氧化葡萄糖酸杆菌特异性氧化1-苯基-1,2-乙二醇及赤藓糖醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化葡萄糖酸杆菌(Gluconobacter oxydans,简称G. oxydans)具有大量的膜结合脱氢酶,能够不完全氧化多种糖、醇类物质生产相应的醛、酮和酸,这种氧化大多具有区域选择性和立体选择性,而且氧化产物能够直接分泌到反应液中,因而,成功应用于多种产品的工业生产之中,如维生素C、(酮基)葡萄糖酸、二羟基丙酮等。随着G. oxydans基因组信息的公布,极大地推动了新酶的揭示以及已知酶功能扩展的研究工作,从而为G. oxydans的潜在应用开发奠定了基础。
     本论文针对G. oxydans膜结合醇脱氢酶和甘油脱氢酶催化的两种多羟基醇氧化反应,即G. oxydans氧化拆分外消旋1-苯基-1,2-乙二醇(简称苯基乙二醇)和氧化赤藓糖醇生产赤藓酮糖两个反应为研究对象,对反应过程和反应过程中的关键参数进行分析,并探讨反应抑制因素和细胞催化活性的影响因素,提出相应的解决方案,建立了高效拆分苯基乙二醇的生产工艺,完成了赤藓酮糖合成的过程研究和优化,为这两种产品的产业化开发奠定了基础。
     第一部分,G. oxydans立体选择性拆分外消旋1-苯基-1,2-乙二醇生产其(S)-构型对映体的研究。G. oxydans能区域选择性氧化1-苯基-1,2-乙二醇的α-羟基生成扁桃酸(即α-羟基苯乙酸),且对(R)、(S)-构型底物的反应亲和性存在显著的差异,因此可以使得(S)-构型底物在反应液中累积,从而达到拆分外消旋体生产(S)-苯基乙二醇的目的。
     (1)确定了G. oxydans中催化苯基乙二醇氧化拆分反应的关键酶是以PQQ为辅酶的膜结合醇脱氢酶(ADH)和乙醛脱氢酶(ALDH)。其中,负责苯基乙二醇氧化的酶只有ADH,而ALDH仅参与后一步羟基酸的合成。
     (2)通过测定G. oxydans (ADH)对(R)-和(S)-苯基乙二醇的表观动力学参数,显示出G. oxydans对(R)-构型底物的亲和力远大于(S)-构型底物,从而确定了使用G.oxydans作为生物催化剂,选择性氧化拆分外消旋体生产(S)-苯基乙二醇的可行性。
     (3)对拆分反应条件进行了优化,确定了50g/L菌体最多可以将12g/L外消旋苯基乙二醇完全拆分,反应时间约为12h,(S)-苯基乙二醇得率40.8%,e.e.值达到96%以上。同时,明确了影响反应效率的因素主要是底物苯基乙二醇和氧化产物扁桃酸产生的抑制。其中底物苯基乙二醇对反应的影响相对较小,抑制浓度在30g/L以上;而5g/L的扁桃酸就会对反应产生明显的不可逆抑制(毒害作用),是影响反应效率的关键因素。
     (4)针对扁桃酸抑制的问题,通过引入树脂原位吸附的方法,以降低反应液中扁桃酸的有效浓度。经过筛选,选择大孔型弱碱性阴离子交换树脂D301作为分离介质,并建立了树脂原位吸附的拆分反应体系,最终可以使用100g/L菌体将60g/L的外消旋苯基乙二醇完全拆分,反应时间20h,(S)-苯基乙二醇的得率39.5%,纯度达到96%e.e.以上,时空产量从0.41g L-1h-1增加到了1.18gL-1h-1。该结果优于目前文献报道微生物法生产(S)-苯基乙二醇的最高水平,为该产品的生产提供了一种可行的方法。
     第二部分,G. oxydans选择性氧化赤藓糖醇生产赤藓酮糖的过程研究。基于以PQQ为辅酶的膜结合甘油脱氢酶特性,根据其与乙醇脱氢酶在表达上的内在联系,筛选出一株具有高甘油脱氢酶活性的G. oxydans菌株,用于选择性氧化赤藓糖醇生产赤藓酮糖,并在摇瓶和7L生物反应器中对氧化反应的过程进行了研究和优化。
     (1)首先确定了催化赤藓糖醇生产赤藓酮糖的关键酶为以PQQ为辅酶的膜结合甘油脱氢酶(GDH)。基于GDH与ADH在G. oxydans中表达的关联性,对菌体生长环境进行调控,利用底物诱导驯化,获得了一株高甘油脱氢酶活性的菌株用于赤藓酮糖的生产。
     (2)在摇瓶中初步优化了反应条件,并考察了赤藓糖醇和赤藓酮糖对反应的影响。底物赤藓糖醇对反应速率的抑制不明显,但是会对菌体细胞的菌体催化活性产生影响,抑制浓度约为50g/L;而产物赤藓酮糖对反应速率和菌体催化活性均有明显的抑制作用,且浓度越高,抑制作用越强。
     (3)在7L生物反应器中,对赤藓糖醇氧化反应过程参数进行研究和优化。确定了转化条件为pH4.0,温度30℃,通气量达到最大为8L/min,搅拌转速为600rpm。20g/L菌体能够将150g/L赤藓糖醇在20h左右完全氧化,200g/L底物完全氧化则需40g/L菌体,反应时间18h,时空产率分别为6.65g L-1h-1和10.94g L-1h-1,单位菌体产量分别为7.31g/g cells和4.93g/g cells。
     (4)针对赤藓糖醇对菌体催化活性的影响,为降低反应液中的赤藓糖醇浓度,采用了底物分批添加的策略。确定了底物添加方式为初始底物浓度为50g/L,2h后开始补加底物,速率为每小时加入20g/L。经过20h,20g/L菌体最多可将250g/L赤藓糖醇完全氧化,转化率达到100%,与单批次转化(相同菌体浓度)相比,其时空产率和单位菌体产量分别提高了78.6%和62.4%,达到了11.88gL-1h-1和11.88g/g cells。该结果显示出G. oxydans生产赤藓酮糖的快速和高效,具有一定的应用前景。
Gluconobacter oxydans (G. oxydans) is known for its regio-and stereoselective oxidation of a wide range of carbohydrates and alcohols to corresponding aldehydes, ketones or acids and the products can accumulate in the medium. And this microbiology has been used in a wide variety of biotechnological processes as the biocatalyst, such as the production of vitamin C,(keto-) gluconic acid, dihydroxyacetone (DHA) and so on. As the genome of G. oxydans621H was published in2005, the further investigations on the unknown or known enzymes in G. oxydans were developed, which was the base of the application development of G. oxydans.
     In this dissertation, the oxidations of (R, S)-1-phenyl-1,2-ethanodiol and erythritol which were responsible by the membrane-bound alcohol dehydrogenase and membrane-bound glycerol dehydrogenase respectively were investigated. And the processes and their key factors were studied in detail.
     In the first part, the resolution of racemic1-phenyl-1,2-ethanediol (PED) for the production of (S)-isomeride catalyzed by G. oxydans was performed. The resting cells of G. oxydans were able to catalyze the regio-and stereoselective concurrent oxidation of PED to the corresponding hydroxyl acid, mandelic acid. And due to the different reactive activities of cells to the two isomerides, optically pure (S)-PED was cumulated in the reaction resolution as the unreacted substrate.
     (1) The membrane-bound alcohol dehydrogenase (ADH) and membrane-bound aldehyde dehydrogenase (ALDH) in G. oxydans were testified to be the key enzymes in the conversion of PED to mandelic acid. The oxidation of PED was only in the charge of the ADH, and the ALDH was beneficial for the production of mandelic acid but had no effect on the oxidation of PED.
     (2) The kinetic parameters for the oxidation of (R)-and (S)-PED were obtained using Lineweaver-BurK method, respectively, which reflected the different activities of G. oxydans cells (ADH) on the two isomerides. And due to the differences, it was feasible to product (S)-PED from the raceme using G. oxydans cells.
     (3) Through the optimization of reaction conditions,12g/L of (R, S)-PED was able to be separated completely by50g/L cells in12h, with40.8%of the productivity and over96%e.e. of purity. The substrate, PED, and oxidative product, mandelic acid, were testified to have inhibition to the reaction. The inhibited concentration of PED was over30g/L; and mandelic acid of only5g/L was able to create serious and irreversible inhibition (toxicity), which was the key inhibitor.
     (3) In order to overcome the inhibition of mandelic acid, the anion exchange resin D301was selected and introduced as the adsorbent for in situ removal of inhibitor from the reaction system. This method allowed the concentration of substrate to be increased to60g/L, with39.5%of the productivity and over96%e.e. of purity for (S)-PED. Comparing with the conversion without resins, the final space-time yield increased by2-fold to1.18g L-1h-1from0.41g L-1h-1. This method was more effective for the production of (S)-PED than those from the reports.
     In the second part, a high activity strain of G. oxydans DSM2003for the oxidation of erythritol was screened based on the membrane-bound glycerol dehydrogenase (GDH) and was used in the production of erythrulose. The process of the conversion was investigated and optimized.
     (1) The membrane-bound glycerol dehydrogenase (GDH) of G. oxydans was testified to be in charge of the conversion of erythritol. And according to the relationship of GDH and ADH, a strain of G. oxydans DSM2003with high GDH activity was obtained through the regulation of the growth condition.
     (2) The conversion conditions were optimized and the effects of erythritol and erythrulose were investigated in flasks. The erythritol didn't have effect on the reaction rate, but it would produce toxicity to the cells when the concentration was over50g/l. The erythrulose strongly inhibited on both of the reaction rate and the activities of the cells, and the higher the concentration of erythrulose was, the stronger the inhibition was.
     (3) The process from erythritol to erythrulose was operated in a7L bioreactor and the reaction conditions were determined (pH4.0,30℃,8L/min of aeration and600rpm of agitation).150g/L of erythritol was oxidized completely in20h by20g/L of G. oxydans cells, and the space-time yield was6.65g L-1h-1and the yield per unit of cells was7.31g/g cells.40g/L of G. oxydans cells were required when the concentration of substrate was up to200g/L. The reaction time was18h and the space-time yield and the yield per unit of cells were10.96g L-1h-1and4.93g/g cells respectively.
     (4) In order to reduce the effects of erythritol to G. oxydans cells, the substrate was added into the reaction solution in several times. The initial concentration of substrate was50g/L catalyzed by20g/L G. oxydans cells, and erythritol of20g/L was added per hour after2h. The maximal total concentration of erythritol was250g/L, which was able to be completely oxidized to erythrulose in20h. The space-time yield and the yield per unit of cells for the fed-batch conversion were11.88g L-1h-1and11.88g/g cells respectively, which were increased by78.6%and62.4%comparing with the conventional conversion catalyzed by the same concentration of G. oxydans cells。The method showed the good industrial application potential for the production of erythrulose.
引文
[1]山根恒夫著,邢新会译.生物反应工程.北京:生物反应工程,2006
    [2]欧阳立明,许建和.生物催化与生物转化研究进展.生物加工过程.2008,6(3):1-9
    [3]王劝绪.浅谈微生物催化在药物合成中的应用及其发展前景.科技创新与应用.2012,(12):31-31
    [4]中国产业信息网著.2012-2016年中国生物技术行业调研与发展趋势研究报告.2012
    [5]杜晨宇,李春,曹竹安等.工业生物技术的核心——生物催化.生物工程进展.2002
    [6]Faber K著.Biotransformations in organic chemistry. Springerverlag Berlin Heidelberg, 2011
    [7]Cassandra De Muynck, Catarina S. S. Pereira, Myriam Naessens, et al. The genus Gluconobacter oxydans:comprehensive overview of biochemistry and biotechnological applications. Critical Reviews in Biotechnology.2007,27:147-171
    [8]De Ley J, Gillis M,Swings J. The genus Gluconobacter.Bergey's manual of systematic bacteriology.1984,1:267-278
    [9]Olijve W. Glucose metabolism in Gluconobacter oxydans. PhD Thesis, The Netherlands: University of Groningen,1978
    [10]Yamada Y, Hoshino K-i,Ishikawa T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA:the elevation of the subgenus Gluconoacetobacter to the generic level.Bioscience, biotechnology, and biochemistry.1997,61(8):1244
    [11]Yamada Y, Hosono R, Lisdyanti P, et al. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter.The Journal of general and applied microbiology.1999,45(1):23-28
    [12]Asai T. Taxonomic studies on acetic acid bacteria and allied oxidative bacteria isolated from fruits. A new classification of the oxidative bacteria. J. Agric. Chem. Soc. Japan.1935,11: 674-708
    [13]Deppenmeier U, Hoffmeister M,Prust C. Biochemistry and biotechnological applications of Gluconobacter strains. Applied Microbiology and Biotechnology.2002,60(3):233-242
    [14]M. S, J. S. The genus Gluconobacter. Berger's Manual of Systematic Bacteriology 2nd Edition. G. M. Garrity, D. J. Brenner, N. R. Krieg, J. T. Staley, New York.2005.1:77-81
    [15]Prust C, Hoffmeister M, Liesegang H, et al. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans.Nature biotechnology.2005,23(2):195-200
    [16]Arcus A,Edson N. Polyol dehydrogenases.2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochemical Journal.1956,64(3):385-394
    [17]Matsushita K, Toyama H,Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Advances in microbial physiology.1994,36:247-301
    [18]刘耀平,徐明恺,金玉兰,张成刚.氧化葡萄糖酸杆菌酶学和分子生物学研究.微生物学杂志.2003,23(3):39-43
    [19]Deppenmeier U, Ehrenreich A. Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. Journal of molecular microbiology and biotechnology. 2008,16(1-2):69-80
    [20]Holscher T, Gorisch H. Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. Journal of bacteriology.2006,188(21): 7668-7676
    [21]Sato S, Morita N, Kitamoto D, et al. Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter strains in the presence of methanol.AMB Express.2013,3(1):1-7
    [22]Li M-h, Wu J, Liu X, et al. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresource technology.2010,101(21):8294-8299
    [23]Wei L, Yang X, Gao K, et al. Characterization of Enzymes in the Oxidation of 1, 2-Propanediol to d-(-)-Lactic Acid by Gluconobacter oxydans DSM 2003. Molecular biotechnology.2010,46(1):26-33
    [24]杨海麟,亓正良,张玲,王武.浅谈我国液态深层发酵高酸度醋的生产.食品与发酵工业.2010,(003):117-121
    [25]Gupta A, Singh V K, Qazi G, et al. Gluconobacter oxydans:its biotechnological applications.Journal of molecular microbiology and biotechnology.2001,3(3):445-456
    [26]Wei G, Yang X, Zhou W, et al. Adsorptive bioconversion of ethylene glycol to glycolic acid by Gluconobacter oxydans DSM 2003. Biochemical Engineering Journal.2009,47(1-3): 127-131
    [27]Su W, Chang Z, Gao K, et al. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans.Tetrahedron:Asymmetry.2004,15(8):1275-1277
    [28]Gao K, Song Q, Wei D. Coupling of enantioselective biooxidation of DL-1,2-propanediol and bioreduction of pinacolone via regeneration cycle of coenzyme.Applied microbiology and biotechnology.2006,71(6):819-823
    [29]Habe H, Shimada Y, Fukuoka T, et al. Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol. Bioscience biotechnology and biochemistry.2009,73(8): 1799-1805
    [30]Habe H, Shimada Y, Yakushi T, et al. Microbial production of glyceric acid, an organic acid that can be mass produced from glycerol. Applied and environmental microbiology.2009, 75(24):7760-7766
    [31]Habe H, Shimada Y, Fukuoka T, et al. Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol. Bioscience biotechnology and biochemistry.2010,74(11):2330-2332
    [32]Ameyama M, Shinagawa E, Matsushita K, et al. D-Glucose dehydrogenase of Gluconobacter suboxydans:solubilization, purification and characterization. Agricultural and Biological Chemistry.1981,45(4):851-861
    [33]Holscher T, Schleyer U, Merfort M, et al. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Journal of Molecular Microbiology and Biotechnology.2008,16(1-2):6-13
    [34]Merfort M, Herrmann U, Bringer-Meyer S, et al. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Applied microbiology and biotechnology.2006,73(2):443-451
    [35]Pronk J, Levering P, Olijve W, et al. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans. Enzyme and microbial technology.1989,11(3):160-164
    [36]SHINAGAWA E, MATSUSHITA K, ADACHI O, et al. Selective production of 5-keto-D-gluconate by Gluconobacter strains. Journal of fermentation technology.1983, 61(4):359-363
    [37]Shinagawa E, Matsushita K, Toyama H, et al. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. Journal of Molecular Catalysis B:Enzymatic.1999,6(3): 341-350
    [38]Silberbach M, Maier B, Zimmermann M, et al. Glucose oxidation by Gluconobacter oxydans:characterization in shaking-flasks, scale-up and optimization of the pH profile. Applied microbiology and biotechnology.2003,62(1):92-98
    [39]Weenk G, Olijve W, Harder W. Ketogluconate formation by Gluconobacter species. Applied microbiology and biotechnology.1984,20(6):400-405
    [40]Matsushita K, Fujii Y, Ano Y, et al.5-keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and environmental microbiology.2003,69(4):1959-1966
    [41]Boudrant J. Microbial processes for ascorbic acid biosynthesis:a review. Enzyme and microbial technology.1990,12(5):322-329
    [42]De Wulf P, Soetaert W, Vandamme E J. Optimized synthesis of L-sorbose by C5-dehydrogenation of D-sorbitol with Gluconobacter oxydans. Biotechnology and bioengineering.2000,69(3):339-343
    [43]Giridhar R, Srivastava A. Repeated fed-batch sorbose fermentation by Gluconobacter oxydans. Chemical and biochemical engineering quarterly.2001,15(3):127-130
    [44]Saito Y, Ishii Y, Hayashi H, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Applied and environmental microbiology.1997,63(2):454-460
    [45]Wang X, Liu J, Du G, et al. Efficient production of L-sorbose from D-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochemical Engineering Journal. 2013,(77):171-176
    [46]Campbell L K, Baker D E,Campbell R K. Miglitol:assessment of its role in the treatment of patients with diabetes mellitus. The Annals of pharmacotherapy.2000,34(11):1291-1301
    [47]Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, key reaction in the industrial 1-deoxynojirimycin synthesis. Biotechnology Set, Second Edition. 2000,295-311
    [48]Yang X-P, Wei L-J, Lin J-P, et al. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Applied and environmental microbiology. 2008,74(16):5250-5253
    [49]Kawashima K, Itoh H,Chibata I. Nonenzymatic browning reactions of dihydroxyacetone with amino acids or their esters. Agricultural and Biological Chemistry.1980,44
    [50]张育川.二羟基丙酮.精细与专用化学品.2003,(22):21
    [51]Mishra R, Jain S R,Kumar A. RETRACTED:Microbial production of dihydroxyacetone. Biotechnology advances.2008,26(4):293-303
    [52]Claret C, Salmon J, Romieu C, et al. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Applied microbiology and biotechnology.1994, 41(3):359-365
    [53]Yamada S, Nabe K, Izuo N, et al. Fermentative production of dihydroxyacetone by Acetobacter suboxydans ATCC 621. Journal of Fermentation Technology.1979,57
    [54]吴建.基于膜结合醇脱氢酶特性的氧化葡萄糖酸杆菌选择性氧化甘油及苯甲醇的研究.华东理工大学,2011
    [55]张玉彬著.生物催化的手性合成.北京:化学工业出版社,2003
    [56]孙志浩.手性技术与生物催化.生物加工过程.2004,2(4):6-10
    [57]崔志萍,李小博.手性合成的发展进程.化工管理.2013,(14):148
    [58]王胜国,于国清,王世文.不对称催化及其在精细化工中的应用.工业催化.2000,8(4):9-16
    [59]Gotor V. Biocatalysis applied to the preparation of pharmaceuticals. Organic process research & development.2002,6(4):420-426
    [60]林国强,陈耀全,李月明,陈新滋.著.手性合成-不对称反应及其应用.北京:科学出版社,2007
    [61]孙立水,李少香,冯柏成,陈红纳.手性反应控制进展.化工技术与开发.2006,35(5):19-22
    [62]郑裕国,沈寅初.手性医药化学品生物催化合成进展与实践.生物加工过程.2013,11(2):24-29
    [63]Romano A, Gandolfi R, Nitti P, et al. Acetic acid bacteria as enantioselective biocatalysts. Journal of Molecular Catalysis B:Enzymatic.2002,17(6):235-240
    [64]Schumacher K, Asche S, Heil M, et al. Microbiological oxidation of 2-methylbutanol of differing enantiomeric ratios by Gluconobacter species. Zeitschrift fur Lebensmitte-luntersuchungund-Forschung A.1998,207(1):74-76
    [65]Leon R, Prazeres D M, Molinari F, et al. Microbial stereoselective oxidation of 2-methyl-1,3-propanediol to (R)-β-hydroxyisobutyric acid in aqueous/organic biphasic systems. Biocatalysis and biotransformation.2002,20(3):201-207
    [66]Molinari F, Villa R, Aragozzini F, et al. Enantioselective oxidation of (R,S)-2-phenyl-l-propanol to (S)-2-phenylpropanoic acid with Gluconobacter oxydans:simplex optimization of the biotransformation. Tetrahedron:asymmetry.1999,10(15):3003-3009
    [67]Hiromichi Ohta, Hatsuki Tetsukawa,Noto N. Enantiotopically selective oxidation of α,ω-diols with the enzyme systems of microorganisms. Org.Chem.1982, (47):2400-2404
    [68]Nanduri V, Banerjee A, Howell J, et al. Purification of a stereospecific 2-ketoreductase from Gluconobacter oxydans. Journal of Industrial Microbiology and Biotechnology.2000, 25(3):171-175
    [69]Gao C, Zhang W, Huang Y, et al. Efficient conversion of 1,2-butanediol to (R)-2-hydroxybutyric acid using whole cells of Gluconobacter oxydans. Bioresour Technol. 2012, (115):75-78
    [70]Ogawa J, Xie S-X,Shimizu S. Stereoinversion of optically active 3-pentyn-2-ol by Nocardia species. Biotechnology letters.1999,21(4):331-335
    [71]Balagam B, Mitra R,Richardson D E. Osmium-catalyzed asymmetric dihydroxylation by carbon dioxide-activated hydrogen peroxide and N-methylmorpholine. Tetrahedron Letters. 2008,49(6):1071-1075
    [72]Iwasaki F, Maki T, Onomura O, et al. Chemo-and stereoselective monobenzoylation of 1,2-diols catalyzed by organotin compounds. The Journal of Organic Chemistry.2000,65(4): 996-1002
    [73]Aldo Bosetti, Daniele Bianchi, Pietro Cesti, et al. Enzymatic resolution of 1,2-diols: comparison between Hydrolysis and transesterification reactions. J. Chem. Soc. Perkin Trans. I.1992, (18):29953-22398
    [74]Andreas Liese, Martin Karutz, Johan Kamphuis, et al. Enzymatic Resolution of 1-Phenyl-1,2-ethanediol by enantioselective Oxidation:Overcoming Product Inhibition by Continuous Extraction. Biotechnology and Bioengineering.1996, (51):544-550
    [75]Kyoung Lee, David T Gibso. Stereopecific Dihydroxylation of the Styrene Vinyl Group by Purified Naphthalene Dioxygenase from Pseudomonas sp. Strain NCIB 9816-4. Jouranl of Bacteriology.1996,178(11):3353-3356
    [76]Li Cao, Jintae Lee, Wilfred Chen, Thomas K. Wood. Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. Biotechnology and bioengineering.2006,94(3):522-529
    [77]Junzo Hasegawa, Masahiro Ogura, Satoru Tsuda, et al. High-yield Production of Optically Active 1,2-Diols from the Corresponding Racemates by Microbial Stereoinversion. Agric. Biol.Chem.1990,54(7):1819-1827
    [78]Nie Yao, Xu Yan, Mu Xiao Qing. Highly Enantioselective Conversion of Racemic 1-Phenyl-1,2-ethanediol by Stereoinversion Involving a Novel Cofactor-Dependent Oxidoreduction System of Candida parapsilosis CCTCCM203011. Organic Process Research and Development.2004,8(2):246-251
    [79]Hu Q, Xu Y,Nie Y. Enhancement of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol to its (S)-enantiomer by a highly productive "two-in-one" resin-based in situ product removal strategy. Bioresource technology.2010,101(21): 8461-8463
    [80]Hu Q, Xu Y,Nie Y. An efficient strategy overcoming the bottleneck in Candida parapsilosis catalyzing stereoinversion from (R)-1-phenyl-1,2-ethanediol to the corresponding counterpart. Journal of Chemical Technology and Biotechnology.2010,85(2):252-257
    [81]Nie Y, Xu Y, Hu Q S, et al. A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions:increase of NADPH availability. J Microbiol Biotechnol.2009,19(1): 65-71
    [82]Xu M-w, Mu X-q, Xu Y. Enhancement of substrate concentration in microbial stereoinversion through one-pot oxidation and reduction by aqueous two-phase system. Bioprocess and biosystems engineering.2010,33(3):367-373
    [83]Nie Y, Xiao R, Xu Y, et al. Novel anti-Prelog stereospecific carbonyl reductases from Candida parapsilosis for asymmetric reduction of prochiral ketones. Organic & Biomolecular Chemistry.2011,9(11):4070-4078
    [84]Yan Z, Nie Y, Xu Y, et al. Biocatalytic reduction of prochiral aromatic ketones to optically pure alcohols by a coupled enzyme system for cofactor regeneration. Tetrahedron Letters.2011,52(9):999-1002
    [85]Zhang R, Geng Y, Xu Y, et al. Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. Bioresource technology.2011,102(2):483-489
    [86]Zhang R, Xu Y, Xiao R, et al. Improved production of (R)-1-phenyl-1,2-ethanediol using Candida parapsilosisn (R)-carbonyl reductase expressed in Pichia pastoris. Process Biochemistry.2011,46(3):709-713
    [87]Lei Chang, Li-Ming Ouyang, Yi Xu, et al. Highly enantioselective hydrolysis of phenyl-1,2-ethanediol cyclic carbonates by newly isolated Bacillus sp. ECU0015. Journal of Molecular Catalysis B:Enzymatic.2010, (66):95-100
    [88]Chaudhuri RK, Marchio F, Lascu Z, Canedi ND. Soluble containers for self-tanning formulations. US Patent 20070264209.2007
    [89]Mizanur R, Takeshita K, Moshino H, et al. Production of L-erythrose via L-erythrulose from erythritol using microbial and enzymatic reactions. Journal of bioscience and bioengineering.2001,92(3):237-241
    [90]Sener A, Devis G, Somers G,et al. The insulinotropic action of D-erythrose. Diabetologia. 1977,13(2):125-130
    [91]Xingnong Wang, Youcheng Wei. Use of tetrose to inhibit cancer and to increase cell viability. WO Patent 2010043029 A1.2010
    [92]Dequeker E, Compernolle F, Toppet S, et al. Diastereoselective conversion of L-(S)-erythrulose to 2-amino-2-deoxy-L-erythritol. Tetrahedron.1995,51(20):5877-5890
    [93]Marco J A, Carda M, Falomir E, et al. Erythrulose as a multifunctional chiron:Highly stereoselective boron aldol additions. Tetrahedron letters.1999,40(5):1065-1068
    [94]Carda M, Murga J, Falomir E, et al. Aldol Reactions with Erythrulose Derivatives: Stereoselective Synthesis of Differentially Protected syn-α, β-Dihydroxy Esters. Tetrahedron. 2000,56(4):677-683
    [95]Carda M, Portoles R, Murga J, et al. Stereoselective 1,3-dipolar cycloadditions of a chiral nitrone derived from erythrulose. An experimental and DFT theoretical study. The Journal of Organic Chemistry.2000,65(21):7000-7009
    [96]Ando T, Shioi S, Nakagawa M. Total syntheses of carbohydrates. I. Dihydroxyacetone and DL-erythrulose.Bull. Chem. Soc. Japan.1972, (45):2611-2615
    [97]Simonov A, Matvienko L, Pestunova O, et al. Selective synthesis of erythrulose and 3-pentulose from formaldehyde and dihydroxyacetone catalyzed by phosphates in a neutral aqueous medium. Kinetics and Catalysis.2007,48(4):550-555
    [98]Bertrand G. Novel preparation of L-erythrulose by meso-erythritol dehydrogenation. CR Seances Acad Sci.1900, (130):1472-1475
    [99]Miiller H, Montigel C,Reichstein T. Reine L-Erythrulose (L-2-Ketotetrose). Helvetica Chimica Acta.1937,20(1):1468-1473
    [100]Whistler R L,Underkofler L. The production of L-erythrulose by the action of Acetobacter suboxydans upon erythritol. Journal of the American Chemical Society.1938, 60(10):2507-2508
    [101]Moonmangmee D, Adachi O, Shinagawa E, et al. L-Erythrulose Production by Oxidative Fermentation is Catalyzed by PQQ-Containing Membrane-bound Dehydrogenase. Bioscience biotechnology and biochemistry.2002,66(2):307-318
    [102]Voss J, Ehrenreich A, Liebl W. Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. Microbiology.2010,156(6):1890-1899
    [103]Kulhanek M. Microbial dehydrogenations of monosaccharides. Advances in applied microbiology.1989,(34):141-182
    [104]Dickens F,Williamson D. Formation of erythulose from hydroxypyruvate in the presence of yeast carboxylase. Nature.1956,178:1349-1350
    [105]Bongs J, Hahn D, Schorken U, et al. Continuous production of erythrulose using transketolase in a membrane reactor. Biotechnology letters.1997,19(3):213-216
    [106]Fiichtenbusch B, Waltermann M, Steinbuchel A. Biotransformation of 2,2-dimethyl-1,3-propanediol to 3-hydroxypivalic acid by Acetobacter acetii DSMZ3508 and related bacteria. Biotechnology letters.1998,20(5):507-510
    [107]Herrmann U, Sahm H. Application of Gluconobacter oxydans for biotechnologically relevant reactions. In:E. Mellado, J. L. Barredo editors. Microorganisms for industrial enzymes and biocontro. Vol.37. Trivandrum Research Signpost; 2005. pp:163-180
    [108]Wei G, Yang X, Gan T, et al. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. Journal of industrial microbiology and biotechnology. 2009,36(8):1029-1034
    [109]魏国栋,魏东芝,林金萍.氧化葡萄糖酸杆菌立体选择催化2-甲基-1,3-丙二醇合成(R)-p-羟基异丁酸.食品与发酵工业.2010,(8):12-16
    [110]Chen C S, Fujimoto Y, Girdaukas G, et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society.1982,104(25): 7294-7299
    [111]Gandolfi R, Borrometi A, Romano A, et al. Enantioselective oxidation of (±)-2-phenyl-1-propanol to (S)-2-phenyl-1-propionic acid with Acetobacter aceti:influence of medium engineering and immobilization. Tetrahedron:Asymmetry.2002,13(21):2345-2349
    [112]Habe H, Shimada Y, Fukuoka T, et al Use of a Gluconobacter frateurii mutant to prevent dihydroxyacetone accumulation during glyceric acid production from glycerol. Bioscience, biotechnology, and biochemistry.2010,74(11):2330-2332
    [113]Hu Z-C, Liu Z-Q, Xu J-M, et al. IMPROVEMENT OF 1,3-DIHYDROXYACETONE PRODUCTION FROM Gluconobacter oxydans BY ION BEAM IMPLANTATION. Preparative Biochemistry and Biotechnology.2012,42(1):15-28
    [114]Hu Z-C, Zheng Y-G. Enhancement of 1,3-Dihydroxyacetone Production by a UV-induced Mutant of Gluconobacter oxydans with DO Control Strategy. Applied biochemistry and biotechnology.2011,165(5-6):1152-1160
    [115]Saichana I, Moonmangmee D, Adachi O, et al. Screening of Thermotolerant Gluconobacter Strains for Production of 5-Keto-d-Gluconic Acid and Disruption of Flavin Adenine Dinucleotide-Containing d-Gluconate Dehydrogenase. Applied and environmental microbiology.2009,75(13):4240-4247
    [116]Fidaleo M, Charaniya S, Solheid C, et al. A model system for increasing the intensity of whole-cell biocatalysis:Investigation of the rate of oxidation of D-sorbitol to L-sorbose by thin bilayer latex coatings of non-growing Gluconobacter oxydans. Biotechnology and bioengineering.2006,95(3):446-458
    [117]Hekmat D, Bauer R, Neff V. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochemistry.2007,42(1):71-76
    [118]Wu J, Wang J-L, Li M-H, et al. Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology. Bioresource technology.2010,101(23):8936-8941
    [119]Molinari F, Villa R, Manzoni M, et al. Aldehyde production by alcohol oxidation with Gluconobacter oxydans. Applied microbiology and biotechnology.1995,43(6):989-994
    [120]Zigova J, Svitel J,Sturdik E. Possibilities of butyric acid production by butanol oxidation with Gluconobacter oxydans coupled with extraction. Chemical and biochemical engineering quarterly.2000,14(3):95-100
    [121]赛迪顾问股份有限公司著.中国生物产业报告2010-2011.2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700