煤气化过程高浓度酚氨污水化工处理流程开发、模拟与工业实施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气化工艺中产生的煤气洗涤污水中含有酚氨等高浓度难降解有机污染物,工业上通常采用化工分离和生化处理两段法来实现酚氨的回收和污水的净化排放。但是,现有的煤气化污水化工处理流程的酚回收效率较低,难以满足后续生化处理段的要求,从而导致最终排放不达标。
     针对煤气化污水水质的特点,本文采用ElecNRTL和NRTL热力学模型来分别描述现有流程中涉及的NH_3-CO_2-H_2S-NaOH-PhOH-H_2O和水-二异丙醚-苯酚-对苯二酚的多元极性复杂体系的热力学性质,并将这些数据结合ASPEN流程模拟软件对现有流程进行模拟分析。在流程模拟的基础上,结合工业现状,本文分析了现有流程存在的两个主要问题:萃取脱酚效果差和部分管线碳铵结晶问题。针对这两个问题,本文探讨了各种可能的解决方案。通过比较各个方案的优劣,最终提出了采用单塔汽提侧线脱氨技术替代原有的脱酸脱氨单元和采用MT替代原有的二异丙醚作为萃取剂这两个改进方案。前者目的是将污水的pH值从9左右降到6.5,使萃取在偏酸条件下进行,从而提高萃取脱酚效率,并且单塔汽提可以有效地抑制管线碳铵结晶的问题。后者是选择了一种对多元酚的分配系数更高的萃取剂,从而提高现有流程的脱酚效率。
     由于采用了新的萃取剂,需要重新确定萃取条件和相关参数。本文研究了MT萃取煤气化污水所适宜的温度和pH值,以及所需萃取相比和萃取级数。并对水-MT-苯酚-对苯二酚四元体系进行了液液相平衡研究,用NRTL方程关联得到新流程模拟所需的二元交互作用参数,为新流程的模拟开发提供数据基础。
     为了保证改造后的新流程能够有效地、稳定地运行,本文对新流程进行了稳态模拟。在此在基础上,设计并优化了新流程诸如塔板数、塔顶温度等各个设备和操作参数。并且在对新流程动态模拟的基础上,提出了合适的控制方案。
     处理量为130 t/hr的煤气化污水处理新流程目前已在中煤龙化哈尔滨煤化工公司得以成功工业实施。工业实施结果表明,和原有的工艺相比,新流程对CO_2的脱除效率从60%提高到99%以上,对总酚的脱除效率从76 %提升到93 %。新流程的实施提高了有机污染物的脱除率,满足了后续生化处理的要求,并最终实现了污水的达标排放。
Coal-gasification process produces a large quantity of gas-washing wastewater, which contains phenols, ammonia, and sour gas. Because of the toxicity of phenols, NH_3, and H_2S, the wastewater has to be treated and purified prior to discharge. Existing coal-gasification wastewater treatment plants usually consist of two sections: a chemical treatment process and a biological treatment process. However, the chemical treatment process can not remove phenols efficiently to meet the discharge standard by the following biological treatment.
     Based on the analysis of composition and thermodynamics properties of the wastewater, the complex multicomponent systems NH_3-CO_2-H_2S-NaOH-phenol-H_2O and H_2O-Diisopropyl Ether (DIPE)-Phenol-Hydroquinone were analyzed when simulating the wastewater stripping and solvent recovery process, respectively. And ELECNRTL and NRTL activity coefficient models are used to describe the wastewater stripping and solvent recovery process, respectively. Simulation results shows that the bottlenecks of the current wastewater treatment process are low phenols removal efficiency and plugging induced by ammonium bicarbonate crystals. This work proposes two methods to solve the problems. One is that ammonia and sour gas remove simultaneously in a wastewater stripper with side-draw, which reduce the pH value of the wastewater from 9 to below 7, and then remove phenols with solvent extraction in acidic condition. The other is that DIPE is replaced by MT, whose distribution coefficients to phenol and polyhydrics are greater than DIPE.
     The extraction process conditions of MT were determined, such as temperature, pH value, phase ratio, and extraction stages. The liquid-liquid equilibria of H_2O-MT-Phenol-Hydroquinone were studied. The experimental data were correlated with the NRTL activity coefficient model, and the corresponding binary interaction parameters were regressed. These parameters were used to simulate the new process.
     Process steady-state simulation was conducted to study the performance of the new process and perform detailed design, such as the number of stages, the top temperature of towers, and the top pressure of towers. And process dynamic simulation was conducted to design the control system of the new process.
     This new process has been successfully implemented in China Harbin Coal-chemicals Inc. for coal-gasification wastewater treatment with a capacity of 130t/hr. Satisfactory agreement was obtained between the simulation results and the industrial implementation of the new process. Compared with the old process, the new process recovers phenols more efficiently, and yields a satisfactory outflow for the later biological treatment of the wastewater.
引文
[1]徐振刚,陈亚飞.我国煤化工的技术现状与发展对策[J].煤炭科学技术, 2007, 35(8): 6-12
    [2] BP. BP世界能源统计年鉴[R/OL]. http://bp.com/statisticalreview, 2010
    [3]李华民,王永刚,初茉.煤化工产业现状及技术发展趋势[J].煤炭工程, 2009, 11: 82-84
    [4]范维唐,杜铭华.中国煤化工的现状及展望[J].煤化工, 2005, 1: 1-5
    [5]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社, 2003
    [6] Bourji A.K. Coal gasification: an alternate source of energy[M]. Texas: Lamar University, 1992
    [7] Minchener A.J. Coal gasification for advanced power generation[J]. Fuel, 2005, 84(17): 2222-2235
    [8]李林新,曾新昌,郭建生, et al.煤气洗涤废水的处理[J].化工环保, 1996, 16(5): 276-279
    [9]林齐平.含酚废水治理技术的进展[J].水处理技术, 1993, 19(3): 174-179
    [10]张芳西.含酚废水的处理与利用[M].北京:化学工业出版社, 1983
    [11]国家环境保护局.污水综合排放标准[S]. GB 8978-1996, 1996
    [12]中华人民共和国卫生部.生活饮用水卫生标准[S]. GB 5749-85, 1985
    [13] Kohl A.I., Nielsen R. Gas purification[M]. 5th. Houston: Gulf Publishing Company, 1997
    [14]贺永德.现代煤化工技术手册[M].北京:化学工业出版社, 2004
    [15]施永生,傅中见.煤加压气化废水处理[M].北京:化学工业出版社, 2001
    [16]李秀林.焦化厂的环境保护和污染控制[J].炼焦化学, 1982, 13(2): 1
    [17] Perry N. Coal gasification process[M]. USA: Noyes Data Corporation, 1981
    [18] Melin G.A., Niedzwiecki J.L. Optimum design of sour water strippers[J]. Chemical Engineering Process, 1975, 71(6): 78-81
    [19]杨刚,李柏春,刘继东, et al.炼油厂含硫污水汽提塔的模拟计算[J].石油学报, 2002, 18(5): 96-98
    [20]杨刚.炼油厂含硫污水汽提塔的模拟与优化[D].天津:河北工业大学, 2002
    [21] Patterson J.W. Industrial wastewater treatment technology[M]. 2nd. London: Butterworths, 1985
    [22]江燕斌.含高浓酚、硫炼油碱洗废水治理技术的工程化研究[D].广州:华南理工大学, 2000
    [23]乌锡康.有机废水治理技术[M],北京:化学工业出版社, 1999
    [24]杨义燕.络合萃取法处理工业含酚废水[J].环境科学, 1995, 26(2): 35-38
    [25] Berueta J., Freije J.M., Adrio G., et al. Synergistic effect in the extraction of phenol from aqueous solutions with mixtures of N-butylacetate and acetophenone[J]. Solvent Extraction and Ion Exchange, 1990, 8(6): 817-825
    [26] Meniai, A.H. and Newsham, D.M.T. The selection of solvents for liquid–liquid extraction [J]. Chemical Engineering Research and Design, 1992, 70(A1): 78-87
    [27] Magda M., Antoni A., Donald M., et al. Phenol recovery from water effluents with mixed solvents[J]. Journal of Chemical and Engineering Data, 1985, 30(2): 157-159
    [28] Jiang, H., Fang, Y., Fu, Y., et al. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials, 2003, B101: 179-190
    [29] King, C.J. Handbook of separation process technology[M]. New York: John Wiley & Sons, 1987
    [30]苏琴,吴连成.环境工程概论[M].北京:国防工业出版社, 2004
    [31] Kasan H.C., Baecker A.A.W. Activated sludge treatment of coal gasification effluent in a petrochemical plant[J]. Water Science and Technology, 1989, 21(4-5): 297-303
    [32]满春生,徐守忠,王骏.温度对提高活性污泥法处理含酚废水效率的研究[J].中国环境科学. 1995, 15(1): 14-17
    [33] Zhang M., Tay J.H., Qian Y., et al. Coke plant wastewater treatment by fixed biofilm system for COD and NH_3-N removal[J]. Water Research, 1998, 32(2): 519-527
    [34]张伟,吴芳云,孙金蓉, et al.生物法处理含酚废水的研究[J].油气田环境保护, 1999, 9(2): 23-25
    [35]邱永铨.对各种含酚废水处理技术的评价[J].环境工程, 1985(4): 13
    [36] Donaldson T.L., Lee D.D., Singh S.P.N. Treatment of coal gasification wastewater: final report[R]. USA: Oak ridge national laboratory, 1987
    [37] Ratcliffe M., Rogers C., Merdinger D., et al. Treatment of high strength chemicalindustry wastewater using moving bed biofilm reactor(MBBR) and powdered activated carbon (PAC) trchnology[R]. Water Environment Foundation, 2006: 1677-1694
    [38] Baidu.化学工程[M/OL]. http://baike.baidu.com/view/109888.htm, 2010
    [39]温瑞媛,严世强,江洪, et al.化学工程基础[M].北京:北京大学出版社, 2002
    [40]姚平经,化工过程系统工程[M].大连:大连理工大学出版社, 1992
    [41]杨友麟,成思危.现代过程系统工程[M].北京:化学工业出版社, 2003
    [42]鄢烈祥.化工过程分析与综合[M].北京:化学工业出版社, 2010
    [43]丛山.甲醇精馏系统工艺模拟与研究[D].天津:天津大学, 2005
    [44]朱开宏.化工过程流程模拟[M].北京:中国石化出版社, 1993
    [45]雷培德,李端阳,汪静.化工流程模拟及其应用[J].节能, 1994, (3): 6-8
    [46]彭秉璞.化工系统分析与模拟[M].北京:化学工业出版社, 1990
    [47]陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(2):化工过程动态模拟[J].化工进展, 2000, 1: 76-78
    [48]王弘轼.化工过程系统工程[M].北京:清华大学出版社, 2006
    [49]周爱月.化工数学[M]. 2nd.北京:化学工业出版社, 2001
    [50] Westerberg A.W. Process flowsheeting[M]. 2nd. New York: Cambridge University Press, 1979
    [51] Chen H.S., Stadtherr M.A. A simultaneous-modular approach to process flowsheeting and optimization[J]. AIChE Journal, 1985, 31(11), 45-49
    [52] Mvlane M., Sood M.K., Reklaitis G.V. A hierachical strategy for large scale process caculations[J]. Computer and Chemical Engineering, 1979, 3: 388-402
    [53]杨友麟.实用化工系统工程[M].北京:化学工业出版社, 1989
    [54]麻德贤,李成岳,张卫东.化工过程分析与合成[M].北京:化学工业出版社, 2002
    [55] Wiki. Aspen technology[M/OL]. http://en.wikipedia.org/wiki/Aspen_Technology, 2010
    [56] Aspen Technology. Aspen Plus user guaide(version 11.1). USA: Aspentech, 2001
    [57] Tsai T.H., Lane J.W., Lin, C.S. Modern control techniques for the processing industries[M]. New York: Dekker, 1986
    [58] Leblanc S.E. Process systems analysis and control[M]. Boston: McGraw-Hill Higher Education, 2009
    [59]蒋慰孙,俞金寿.过程控制工程[M].北京:中国石化出版社, 1999
    [60]周春晖.化工过程控制原理[M].北京:化学工业出版社, 1998
    [61]张井岗.过程控制与自动化仪表[M].北京:北京大学出版社, 2007
    [62]史蒂芬拿不勒斯.化工过程控制[M].吴惕华.北京:化学工业出版社, 1984
    [63]万百五.自动化专业概论[M].武汉:武汉理工大学出版社, 2002
    [64] Shinskey F.G. Distillation controlfor produetive and energy conservation[M]. New York: Megraw Hall, 1977
    [65]王慧.计算机控制系统[M].北京:化学工业出版社, 2000
    [66] Seborg D.E., Shah S.L., Edgar T.F. Adaptive control strategies for process control: a surver[J]. AIChE Journal, 1986, 32: 881-913
    [67]俞金寿.工业过程先进控制[M].北京:中国石化出版社, 2002
    [68] Richalet J. Industrial applications of model based predictive control[J]. Automatica, 1993, 29(5): 1251-1274
    [69]金以慧,王诗秘,王桂增.过程控制的发展与展望[J].控制理论与应用, 1997, 14(2): 145-151
    [70] Husain A. Chemical process simulation[M]. New York: Wiley, 1986
    [71] Luyben W.L. Distillation design and control using aspen simulation[M]. USA: Wiley-Interscience, 2006
    [72]章莉娟,冯建中,杨楚芬, et al.煤气化废水萃取脱酚工艺研究[J].环境化学, 2006, 25(4): 488-490
    [73]国家环境保护局.水质挥发酚的测定蒸馏后溴化容量法[S]. GB 7491-87, 1987
    [74]国家环境保护局.水质化学需氧量的测定重铬酸盐法[S]. GB 11914-89, 1989
    [75]周家驹,许志宏.挥发性弱电解质水溶液三元系的气液平衡: NH_3-CO_2-H_2O, NH_3-H_2S-H_2O, NH_3-SO_2-H_2O体系[J].化工学报, 1983, (3): 234-245
    [76]杜英生,王利东.挥发性弱电解质水溶液汽液平衡计算[J].化学工程, 1998, 26(6): 37-41
    [77] Edwards T.J., Maurer G., Newman J., et al. Vaporliquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes[J]. AIChE Journal, 1978, 24(6): 966-976
    [78] Gai H.J., Jiang Y.B., Qian Y., et al. Conceptual design and retrofitting of the coal-gasification wastewater treatment process[J]. Chemical Engineering Journal, 2008, 138: 84-94
    [79] Feng D.C., Yu Z.J., Chen Y., et al. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation[J]. Industrial Engineering and Chemistry Research, 2009, 48: 5816-5823
    [80] Greminger D.C., Burns G.P., Lynn S., et al. Solvent extraction of phenols from water[J]. Industrial and Engineering Chemistry Process Design and Development, 1982, 21: 51–54
    [81] Brettschneider O., Thiele R., Faber R., et al. Experimental investigation and simulation of the chemical absorption in a packed column for the system NH_3-CO_2-H_2S-NaOH-H_2O[J]. Separation and Purification Technology, 2004, 39: 139-159
    [82] Pawlikowski E.M., Newman J., Prausnitz J.M. Vapor-liquid equilibria for NH_3 and H_2O in the 100 to 150°C region effect of low levels of phenol on partial pressure of ammonia[J]. AIChE Journal, 1983, 29(5): 869-871
    [83] Abd-El-Bary M.F., Hamoda M.F., Tanisho S., et al. Henry’s constants for phenol over its diluted aqueous solution[J]. Journal of Chemical and Engineering Data, 1986, 31: 229-230
    [84]陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(1):化工过程稳态模拟[J].化工进展, 1999, (4): 63
    [85] van Krevelen D.W., Hoftijzer P.J., Huntjens F.J. Composition and vapor pressures of aqueous solutions of ammonia, carbon dioxide, and hydrogen sulphide[J]. Recueil Des Travaux Chimiques Des Pays-Bas-Journal, 1949, 68:191
    [86] Lee D., Lee J.M., Lee S.Y., et al. Dynamic simulation of the sour water stripping process and modified structure for effective pressure control[J]. Transactions of the Institution of Chemical Engineers (Part A), 2002, 80(3): 167
    [87]赵莹莹. ASPEN PLUS软件在炼油厂含硫污水汽提过程中的应用[J].炼油设计, 1998, 28(5): 48
    [88]李章平,孙秋荣. Apsen Plus软件在含硫废水汽提工艺设计中的应用[J].化工环保, 2004, 24: 81
    [89]徐新,罗国华,杨春育, et al.水-异丙醚-苯酚-对苯二酚液液平衡数据的测定及关联[J]。石油化工, 2001, 30(7): 538-540
    [90] Sorel E. La Rectification de 1'alcool[M]. Paris: Gauthier-Villais et fils, 1893
    [91] Krishnamurthy R., Taylor R. A nonequilibrium stage model of multicomponent separation processes[J]. AIChE Journal, 1985, 31: 449
    [92] Kooijman H.A., Taylor R. Modelling mass transfer in multicomponent distillation[J]. Chemical Engineering Journal, 1995, 57: 177-179
    [93] Springer P.A.M., Molen S., Krishna R. The need for using rigorous rate-based models for simulations of ternary azeotropic distillation[J]. Computer and Chemical Engineering, 2002, 26: 1265-1269
    [94] Repke, J.U., Villain O., Wozny G. A nonequilibrium model for three-phase distillation in a packed column: modelling and experiments[J]. Computer and Chemical Engineering, 2004, 28: 775-778
    [95]魏海国,费维扬.非平衡级模型及其在化工分离过程中的应用[J].石油化工, 2001, 30(6): 486-488
    [96] Hoogendoorn G.C., Abellon R.D., Essens P.J., et al. Desorption of volatile electrolytes in a tray column (Sour water stripping)[J]. Chemical Engineering Research and Design, 1988, 66(11): 483-502
    [97]朱屯,李洲.溶剂萃取[M].北京:化学工业出版社, 2008
    [98]汪家鼎.溶剂萃取手册[M].北京:化学工业出版社, 2001
    [99] Cao F.H., Jiang D., Li W.D., et al. Process analysis of the extract unit of vacuum residue through mixed C4 solvent for deasphalting[J]. Chemical Engineering and Processing, 2010, 49: 91-96
    [100]林军,顾正桂.醋酸丁酯-糠醛-水体系逆流萃取模拟计算[J].计算机与应用化学, 2002, 19(5), 635-638
    [101] Kenneth H.L. Treatment of phenolic wastes[J]. Chemical Engineering, 1977, 9: 99-105
    [102]盖恒军.一种双塔汽提处理含酚、氨煤化工废水的方法[P].中国: CN 200810106916.X 2008.06.16
    [103] Melin G.A., Niedzwiecki J.L. Optimum design of sour water strippers[J]. Chemical Engineering Progress, 1975, 71(6): 78-89
    [104]王渤洋,李克夫,毕道毅.一种从炼油厂酸性污水中回收硫和氨的带侧线抽出的单塔汽提方法[P].中国: CN90107237.0 1992.03.11
    [105]刘烨.新单塔污水汽提装置运行综述[J].石油化工环境保护, 2006, 29(4): 24-27
    [106]李爱仙. 80t/h酸性废水汽提装置工艺设计剖析[J].硫磷设计与粉体工程, 2004, (2): 30-33
    [107] Jiang H., Fang Y. Fu Y., et al. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials, 2003, B101: 179-190
    [108]杨义燕,杨雪天,戴猷元.磷酸三丁酯(TBP)对苯酚的络合萃取.环境化学. 1995, 14(5): 410-416
    [109]朱慎林,朴香兰等.绿色溶剂碳酸二甲酯处理含酚废水研究[J].化学工程, 2002, 30(4) : 49
    [110] Li Z., Wu M.H., Lu S.L., et al. Extraction of phenol from wastewater by N-octonoylpyrrolidine[J]. Journal of Hazardous Materials, 2004, B114: 111-114
    [111]杨义燕,韩扶军,戴猷元, et al. NaOH溶液对有机相苯酚反萃取的研究[J].环境化学, 1998, 17(1): 19-23
    [112]江燕斌,钱宇,李秀喜, et al.炼油碱渣废水处理萃取剂反萃再生实验研究[J].化学工程, 2002, 30(5): 58-61
    [113]林屹,秦炜,黄少凯, et al.溶剂萃取法处理苯酚稀溶液及其废水的研究[J].高校化工学报, 2003, 17(3): 261-265
    [114]杨楚芬,钱宇,章莉娟, et al.甲基异丁基酮-水-苯酚三元物系液液相平衡数据的测定和关联[J].化工学报, 2007, 58(4): 805-809
    [115] Yang C.F., Jiang Y.B., Zhang L.J., et al. Liquid-liquid equilibria for the ternary system methyl isobutyl ketone + water + hydroquinone[J]. Journal of Chemical and Engineering Data, 2006, 51: 2017-2109
    [116] Yang C.F., Qian Y., Jiang Y.B., et al. Liquid-liquid equilibria for the quaternary system methyl isobutyl ketone-water-phenol-hydroquinone[J]. Fluid Phase Equilibria, 2007, 258: 73-77
    [117] Renon H., Prausnitz J.M. Local compositions in thermodynamic excess function for liquid mixtures[J]. AIChE Journal, 1968, 14: 135-144
    [118] Guggenheim E.A. Mixtures[M]. Oxford: Oxford University Press, 1952
    [119] Scott R.L. Corresponding states treatment of nonelectrolyte solutions[J]. Journal ofChemical Physics, 1956, 25: 193
    [120]刘烨.新单塔污水汽提装置运行综述[J].石油化工环境保护, 2006, 29(4): 24-27
    [121] Shinskey F.G. Process control systems[M]. New York: McGraw-Hill, 1988
    [122]王骥程.化工过程控制工程[M].北京:化学工业出版社, 2003
    [123]黄聪明,陈祥光,何恩智, et al.化工过程控制原理[M].北京:北京理工大学出版社, 2000
    [124] Luyben W.L. Simple method for tuning SISO controllers in multivariate systems[J]. Industrial and Engineering Chemistry Process Design and Development, 1986, 25: 654-661

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700