作为吸收液,研究了燃煤电厂烟道气中SO2和O2杂质对膜接触器CO2吸收系统的影响。实验结果表明气源中SO2和O2的引入,会增加MEA的降解。吸收每吨CO2, MEA损失量分别为:CO2-N2组为1.3kg, CO2-O2(6%)-N2组为3.32kg, CO2-SO2(294ppm)-N2组为4.72kg, CO2-O2(6%)-SO2(30ppm)-N2组为4.49kg。混合气中微量的SO2浓度对吸收液中MEA的降解的影响比O2更显著。在满足我国对燃煤电厂SO2排放要求的基础上吸收液中MEA损失主要为MEA蒸发所引起。
     为降低MEA蒸发损失及CO2解吸能耗,研制了MEA+离子液体+水混合吸收液。研究发现30wt%MEA+40wt%[bmim][BF4]+30wt%H2O的吸收液可将MEA的损失量降低至1.16kg/ton CO2,并且没有观察到离子液体损失。30wt%MEA+40wt%[bmim][BF4]+30wt%H2O吸收液可保持90%以上的CO2吸收效率,再生能耗比30wt%MEA水溶液低37.2%。该种混合液在50℃下的粘度仅为3.54mPa-s,吸收液所降低的再生能耗能够远超过其高粘度引起的吸收液输送机械能耗的上升。
     结合离子液体高CO2溶解度的特性与其在藻细胞破壁上的特点,提出了基于离子液体的耦合CO2吸收与薇藻油脂高效提取的新工艺过程。实验结果表明耦合CO2有助于离子液体水解微藻细胞壁。当离子液体[bmim][BF4]吸收CO2后,微藻油的产率从14.2wt%提高到15.6wt%。考虑吸收的CO2对微藻油提取所补偿的能耗,耦合CO2吸收的使用离子液体的微藻油提取工艺的能耗最高能降低至传统溶剂法的10%,理论上可实现基于微藻和离子液体的烟道气CO2昼夜连续吸收。即,白天微藻吸收CO2进行光合作用,晚上吸收CO2进行微藻油的提取。
Global warming caused by CO2emission from fossil combustion is threatening the ecological environment and human survival. Fossil fuels will continue to play an important role in both generation of heat and power and in heavy industrial manufacturing operations for the foreseeable future. Carbon capture and storage (CCS) is promising to achieve a meaningful reduction in CO2emissions in the short term. Post-combustion CO2capture with low cost and energy consumption needs to be further studied. In this dissertation, the effects of impurities on CO2capture using a hollow fiber membrane contactor, the performance of amine+ionic liquid+water absorbent used in an CO2absorption/desorption system, and the feasibility of fuel extraction from algae combined with CO2absorption have been systemically investigated. The main contents and conclusions are as follows:
     With a polypropylene (PP) hollow fiber membrane contactor as absorber and a packed column as stripper, the influence of SO2and O2on the CO2capture from coal-fired power plant flue gas was investigated in an absorption-desorption experimental set-up using aqueous monoethanolamine (MEA) as the absorbent. The experimental results showed that the MEA loss per ton captured CO2of each campaign with different gas source was:CO2-N2:1.3kg, CO2-O2(6%)-N2:3.32kg, CO2-SO2(294ppm)-N2:4.72kg, CO2-O2(6%)-SO2(30ppm)-N2:4.49kg. SO2in the flue stream plays a more important role than O2in CO2capture. When the SO2concentration of flue stream under30ppm which meets the requirement by national standard, the largest contribution to monoethanolamine loss was made by evaporation during desorption, followed by the formation of sulfate and heat stable salts.
     To reduce MEA loss and meanwhile lower down the energy consumption during CO2desorption, an aqueous amine solution mixed with ionic liquid (30wt%MEA+40wt%[bmim][BF4]+30wt%H2O) was proposed. The energy consumption of the mixed ionic liquid solution for absorbent regeneration was37.2%lower than that of aqueous MEA solution. The MEA loss per ton of captured CO2for the mixed solution was reduced to1.16kg. No ionic liquid loss was detected. In addition, the mixed ionic liquid solution showed a low viscosity of3.54mPa·s at50℃, indicating that the ionic liquid disadvantage of high viscosity can be overcome for absorbent delivery of CO2capture.
     The abilities of CO2capture and lipids extraction by algae+IL system were utilized to decrease the energy consumption. Chlorella hydrolysis integrating CO2removal by ILs ([bmim][BF4],[bmim]Cl and [amim]Cl) was demonstrated in this study. The addition of CO2to [bmim][BF4] can increase the lipids yield from14.2wt%to15.6wt%. The value of net energy gain increased from9.41to11.7with the CO2addition to [bmim][BF4]. Considering the compensated energy by CO2capture, the energy consumption of algae fuel extraction process integrating CO2absorption could be decreased to be10%of that of conventional solvents extraction process.
引文
[1]Metz B, Davidson O, De Coninck H, Loos M, Meyer L. IPCC special report on carbon dioxide capture and storage [R]. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III:2005;
    [2]Trade Do. Meeting the energy challenge:a White Paper on energy [M]:The Stationery Office; 2007
    [3]Parson E, Keith D. Fossil fuels without CO [J]. Science.1998,282(5391):1053-1054
    [4]Rubin E, de Coninck H. IPCC special report on carbon dioxide capture and storage [J]. Prepared by working group III of the intergovernmental panel on climate change Intergovernmental Panel on Climate Change Cambridge, UK.2005,
    [5]MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, et al. An overview of CO2 capture technologies [J]. Energy & Environmental Science.2010,3(11):1645-1669
    [6]Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update [J]. Energy & Environmental Science.2014,7:130-189
    [7]Birol F. World energy outlook 2010 [J]. International Energy Agency.2010,
    [8]Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes [J]. Macromolecules.1999,32(2):375-380
    [9]Lu J-G, Zheng Y-F, Cheng M-D, Wang L-J. Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions [J]. Journal of Membrane Science.2007,289(1):138-149
    [10]Bottino A, Capannelli G, Comite A, Di Felice R, Firpo R. CO2 removal from a gas stream by membrane contactor [J]. Separation and Purification Technology.2008,59(1):85-90
    [11]deMontigny D, Tontiwachwuthikul P, Chakma A. Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption [J]. Journal of Membrane Science.2006,277(1):99-107
    [12]Dindore V, Brilman D, Geuzebroek F, Versteeg G. Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors [J]. Separation and Purification Technology.2004,40(2):133-145
    [13]Mansourizadeh A, Ismail A, Matsuura T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor [J]. Journal of Membrane Science.2010,353(1):192-200
    [14]Ismail AF, Mansourizadeh A. A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption [J]. Journal of Membrane Science.2010,365(1):319-328
    [15]Improvement in power generation with post-combustion capture of CO2 [R]. Report PH4/33,IEA GHG 2004:46:
    [16]MIT. Power plant CCS Projects [R].2012;
    [17]GCCSI. CO2 capture technologies:Post combustion capture (PCC) [R].2013,
    [18]Hamilton SF, Obispo CPSL, Requate T. Emissions Standards and Ambient Environmental Quality Standards in Stochastic Receiving Media [J].2010,
    [19]Gabrielsen J, Michelsen ML, Stenby EH, Kontogeorgis GM. A model for estimating CO2 solubility in aqueous alkanolamines [J]. Industrial & Engineering Chemistry Research. 2005,44(9):3348-3354
    [20]Chapman WG, Gubbins KE, Jackson G, Radosz M. SAFT:Equation-of-state solution model for associating fluids [J]. Fluid Phase Equilibria.1989,52:31-38
    [21]Chapman WG, Gubbins KE, Jackson G, Radosz M. New reference equation of state for associating liquids [J]. Industrial & Engineering Chemistry Research.1990,29(8): 1709-1721
    [22]Gil-Villegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN. Statistical associating fluid theory for chain molecules with attractive potentials of variable range [J]. The Journal of chemical physics.1997,106(10):4168-4186
    [23]Mac Dowell N, Pereira F, Llovell F, Blas F, Adjiman C, Jackson G, et al. Transferable SAFT-VR models for the calculation of the fluid phase equilibria in reactive mixtures of carbon dioxide, water, and n-alkylamines in the context of carbon capture [J]. The Journal of Physical Chemistry B.2011,115(25):8155-8168
    [24]Mac Dowell N, Llovell F, Adjiman C, Jackson G, Galindo A. Modeling the fluid phase behavior of carbon dioxide in aqueous solutions of monoethanolamine using transferable parameters with the SAFT-VR approach [J]. Industrial & Engineering Chemistry Research. 2009,49(4):1883-1899
    [25]Rodriguez J, Mac Dowell N, Llovell F, Adjiman C, Jackson G, Galindo A. Modelling the fluid phase behaviour of aqueous mixtures of multifunctional alkanolamines and carbon dioxide using transferable parameters with the SAFT-VR approach [J]. Molecular Physics. 2012,110(11-12):1325-1348
    [26]Mac Dowell N, Shah N. Identification of the cost-optimal degree of CO2 capture:An optimisation study using dynamic process models [J]. International Journal of Greenhouse Gas Control.2013,13:44-58
    [27]Arce A, Mac Dowell N, Shah N, Vega L. Flexible operation of solvent regeneration systems for CO2 capture processes using advanced control techniques:Towards operational cost minimisation [J]. International Journal of Greenhouse Gas Control.2012, 11:236-250
    [28]Llovell F, Mac Dowell N, Blas FJ, Galindo A, Jackson G. Application of the SAFT-VR density functional theory to the prediction of the interfacial properties of mixtures of relevance to reservoir engineering [J]. Fluid Phase Equilibria.2012,336:137-150
    [29]FELIPE J. Thermodynamic behaviour of homonuclear and heteronuclear Lennard-Jones chains with association sites from simulation and theory [J]. Molecular Physics.1997, 92(1):135-150
    [30]Llovell F, Marcos R, MacDowell N, Vega L. Modeling the absorption of weak electrolytes and acid gases with ionic liquids using the soft-SAFT approach [J]. The Journal of Physical Chemistry B.2012,116(26):7709-7718
    [31]Bottinger W, Maiwald M, Hasse H. Online NMR Spectroscopic Study of Species Distribution in MDEA-H2O-CO2 and MDEA-PIP-H2O-CO2 [J]. Industrial & Engineering Chemistry Research.2008,47(20):7917-7926
    [32]Hessen ET, Haug-Warberg T, Svendsen HF. The refined e-NRTL model applied to CO2-H2O-alkanolamine systems [J]. Chemical Engineering Science.2010,65(11): 3638-3648
    [33]Faramarzi L, Kontogeorgis GM, Thomsen K, Stenby EH. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions [J]. Fluid Phase Equilibria.2009,282(2):121-132
    [34]DOE, NETL. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity [R]. Report DOE/NETL 2010/1397; Department of Energy (DOE):National Energy Technology Laboratory (NETL),2010;
    [35]Reddy S, Johnson D, Gilmartin J. Fluor's econamine FG plus SM technology for CO2 capture at coal-fired power plants [C]. Power Plant Air Pollutant Control "Mega" Symposium,2008; 2008; pp 25-28
    [36]Ahn H, Luberti M, Liu Z, Brandani S. Process configuration studies of the amine capture process for coal-fired power plants [J]. International Journal of Greenhouse Gas Control. 2013,16:29-40
    [37]Van Wagener DH, Rochelle GT. Stripper configurations for CO< sub> 2 capture by aqueous monoethanolamine [J]. Chemical Engineering Research and Design.2011,89(9): 1639-1646
    [38]Frailie PT, Madan T, Sherman BJ, Rochelle GT. Energy performance of advanced stripper configurations [J]. Energy Procedia.2013,37:1696-1705
    [39]Rochelle G, Chen E, Freeman S, Van Wagener D, Xu Q, Voice A. Aqueous piperazine as the new standard for CO2 capture technology [J]. Chemical Engineering Journal.2011, 171(3):725-733
    [40]Plaza JM, Chen E, Rochelle GT. Absorber intercooling in CO2 absorption by piperazine -promoted potassium carbonate [J]. AIChE Journal.2010,56(4):905-914
    [41]Freeman SA, Davis J, Rochelle GT. Degradation of aqueous piperazine in carbon dioxide capture [J]. International Journal of Greenhouse Gas Control.2010,4(5):756-761
    [42]Rochelle GT. Thermal degradation of amines for CO2 capture [J]. Current Opinion in Chemical Engineering.2012,1(2):183-190
    [43]Van Wagener DH, Rochelle GT. Stripper configurations for CO2 capture by aqueous monoethanolamine [J]. Chemical Engineering Research and Design.2011,89(9): 1639-1646
    [44]Oyenekan BA, Rochelle GT. Alternative stripper configurations for CO2 capture by aqueous amines [J]. AIChE Journal.2007,53(12):3144-3154
    [45]Stevens G, Mumford K, Endo K, Quyn D, Thee H, Smith K, et al. Qadar and Co-operative research centre for greenhouse gas technologies, Precipitating carbonate solvent process for carbon dioxide capture [R]. University of Melbourne:Kyoto, Japan, November,2012;
    [46]Moene R, Schoon L, Geuzenbroek F. Precipitating carbonate process for low-energy post-combustion CO2 capture technology development and pilot-plant operation [R]. Shell Global Solutions International B.V, J. v. Streel and Shell (Petroleum Mining) Co. Ltd (NZ): Kyoto, Japan, November,2012;
    [47]Li L, Du Y, Li H, Namjoshi O, Rochelle GT. Absorption rates and CO2 solubility in new piperazine blends [R]. Kyoto, Japan, Vovember,2012;
    [48]Kim I, Ma'mum S. Selection and characterization of phase-change solvent for CO2 capture: precipitating system [R]. Kyoto, Japan, November,2012;
    [49]Liebenthal U, Kather A, Pinto D, Monteiro J, Svendsen H. Overall process analysis and optimization for CO2 capture from coal fired power plants based on phase change solvents forming two liquid phases [R]. Hamburg University of Technology:Kyoto, Japan, November,2012;
    [50]Penders-van Elk NJ, Derks PW, Fradette S, Versteeg GF. Kinetics of absorption of carbon dioxide in aqueous MDEA solutions with carbonic anhydrase at 298K [J]. International Journal of Greenhouse Gas Control.2012,9:385-392
    [51]Nguyen L. Low-Cost Enzyme-based Technology for Carbon Capture [C]. NETL CO2 Capture Technology Meeting, Pittsburgh, July 9-12,2012;
    [52]Sexton AJ, Rochelle GT. Catalysts and inhibitors for oxidative degradation of monoethanolamine [J]. International Journal of Greenhouse Gas Control.2009,3(6): 704-711
    [53]Closmann FB. Oxidation and thermal degradation of methyldithanolamine/piperazine in CO2 capture [J].2012,
    [54]Voice AK, Closmann F, Rochelle GT. Oxidative Degradation of Amines With High-Temperature Cycling [J]. Energy Procedia.2013,37:2118-2132
    [55]Uyanga IJ, Idem RO. Studies of SO2-and O2-induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams [J]. Industrial & Engineering Chemistry Research.2007,46(8):2558-2566
    [56]Supap T, Idem R, Tontiwachwuthikul P, Saiwan C. Kinetics of sulfur dioxide-and oxygen-induced degradation of aqueous monoethanolamine solution during CO2 absorption from power plant flue gas streams [J]. International Journal of Greenhouse Gas Control.2009,3(2):133-142
    [57]Chi S, Rochelle GT. Oxidative degradation of monoethanolamine [J]. Industrial & Engineering Chemistry Research.2002,41(17):4178-4186
    [58]Gouedard C, Picq D, Launay F, Carrette P-L. Amine degradation in CO2 capture. I. A review [J]. International Journal of Greenhouse Gas Control.2012,10:244-270
    [59]Goff GS, Gary T. Monoethanolamine degradation:O2 mass transfer effects under CO2 capture conditions [J]. Industrial & Engineering Chemistry Research.2004,43(20): 6400-6408
    [60]Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control [J]. Environmental Science & Technology.2002,36(20):4467-4475
    [61]Smith K, Laird C, Mercer J. Evaluating Options for Post CO2 Removal of Flue Gas Streams; Single or Two Stages of FGD Scrubbing [J].
    [62]Dehghani A, Bridjanian H. Flue gas desulfurization methods to conserve the environment [J]. Petroleum & Coal.2010,52(4)
    [63]Roberts C, Gibbins J, Panesar R, Kelsall G. Potential for improvement in power generation with post-combustion capture of CO2 [J]. Proceedings of GHGT.2004,7:5-9
    [64]Taylor MR, Rubin ES, Hounshell DA. Control of SO2 emissions from power plants:A case of induced technological innovation in the US [J]. Technological Forecasting and Social Change.2005,72(6):697-718
    [65]Emission standard of air pollution for thermal power plants.:National Institute of Standards of the People's Republic of China; 2011
    [66]Fine N, Rochelle G, Ashouripashaki M, Voice A, Fulk S, Li L, et al. Nitrosamine Management in Aqueous Piperazine for CO2 Capture [R]. University of Texas at Austin: Kyoto, Japan, November,2012;
    [67]Nielsen P, Li L, Rochelle G. Piperazine Degradation in Pilot Plants [R]. University of Texas at Austin:Kyoto, Japan, November,2012;
    [68]Mercader FdM, Voice AK, Trap H, Goetheer EL. Nitrosamine degradation by UV light in post-combustion CO2 capture:Effect of solvent matrix [J]. Energy Procedia.2013,37: 701-716
    [69]Fostas B, Gangstad A, Nenseter B, Pedersen S, Sj(?)voll M, S(?)rensen AL. Effects of NOx in the flue gas degradation of MEA [J]. Energy Procedia.2011,4:1566-1573
    [70]Knuutila H, Svendsen H, Asif N. Destruction of nitrosoamines with UV-light [R]. NTNU/Department of Chemical Engineering:Kyoto, Japan, November,2012;
    [71]Attalla M, Jackson P. Ultra-violet treatment as a strategy for destruction of degradation products from amine based post combustion CO2 capture [R]. CSIRO:Kyoto, Japan, November,2012;
    [72]Gjernes E, Helgesen LI, Gassnova SF, Nepstad S. Health and environmental impact of amine based post combustion CO2 capture [R]. TCM DA:Kyoto,Japan, November,2012;
    [73]Nguyen T, Hilliard M, Rochelle G. Volatility of aqueous amines in CO2 capture [J]. Energy Procedia.2011,4:1624-1630
    [74]Nguyen T, Hilliard M, Rochelle GT. Amine volatility in CO2 capture [J]. International Journal of Greenhouse Gas Control.2010,4(5):707-715
    [75]Wei S, Puxty G, Feron P. Amino acids salts for CO2 capture at flue gas temperatures [R]. CSIRO Energy Technology:Kyoto, Japan, November,2012;
    [76]Fulk S, Rochelle G. Volatile Contaminant Control in Amine-Based CO2 Capture Systems [R]. University of Texas at Austin:Kyoto, Japan, November,2012;
    [77]Mertens J, Knudsen J, Thielens M-L, Andersen J. On-line monitoring and controlling emissions in amine post combustion carbon capture:A field test [J]. International Journal of Greenhouse Gas Control.2012,6:2-11
    [78]Holton S. Project Update of 500 TPD Demonstration Plant for Coal-fired Power Plant and MHI Amine Emission Reduction technology [C].12th Annual Conference on Carbon Capture Utilization & Sequestration, Pittsburgh, PA, USA, May 13-16,2013;
    [79]Carter T. National Carbon Capture Center:Post-Combustion [C].2012 NETL CO2 Capture Technology Meeting, Pittsburgh, PA, USA,2012;
    [80]Knudsen JN, Bade OM, Anheden M, Gorset O, Bjorklund R. Novel concept for emission control in post combustion capture [R]. Aker Clean Carbon AS:Kyoto, Japan, November, 2012;
    [81]Edali M, Aboudheir A, Idem R. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model [J]. International Journal of Greenhouse Gas Control.2009, 3(5):550-560
    [82]Karadas F, Atilhan M, Aparicio S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening [J]. Energy & Fuels.2010,24(11): 5817-5828
    [83]Ding Y, Alpay E. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent [J]. Chemical Engineering Science.2000,55(17):3461-3474
    [84]Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, et al. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids [J]. Industrial & Engineering Chemistry Research.2009,48(6):2739-2751
    [85]Huang J, Ruther T. Why are ionic liquids attractive for CO2 absorption? An overview [J]. Australian Journal of Chemistry.2009,62(4):298-308
    [86]Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO2 capture-Development and progress [J]. Chemical Engineering and Processing:Process Intensification.2010,49(4): 313-322
    [87]Yang Z-Z, Zhao Y-N, He L-N. CO2 chemistry:task-specific ionic liquids for CO2 capture/activation and subsequent conversion [J]. RSC Advances.2011,1(4):545-567
    [88]Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y. Carbon capture with ionic liquids: overview and progress [J]. Energy & Environmental Science.2012,5(5):6668-6681
    [89]Ramdin M, de Loos TW, Vlugt TJ. State-of-the-art of CO2 capture with ionic liquids [J]. Industrial & Engineering Chemistry Research.2012,51(24):8149-8177
    [90]Muldoon MJ, Aki SN, Anderson JL, Dixon JK, Brennecke JF. Improving carbon dioxide solubility in ionic liquids [J]. The Journal of Physical Chemistry B.2007,111(30): 9001-9009
    [91]Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. Why is CO2 so soluble in imidazolium-based ionic liquids? [J]. Journal of the American Chemical Society. 2004,126(16):5300-5308
    [92]Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents [J]. Journal of Membrane Science. 2008,321(1):3-7
    [93]Seddon KR, Stark A, Torres M-J. Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids [C]. ACS Symposium series,2002; ACS Publications:2002; pp 34-49
    [94]Sharma A, Julcour C, Kelkar AA, Deshpande RM, Delmas H. Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor [J]. Industrial & Engineering Chemistry Research.2009,48(8):4075-4082
    [95]McCabe WL, Smith JC, Harriott P. Unit operations of chemical engineering [M]: McGraw-Hill New York; 1993
    [96]Gardas RL, Coutinho JA. A group contribution method for viscosity estimation of ionic liquids [J]. Fluid Phase Equilibria.2008,266(1):195-201
    [97]Shannon MS, Bara JE. Properties of alkylimidazoles as solvents for CO2 capture and comparisons to imidazolium-based ionic liquids [J]. Industrial & Engineering Chemistry Research.2011,50(14):8665-8677
    [98]Gmelin E. Classical temperature-modulated calorimetry: A review [J]. Thermochimica Acta.1997,304:1-26
    [99]Hallett JP, Welton T. Room-temperature ionic liquids:solvents for synthesis and catalysis. 2 [J]. Chemical Reviews.2011,111(5):3508-3576
    [100]Cammarata L, Kazarian S, Salter P, Welton T. Molecular states of water in room temperature ionic liquids [J]. Physical Chemistry Chemical Physics.2001,3(23): 5192-5200
    [101]Anthony JL, Anderson JL, Maginn EJ, Brennecke JF. Anion effects on gas solubility in ionic liquids [J]. The Journal of Physical Chemistry B.2005,109(13):6366-6374
    [102]Blanchard LA, Gu Z, Brennecke JF. High-pressure phase behavior of ionic liquid/CO2 systems [J]. The Journal of Physical Chemistry B.2001,105(12):2437-2444
    [103]Hou Y, Baltus RE. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method [J]. Industrial & Engineering Chemistry Research.2007,46(24):8166-8175
    [104]Shiflett MB, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4] [J]. Industrial & Engineering Chemistry Research. 2005,44(12):4453-4464
    [105]Bara JE, Camper DE, Gin DL, Noble RD. Room-temperature ionic liquids and composite materials:platform technologies for CO2 capture [J]. Accounts of chemical research.2009, 43(1):152-159
    [106]Wang C, Luo X, Luo H, Jiang De, Li H, Dai S. Tuning the basicity of ionic liquids for equimolar CO2 capture [J]. Angewandte Chemie International Edition.2011,50(21): 4918-4922
    [107]Huang X, Margulis CJ, Li Y, Berne BJ. Why Is the Partial Molar Volume of CO2 So Small When Dissolved in a Room Temperature Ionic Liquid? Structure and Dynamics of CO2 Dissolved in [Bmim+][PF6-] [J]. Journal of the American Chemical Society.2005, 127(50):17842-17851
    [108]Yu G, Zhang S. Insight into the cation-anion interaction in 1,1,3, 3-tetramethylguanidinium lactate ionic liquid [J]. Fluid Phase Equilibria.2007,255(1): 86-92
    [109]Ahmady A, Hashim MA, Aroua MK. Experimental investigation on the solubility and initial rate of absorption of CO2 in aqueous mixtures of methyldiethanolamine with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [J]. Journal of Chemical & Engineering Data.2010,55(12):5733-5738
    [110]Zhao Y, Zhang X, Zeng S, Zhou Q, Dong H, Tian X, et al. Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine+ionic liquid+H2O, ionic liquid+H2O, and amine+H2O systems [J]. Journal of Chemical & Engineering Data. 2010,55(9):3513-3519
    [111]Weyer KM, Bush DR, Darzins A, Willson BD. Theoretical maximum algal oil production [J]. Bioenergy Research.2010,3(2):204-213
    [112]Metting Jr F. Biodiversity and application of microalgae [J]. Journal of industrial microbiology.1996,17(5-6):477-489
    [113]Nonrrrcore D. The biology and chemistry of the cell walls of higher plants, algae, and fungi [J]. International review of cytology.1963,14:223
    [114]Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels [J]. Science(Washington). 2010,329(5993):796-799
    [115]Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K. Placing microalgae on the biofuels priority list:a review of the technological challenges [J]. Journal of the Royal Society Interface.2010,7(46):703-726
    [116]Chisti Y. Biodiesel from microalgae [J]. Biotechnology advances.2007,25(3):294-306
    [117]Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O. Life-cycle assessment of biodiesel production from microalgae [J]. Environmental Science & Technology.2009,43(17): 6475-6481
    [118]Binder JB, Raines RT. Fermentable sugars by chemical hydrolysis of biomass [J]. Proceedings of the National Academy of Sciences.2010,107(10):4516-4521
    [119]Binder JB, Raines RT. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals [J]. Journal of the American Chemical Society.2009,131(5): 1979-1985
    [120]IPCC. Policymaker's summary o f the scientific assessment of climate change [R]. Meteorological Office:Bracknell, UK,1990;
    [121]Desideri U, Paolucci A. Performance modelling of a carbon dioxide removal system for power plants [J]. Energy Conversion and Management.1999,40(18):1899-1915
    [122]Klaassen R, Feron P, Jansen A. Membrane contactors in industrial applications [J]. Chemical Engineering Research and Design.2005,83(3):234-246
    [123]Powell CE, Qiao GG. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases [J]. Journal of Membrane Science.2006, 279(1-2):1-49
    [124]Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation [J]. Journal of Membrane Science.2010,359(1):115-125
    [125]Brunetti A, Drioli E, Lee YM, Barbieri G. Engineering evaluation of CO2 separation by membrane gas separation systems [J]. Journal of Membrane Science.2014,454:305-315
    [126]Lv Y, Yu X, Jia J, Tu S-T, Yan J, Dahlquist E. Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption [J]. Applied Energy.2012,90(1):167-174
    [127]Zhang H-Y, Wang R, Liang DT, Tay JH. Theoretical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption [J]. Journal of Membrane Science.2008,308(1):162-170
    [128]Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E. Wetting of polypropylene hollow fiber membrane contactors [J]. Journal of Membrane Science.2010,362(1):444-452
    [129]Kohl AL, Nielsen R. Gas purification [M]:Gulf Professional Publishing; 1997
    [130]Lepaumier H, da Silva EF, Einbu A, Grimstvedt A, Knudsen JN, Zahlsen K, et al. Comparison of MEA degradation in pilot-scale with lab-scale experiments [J]. Energy Procedia.2011,4:1652-1659
    [131]Rochelle GT. Amine scrubbing for CO2 capture [J]. Science.2009,325(5948): 1652-1654
    [132]Idem RO, Uyanga IJ, Aboudheir A, Tontiwachwuthikul P. Kinetic study of SO2 and O2 induced degradation of aqueous MEA [C]. Carbon Capture and Utilisation Workshop, HTC Energy,2007; 2007;
    [133]Gao J, Wang S, Zhao B, Qi G, Chen C. Pilot-scale experimental study on the CO2 capture process with existing of SO2:degradation, reaction rate, and mass transfer [J]. Energy & Fuels.2011,25(12):5802-5809
    [134]Caplow M. Kinetics of carbamate formation and breakdown [J]. Journal of the American Chemical Society.1968,90(24):6795-6803
    [135]Danckwerts P. The reaction of CO2 with ethanolamines [J]. Chemical Engineering Science.1979,34(4):443-446
    [136]Hikita H, Asai S, Tsuji T. Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions [J]. AIChE Journal.1977,23(4):538-544
    [137]Hikita H, Asai S, Nose H. Absorption of sulfur dioxide into water [J]. AIChE Journal. 1978,24(1):147-149
    [138]Thong D, Dave N, Feron P, Azzi M. Project:Environmental impacts of amine-based CO2 post combustion capture (PCC) process. Activity 3:Process modelling for amine-based post-combustion capture plant [R]. Australian National Low Emissions Coal Research and Development 2012;
    [139]Wen H, Narula R. Impacts of carbon capture on power plant emissions [R]. International post combustion capture network:2009;
    [140]Lv Y, Yu X, Tu S-T, Yan J, Dahlquist E. Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor [J]. Applied Energy. 2012,97:283-288
    [141]Supap T, Saiwan C, Idem R, Tontiwachwuthikul PP. Part 2:Solvent management: solvent stability and amine degradation in CO2 capture processes [J]. Carbon Management. 2011,2(5):551-566
    [142]Li H, Yan J, Anheden M. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system [J]. Applied Energy.2009,86(2): 202-213
    [143]Characterisation of the storage complex, CO2 stream composition, monitoring and corrective measures. [R]. Implementation of directive 2009/31/EC on the geological storage of carbon dioxide.:
    [144]Karoor S, Sirkar KK. Gas absorption studies in microporous hollow fiber membrane modules [J]. Industrial & Engineering Chemistry Research.1993,32(4):674-684
    [145]Park HH, Deshwal BR, Kim IW, Lee HK. Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor [J]. Journal of Membrane Science.2008, 319(1):29-37
    [146]Meng H, Zhang S, Li C, Li L. Removal of heat stable salts from aqueous solutions of N-methyldiethanolamine using a specially designed three-compartment configuration electrodialyzer [J]. Journal of Membrane Science.2008,322(2):436-440
    [147]Mangalapally HP, Notz R, Hoch S, Asprion N, Sieder G, Garcia H, et al. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents [J]. Energy Procedia.2009,1(1):963-970
    [148]Mimura T, Simayoshi H, Suda T, Iijima M, Mituoka S. Development of energy saving technology for flue gas carbon dioxide recovery in power plant by chemical absorption method and steam system [J]. Energy Conversion and Management.1997,38:S57-S62
    [149]Mangalapally HP, Hasse H. Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents [J]. Energy Procedia.2011,4:1-8
    [150]Yang J, Yu X, Yan J, Tu S-T, Dahlquist E. Effects of SO2 on CO2 capture using a hollow fiber membrane contactor [J]. Applied Energy.2013,112(0):755-764
    [151]Thitakamol B, Veawab A, Aroonwilas A. Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant [J]. International Journal of Greenhouse Gas Control.2007,1(3):318-342
    [152]Ramezan M. carbon dioxide capture from existing coal-fired power plants [R]. DOE/NETL-401/110907; U.S. Department of Energy-National Energy Technology Laboratory:November,2007;
    [153]Wappel D, Gronald G, Kalb R, Draxler J. Ionic liquids for post-combustion CO2 absorption [J]. International Journal of Greenhouse Gas Control.2010,4(3):486-494
    [154]Dzyuba SV, Bartsch RA. Recent advances in applications of room-temperature ionic liquid/supercritical CO2 systems [J]. Angewandte Chemie International Edition.2003, 42(2):148-150
    [155]Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2 [J]. Nature.1999,399(6731):28-29
    [156]Camper D, Scovazzo P, Koval C, Noble R. Gas solubilities in room-temperature ionic liquids [J]. Industrial & Engineering Chemistry Research.2004,43(12):3049-3054
    [157]Shiflett MB, Yokozeki A. Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N] [J]. The Journal of Physical Chemistry B.2007,111(8):2070-2074
    [158]Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Regular solution theory and CO2 gas solubility in room-temperature ionic liquids [J]. Industrial & Engineering Chemistry Research.2004,43(21):6855-6860
    [159]Janiczek P, Kalb RS, Thonhauser G, Gamse T. Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid [J]. Separation and Purification Technology.2012,97:20-25
    [160]Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, et al. Equimolar CO2 absorption by anion-functionalized ionic liquids [J]. Journal of the American Chemical Society.2010,132(7):2116-2117
    [161]Bates ED, Mayton RD, Ntai I, Davis Jr JH. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society.2002,124(6):926-927
    [162]Rogers RD, Seddon KR, Volkov S. Green industrial applications of ionic liquids [M]: Springer; 2003
    [163]Camper D, Bara JE, Gin DL, Noble RD. Room-temperature ionic liquid-amine solutions: Tunable solvents for efficient and reversible capture of CO2 [J]. Industrial & Engineering Chemistry Research.2008,47(21):8496-8498
    [164]Moreno M, Castiglione F, Mele A, Pasqui C, Raos G. Interaction of water with the model ionic liquid [bmim][BF4]:Molecular dynamics simulations and comparison with NMR data [J]. The Journal of Physical Chemistry B.2008,112(26):7826-7836
    [165]Hu Y, Li H, Yan J. Techno-economic evaluation of the evaporative gas turbine cycle with different CO2 capture options [J]. Applied Energy.2012,89(1):303-314
    [166]Earle MJ, Esperanca JM, Gilea MA, Lopes JN, Rebelo LP, Magee JW, et al. The distillation and volatility of ionic liquids [J]. Nature.2006,439(7078):831-834
    [167]Kim K-S, Park S-Y, Choi S, Lee H. Vapor pressures of the 1-butyl-3-methylimidazolium bromide+water, 1-butyl-3-methylimidazolium tetrafluoroborate+water, and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate+water systems [J]. Journal of Chemical & Engineering Data.2004,49(6):1550-1553
    [168]Weissermel K, Arpe H. Industrial Organic Chemistry [J]. Synthesis-Journal of Synthetic Organic Chemistry.2004, (7):1127-1127
    [169]Abu-Zahra MR, Niederer JP, Feron PH, Versteeg GF. CO2 capture from power plants: Part Ⅱ. A parametric study of the economical performance based on mono-ethanolamine [J]. International Journal of Greenhouse Gas Control.2007,1(2):135-142
    [170]Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF. CO2 capture from power plants:Part I. A parametric study of the technical performance based on monoethanolamine [J]. International Journal of Greenhouse Gas Control.2007,1(1): 37-46
    [171]Kim KS, Shin BK, Lee H, Ziegler F. Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate, and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide+trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate+ trifiuoroethanol [J]. Fluid Phase Equilibria.2004,218(2):215-220
    [172]Rebelo LP, Canongia Lopes JN, Esperanca JM, Filipe E. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids [J]. The Journal of Physical Chemistry B.2005,109(13):6040-6043
    [173]Anderson JL, Dixon JK, Brennecke JF. Solubility of CO2, CH4, C2H6, C2H4,02, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide:Comparison to Other Ionic Liquids [J]. Accounts of chemical research.2007,40(11):1208-1216
    [174]Amundsen TG,(?)i LE, Eimer DA. Density and viscosity of monoethanolamine+water+ carbon dioxide from (25 to 80) C [J]. Journal of Chemical & Engineering Data.2009, 54(11):3096-3100
    [175]Zhou Q, Wang LS, Chen HP. Densities and viscosities of l-butyl-3-methylimidazolium tetrafluoroborate+H2O binary mixtures from (303.15 to 353.15) K [J]. Journal of Chemical & Engineering Data.2006,51(3):905-908
    [176]Yu W, Yu X, Tu S-T. Oxidation of hydrogen off-gas from a fuel cell using a microstructured reactor with hydrophobic Pt-Al2O3 catalyst coating [J]. Energy Procedia. 2014:In press
    [177]Lewis NS, Nocera DG. Powering the planet:Chemical challenges in solar energy utilization [J]. Proceedings of the National Academy of Sciences.2006,103(43): 15729-15735
    [178]Kramer GJ, Haigh M. No quick switch to low-carbon energy [J]. Nature.2009,462(7273): 568-569
    [179]Chand S. Review carbon fibers for composites [J]. Journal of Materials Science.2000, 35(6):1303-1313
    [180]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresource Technology.2002,83(1):1-11
    [181]Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, et al. Cellulose hydrolysis in subcritical and supercritical water [J]. The Journal of Supercritical Fluids. 1998,13(1):261-268
    [182]Li J, Ye Y, Chen L, Qi Z. Solubilities of CO2 in Poly (ethylene glycols) from (303.15 to 333.15) K [J]. Journal of Chemical & Engineering Data.2011,57(2):610-616
    [183]Bligh E, Dyer WJ. A rapid method of total lipid extraction and purification [J]. Canadian journal of biochemistry and physiology.1959,37(8):911-917
    [184]Kim B, Choi M, Chung Y, Lee J, Wui I. Blue-green alga Microcystis aeruginosa Kutz. in natural medium [J]. Bulletin of environmental contamination and toxicology.1997,59(1): 35-43
    [185]Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties [J]. Bioresource Technology.2009, 100(1):261-268
    [186]梁斌.生物柴油的生产技术[J].化工进展.2005,24(6):577-585
    [187]Chen Y, Zhang S, Yuan X, Zhang Y, Zhang X, Dai W, et al. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids [J]. Thermochimica Acta.2006,441(1): 42-44
    [188]Zhang S, Yuan X, Chen Y, Zhang X. Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures [J]. Journal of Chemical & Engineering Data.2005,50(5):1582-1585
    [189]Baltus RE, Culbertson BH, Dai S, Luo H, DePaoli DW. Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance [J]. The Journal of Physical Chemistry B.2004,108(2):721-727
    [190]Zhang X, Liu Z, Wang W. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments [J]. AIChE Journal.2008,54(10):2717-2728
    [191]Teixeira RE. Energy-efficient extraction of fuel and chemical feedstocks from algae [J]. Green chemistry.2012,14(2):419-427
    [192]Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface [J]. Science.2011,333(6047): 1279-1282
    [193]Novoselov N, Sashina E, Petrenko V, Zaborsky M. Study of dissolution of cellulose in ionic liquids by computer modeling [J]. Fibre Chemistry.2007,39(2):153-158
    [194]Xu L, Brilman DW, Withag JA, Brem G, Kersten S. Assessment of a dry and a wet route for the production of biofuels from microalgae:energy balance analysis [J]. Bioresource Technology.2011,102(8):5113-5122
    [195]Thorin E, Lindmark J, Nordlander E, Odlare M, Dahlquist E, Kastensson J, et al. Performance optimization of the Vaxtkraft biogas production plant [J]. Applied Energy. 2012,97:503-508

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700