核—壳协同微胶囊化膨胀型阻燃剂的制备及其交联阻燃乙烯—醋酸乙烯酯共聚物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀型阻燃剂是当前国际上受研发人员广泛关注的一类无卤阻燃剂。相对其它无卤阻燃剂而言,膨胀型阻燃剂具有阻燃效率高的优点,但是仍然存在与基体相容性差、易团聚、易迁移、添加量较大、恶化材料性能,而且热稳定性低、耐水性差等缺陷,限制了其广泛应用。本论文针对以上国际难题,发展了一种采用核-壳协同阻燃和界面分子调控的阻燃剂微胶囊化技术,选用与核芯阻燃剂具有协同阻燃效应的合成或天然高分子化合物为壳层材料,制备了一系列核壳结构的微胶囊化膨胀型阻燃剂,并应用于高能电子束辐照交联的乙烯-醋酸乙烯酯共聚物(EVA)。研究结果表明微胶囊化技术能够改变膨胀型阻燃剂的表面特性,提高阻燃剂的耐水性,改善与基体的相容性,大幅提高EVA阻燃复合材料的耐水性能和阻燃性能。本论文的主要研究工作如下:
     1.选用溶胶凝胶法制备的新型耐水核壳协同的硅凝胶微胶囊化聚磷酸铵(SiAPP)和大分子成炭剂(CFA)组成膨胀型阻燃剂(IFR),用于阻燃EVA。其中,SiAPP的核芯即APP为酸源和气源,壳层为有机硅阻燃协效剂,CFA为炭源和气源,所以该体系可以看作是硅凝胶与膨胀型阻燃剂的协效体系。通过LOI、UL-94和TGA测试可知,在阻燃剂添加总量为30%时,阻燃剂的最佳比例为SiAPP/CFA=2/1, EVA/SiAPP/CFA复合材料的氧指数高达32.5%,并且能通过垂直燃烧韵V-0测试;电子束辐照交联之后的EVA/SiAPP/CFA的凝胶含量随着辐照剂量的增加而增加,且EVA复合材料的体积电阻、阻燃性能、力学性能和热稳定性都有了显著的增加;辐照之后的复合材料在50℃的热水之中浸泡168小时之后,垂直燃烧仍能保持V-0级,这表明复合材料具有优良的耐水性能。此外,选用有机改性蒙脱土(OMMT)作为协效剂,只需添加1%OMMT与24%上述膨胀型阻燃剂,就能使EVA/IFR/OMMT体系氧指数达到33.5%和通过垂直燃烧V-0测试;XRD和TEM结果可知电子束辐照前后的OMMT都能够以层离状态分散在EVA基体中,辐照之后EVA复合材料的力学性能有了明显的提升,拉伸强度由12.6MPa增加到18.5MPa;实时红外和热重红外分析表明,层离的OMMT片层在EVA复合材料降解过程中可以作为屏障,隔绝热量与可燃气体的传递,从而起到降低热解速率和减少可燃气体释放量的作用。
     2.首先通过溶胶-凝胶法制备硅凝胶微胶囊化阻燃剂,然后在壳层引入双键制备乙烯基硅凝胶微胶囊化的阻燃剂,并以其制备EVA复合材料,最后将制备的EVA复合材料进行电子束辐照交联,从而将微胶囊化阻燃剂壳层上的双键交联进入EVA的三维网络结构,以减少阻燃剂的添加对EVA材料物理性能的损伤。FTIR和XPS数据表明成功制备出乙烯基硅凝胶包覆的阻燃剂,TGA和WCA结果表明,硅凝胶壳层能够提高阻燃剂的热稳定性和疏水性;由于壳层硅元素的协效阻燃作用,MCAPP/MCPER阻燃体系比传统APP/PER体系有着更高的阻燃性能、耐水性能和热稳定;横断面SEM表明,微胶囊化的阻燃剂在交联的EVA材料中有着更好的相容性,这是由于电子束辐照交联技术将硅凝胶微胶囊化阻燃剂通过其壳层上的双键键连到EVA三维网络结构,从而使得EVA/MCAPP/MCPER复合材料比EVA/APP/PER体系有着更高的力学性能和体积电阻。
     3.选用韧性和成炭性能好的聚氨酯作为壳层材料通过原位聚合法制备了聚氨酯包裹的可膨胀石墨(PUEG),提高了EG的初始分解温度、热稳定性和可膨胀体积;使用PUEG阻燃的EVA材料相比EG阻燃EVA材料有着更高的力学性能和电学性能,这是由于PUEG壳层上聚氨酯与EVA基体的相容性较好,能够提高EG的分散性。采用耐热性能好和难燃的酚醛树脂改性聚氨酯作为壳层,通过原位聚合的方法制备了微胶囊化的聚磷酸铵(PPUAPP),微胶囊化之后的PPUAPP的水溶性明显下降,同时阻燃剂APP的表面特性也由亲水性改变为疏水性;在相同阻燃剂添加量下,EVA/PPUAPP体系比EVA/APP体系有着更高的阻燃性能和更低的热释放速率;EVA/PPUAPP复合材料有着优良的耐水性能,在70℃热水之中浸泡144小时之后仍能够通过垂直燃烧V-0测试。
     4.选用生物质材料醋酸丁酸纤维素或β-环糊精与TDI为原料,通过原位聚合法制备了两种生物质材料微胶囊化聚磷酸铵。醋酸丁酸纤维素微胶囊化聚磷酸铵(CABAPP)的热稳定性、耐水性和疏水性都比APP有了显著提高;将其与高分子炭源尼龙-6复配阻燃EVA,研究表明EVA/CABAPP/PA-6复合材料比EVA/APP/PA-6有着更好的界面相容性、热稳定性、阻燃、力学和电学性能,这是由于交联的壳层起到炭源的作用,且醋酸丁酸纤维素与EVA分子中都含有乙酸酯基团,使得CABAPP在EVA基体之中有着更好的相容性,从而减小对EVA复合材料物理性能的损伤。环糊精微胶囊化聚磷酸铵(CDAPP)的壳层为交联的环糊精可以起到炭源的作用,通过调节核/壳比例可以得到集酸源与炭源于一体的微胶囊阻燃剂,结果表明当CDAPP的核/壳比为2/1时,有着良好的耐水性能;只需添加35%CDAPP就能使EVA复合材料的垂直燃烧等级达到V-0级,经700C热水处理96小时后仍能够达到V-0级,而相同阻燃剂含量的EVA/APP/CD复合材料只能达到V-2级,经70℃热水处理24小时后就没有燃烧级别,这表明EVA/CDAPP有着良好的阻燃性能和耐水性能。
Intumescent flame retardants (IFRs) have been considered to be a promising method, which is because they are low toxicity, low smoke, halogen free, and also very efficient. However, IFRs may reduce the mechanical properties and other properties of the materials because the rather different polarities of IFRs and EVA make them thermodynamically immiscible. Furthermore, this IFR system is moisture sensitive and thus is easily attacked by water and exuded during the service life, resulting in a decrease in the flame-retardant properties of the polymer composites. To deal with the above problems, microencapsulation with proper shell material is a good choice, and the electron beam irradiation can be used to enhance the mechanical property and other related physical properties. The research work of this dissertation is composed of the following parts:
     1. Flame-retardant EVA by silica-gel microencapsulated ammonium polyphosphate (SiAPP) and char-forming agent (CFA) have been cross linked by electron beam irradiation. A joint effect on the flame retardancy is observed in the flame-retardant compositions consisting of the MCAPP and CFA. The optimum EVA/SiAPP/CFA (2:1) system has a LOI value of32.5and can pass the UL-94V-0rating. With the increase of irradiation dose, LOI values increase slightly. This may be attributed to the higher char formation during thermal degradation of the sample at higher irradiation dose. In addition to the enhancement of LOI value, the volume resistivity and mechanical and thermal properties of the irradiated EVA composites are also evidently improved at suitable irradiation dose. However, these properties decrease at higher irradiation dose because of the electron beamirradiation-induced oxidative degradation or chain scission. The water treatment results showed that the sample can still past UL-94test after treatment by water for7days at50℃, indicating an excellent water resistance. Furthermore, OMMT is used as synergist in EVA/SiAPP/CFA system. The XRD and TEM results demonstrated that the OMMT is well dispersed in the EVA matrix. The LOI and UL-94results showed that a synergistic effect on the flame retardancy of EVA nanocomposite existed between the IFR and OMMT. With the addition of1wt%OMMT and24wt%IFR, the LOI value of EVA/IFR/OMMT nanocomposite increased from30.5%to33.5%. The tensile strength of the irradiated EVA nanocomposite is evidently improved at160kGy dosage, increased from12.6MPa to18.5MPa. RT-FTIR andTG-IR show that OMMT can act as a barrier, which could decrease the thermal decomposition rate and limit gas diffusion.
     2. Silane precursor microencapsulated intumescent flame retardant (IFR) was prepared by sol-gel process and then modified with vinyltrimethoxysilane (A-171) with the goal of that the vinyl group functionalized silica microcapsule could be introduced into EVA matrix through crosslinking, which will enhance the compatibility and dispersion between EVA matrix and microencapsulated IFR. The FTIR results indicated silane precursor microencapsulated IFR were successfully prepared, and the WCA results indicated that silane precursor results in the transformation of hydrophilic to hydrophobic of IFR surface. As expect, the functionalized organic group double bond after crosslinking make the MCAPP and MCPER be incorporated into EVA three-dimensioned network, which can enhance the dispersion of MCFR and the compatibility between EVA matrix and MCFR This is reason why the EVA/MCAPP/MCPER composites demonstrate higher TS values than those of EVA/APP/PER composites in the range of0-300kGy. The silica-gel shell can be served as synergist and can isolated the flame retardant from EVA matrix, so the EVA/MCAPP/MCPER system have higher volume resistivity and thermal stability than those of EVA/APP/PER system.
     3. Polyurethane microencapsulated expandable graphite (PUEG) is prepared and used in EVA with silica-gel microencapsulated ammonium polyphosphate (SiAPP). The results of FTIR, XPS and SEM indicated PUEG is successfully prepared. The PUEG leads to an increase in the initial degradation temperature, thermal stability and the expanded volume. The EVA/SiAPP/PUEG composite has the higher safety in a fire hazard and can still pass aUL-94V-0rating after being treated with70℃hot water for168h. Because of good interfacial adhesion between fillers and the EVA matrix, the EVA/SiAPP/PUEG composite shows better mechanical and dynamic mechanical thermal properties than those of the EVA/APP/EG composite. Phenolic resin modified polyurethane microencapsulated ammonium polyphosphate (PPUAPP) is prepared through in-situ polymerization. Compared with the APP, the PPUAPP demonstrates lower water solubility and higher flame retardance. With35%loading, the EVA/APP composite LOI value is25%and obtain V-2rating. While the EVA/PPUAPP composite can get V-0rating and LOI value as high as31.5%. After treated by70℃water for24h, the EVA/APP composite get no rating. However, EVA/PPUAPP composite treated by70℃water for144h, can still pass UL-94test, indicating excellent water resistance. Moreover, the EVA/PPUAPP shows lower peak heat release rate and higher fire safety in cone calorimeter test.
     4. Biodegradable biomass microencapsulated APP is prepared through in-situ polymerization. The shell of cellulose acetate butyrate(CAB) microencapsulated APP (CABAPP) and EVA have the same acetyl group, which may have similar polarity. According to the theory of similarity and intermiscibility, the CAB shell material may increase the water resistance of IFRs and enhance the compatibility and dispersion betweem EVA matrix and CAB microencapsulated IFRs. The WCA results indicated that MCAPP has excellent water resistance and hydrophobicity. The results demonstrated that MCAPP enhanced interfacial adhesion, mechanical, electrical, and thermal stability of the EVA/CABAPP/polyamide-6(PA-6) system. The microencapsulation not only imparted EVA/CABAPP/PA-6with a higher LOI value and UL-94rating but also could significantly improve the fire safety. The cyclodextrin (CD) microencapsulated APP (CDAPP) is prepared and use it in EVA. The shell CD and the core APP of CDAPP can be served as carbonization agent and acid source. A series of different core/shell weight ratio of CDAPP was prepared. The water solubility and flame retardce results indicated the core/shell weight ratio of MCAPP is2/1demonstrated higher flame retardancy and lower water solubility. Furthermore, because of shell of CDAPP, the EVA/CDAPP demonstrate better water durability, fire safety and mechanical properties than those of EVA/APP/CD.
引文
[1].于永忠,吴启鸿,葛世成等编著.1997.阻燃材料手册[M].北京:群众出版社.
    [2], Laoutid F, Gaudon P, Taulemesse JM, et al.2006. Study of hydromagnesite and magnesium hydroxide based fire retardant systems for ethyleneevinyl acetate containing organo-modified montmorillonite[J]. Polymer Degradation and Stability,91:3074-3082.
    [3]. MorganL AB, Cogen JM, Opperman RS, et al.2007. The effectiveness of magnesium carbonate-based flame retardants for poly(ethylene-co-vinyl acetate) and poly (ethylene-co-ethyl acrylate)[J]. Fire Mater,31:387-410.
    [4]. Jiao CM, Chen XL.2009. Synergistic Flame Retardant Effect of Lanthanum Oxide in Ethylene-vinyl acetate/Aluminium Hydroxide Composites [J]. Iranian Polymer Journal, 18:723-730.
    [5].欧育湘.2002.实用阻燃技术[M].北京:化学工业出版社.
    [6].胡源,宋磊,尤飞等,2007.火灾化学导论[M].北京:化学工业出版社.
    [7]. Carpentier F, Bourbigot S, Bras ML, et al.2000. Charring of flame retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulationsPolymer[J]. Polymer Degradation and Stability,69:83-92.
    [8]. Fu MZ, Qu BJ.2004. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends[J]. Polymer Degradation and Stability,85:633-639.
    [9]. Gui H, Zhang XH, Dong WF, et al.2007. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J]. Polymer,48:2537-2541.
    [10]. Ye L, Wu QH, Qu BJ.2009. Synergistic effects and mechanism of multiwalled carbon nanotubes withmagnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites[J]. Polymer Degradation and Stability,94:751-756.
    [11]. Lv JP, Qiu LZ, Qu BJ.2004. Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends [J]. Nanotechnology,15:1576-1581.
    [12]. Zhang XG, Guo Fen, Chen JF, et al.2005. Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites[J]. Polymer Degradation and Stability,87:411-418.
    [13]. Zhang Y, Hu Y, Song L, et al.2008. Influence of Fe-MMTon the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite[J]. Polym Adv Technol,19:960-966.
    [14]. Jiao C, Wang ZZ, Chen XL, et al.2008. Synthesis of a Magnesium/Aluminum/Iron Layered Double Hydroxide and Its Flammability Characteristics in Halogen-Free, Flame-Retardant Ethylene/Vinyl Acetate Copolymer Composites [J]. Journal of Applied Polymer Science, 107:2626-2631.
    [15]. Beyer G.2002. Carbon nanotubes as flame retardants for polymers[J]. Fire and Materials,26:291-293.
    [16]. Camino G, Costa L, Martinasso G.1989. Intumescent Fire-retardant Systems[J]. Polymer Degradation and Stability,23 (1989) 359-376
    [17].王建琪.2005.无卤阻燃聚合物基础与应用[M].北京:北京科学出版社.
    [18]. Li ZZ, Qu BJ.2003. Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends [J]. Polymer Degradation and Stability,81:401-408.
    [19]. Xie RC, Qu BJ.2001. Expandable Graphite Systems for Halogen-Free Flame-Retarding of Polyolefins. I. Flammability Characterization and Synergistic Effect[J]. Journal of Applied Polymer Science,80:1181-1189.
    [20]. Xie RC, Qu BJ.2001.Expandable Graphite Systems for Halogen-Free Flame-Retarding of Polyolefins. II. Structures of Intumescent Char and Flame-Retardant Mechanism[J]. Journal of Applied Polymer Science,80:1190-1197.
    [21].欧育湘.2002.实用阻燃技术[M].北京:化学工业出版社.
    [22]. Caminol G, Sgobbil R, Zaopo A, et al.2000. Investigation of Flame Retardmey in EVA[J]. Fire Mater,24:85-90.
    [23].李小云,王止洲,梁好均.2007.三聚氰胺磷酸盐和季戊四醇在EVA中的阻燃研究[J].高分子材料与工程,23:145-148.
    [24]. Bras ML, Bourbigot S.1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science,34:5777-5782.
    [25].李昕,欧育湘.2002.膨胀型双环笼状磷酸酯阻燃乙烯碟酸乙烯酯共聚物的研究[J].北京理工大学学报,22:650-654.
    [26], Wu QH, Qu BJ, Sun M.2009. Photocrosslinking of Halogen-Free Flame-Retarded Ethylene-Vinyl Acetate Copolymer by Phosphorous-Nitrogen Compound NP28[J]. Journal of Applied Polymer Science,114:562-569.
    [27].蔡晓霞.2007.乙烯-醋酸乙烯酯共聚物的膨胀阻燃体系研究:[硕士].成都:四川大学.
    [28].刘键,罗志强,周大俊等.2002.季戊四醇二磷酸酯蜜胺盐的合成新方法[2002].化学世界,4:203-205.
    [29]. Wang LC, Jiang JQ, Jiang PK, et al.2011. Synthesis, characteristic of a novel flame retardant containing phosphorus and its application in poly(ethylene-co-vinyl acetate)[J]. Fire Mater. 35:193-207.
    [30]. Bourbigot S, Bras ML, Dabrowski F, et al.2000. PA-6 Clay Nanocomposite Hybrid as Char Forming Agent in Intumescent Formulations[J]. Fire Mater,24:201-208.
    [31]. Li B, Jia H, Guan LM, et al.2009. A Novel Intumescent Flame-Retardant System for Flame-Retarded LLDPE/EVA Composites [J]. Journal of Applied Polymer Science, 114:3626-3635.
    [32]. Wu K. Wang ZZ.2008. Intumescent Flame Retardation of EVA Using Microencapsulated Ammonium Polyphosphate and Pentaerythritols[J]. Polymer-Plastics Technology and Engineering,47:247-254.
    [33].宋健,陈磊,李效军.2001.微胶囊化技术及应用[M].北京:化学工业出版社.
    [34]. Zerda AS, Lesser AJ.2002. Organophosphorous additive for fortification, processibility, and flame retardance ofepoxy rest[J]. Journal of Applied Polymer Science,84:302-309.
    [35]. Xiang HF, Xu HY, Wang ZZ, et al.2007. Dimethyl methylphosphonate(DMMP) as all efficient flame retardant additive for the lithium-ion battery electrolytes [J]. Journal of Power Sources,1 73:562-564.
    [36]. Lin M, Yang Y, Xi P.2006. Microoncapsulation of water-soluble flame retardant containing organophosphorus and its application on fabric[J]. Journal of Applied Polymer Science, 102:915-920.
    [37].朱平,周晓东,张建波等.2006.阻燃剂微胶囊的制备及在棉织物上的应用[J].印染助剂,6:20-23.
    [38].陈永红.1998.红磷的微胶囊化及应用研究[J].塑料科技,1:45-47.
    [39].陈海群,卑风利,王志成.2004.微胶囊化超细红磷的制各及其安定性研究[J].无机化学学报,20:905-909.
    [40].王正洲,瞿保均,范维澄等.2001.微胶囊红磷增效氢氧化镁阻燃聚乙烯的嫩烧特性[J].火灾科学,10:72-75.
    [41].张发兴,刘亚青,卫晓利.2007.超临界流体快速膨胀法制备红磷微胶囊阻燃剂[J].化工进展,26:690-694.
    [42]. Chang SQ, Xie TX, Yang GS.2008. Effects of Interfacial Modification on the Thermal, Mechanical, and Fire Properties of High-Impact Polystyrene/Microencapsulated Red Phosphorous [J]. Journal ofAppIied Polymer Science,110:2139-2144.
    [43]. Giraud S, Bourbigot S, Rochey ML, et al.2002. Microencapsulation of phosphate: application to flame retarded coated coRon[J].Polymer Degradation and Stability,77: 285-297.
    [44].倪建雄.2009.核-壳型聚磷酸铵阻燃剂的制备及其阻燃聚氨酯性能和机理的研究:[硕 士].合肥:中国科学技术大学.
    [45]. Ni JX, Chen LJ, Zhao KM, et al.2011. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites [J]. Polymers for Advanced Technologys,22:1824-1831.
    [46]. Ye L, Meng XY, Ji X, et al.2009. Synthesis and characterization of expandable graphite-poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams[J]. Polymer Degradation and Stability,94:971-979.
    [47].吴昆.2009.膨胀型阻燃剂核-壳结构的设计、制备及其阻燃性能的研究:[博十].合肥:中国科学技术大学.
    [48]. Wu K, Shen MM, Hu Y.2010. Combustion Behavior and Thermal Oxidative Degradation of EVA Containing Intumescent Flame Retardant[J]. Polymer-Plastics Technology and Engineering,49:1527-1533.
    [49].刘亚青,赵贵哲.2007.环状氯化磷腈微胶囊阻燃剂的研究[J].化工进展,26:550-554.
    [50].吕建平,江国顺,姚剑英等.1998.微胶囊化SBC阻燃剂的研制和应用[J].安徽化工,1:27-30.
    [51]. Smedberg A, Hjertberg T, Gustafsson B.2003. Effect of molecular structure and topology on network formation in peroxide crosslinked polyethylene[J]. Polymer,44:3395-3405.
    [52]. Moly KA, Radusch HJ, Androsch R.2005. Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends:effects of compatibilisation and dynamic crosslinking[J]. European Polymer Journal,41:1410-1419.=
    [53]. Parent JS, Spencer M, Whitney RA.2002. Influence of hydrogen grafting of vinylsilane donors on peroxide-initiated melt to poly(ethylene-co-vinyl acetate)[J]. Journal of Applied Polymer Science,83:2397-2402.
    [54]. Borah JS, Naskar K, Chaki TK.2012. Covulcanization of LLDPE/EMA Blends Using Dicumyl Peroxide[J]. Journal of Applied Polymer Science,123:502-509.
    [55]. Gonzalez L, Rodriguez A, Benito JL.1997. Applications of an azide sulfonyl silane as elastomer crosslinking and coupling agent[J]. Journal of Applied Polymer Science,63: 1353-1359.
    [56]. Sirisinha K, Meksawat D.2004. Changes in properties of silane-water crosslinked metallocene ethylene-octene copolymer after prolonged crosslinking time[J].93:901-906.
    [57]. Azizi H, Barzin J, Morshedian J.2007. Silane crosslinking of polyethylene:the effects of EVA, ATH and Sb(2)O(3) on properties of the production in continuous grafting of LDPE[J]. Express Polymer Letters,1:378-384.
    [58]. Azizi H, Barzin J, Morshedian J.2010. Effect of EVA copolymer on properties of different polyethylenes in silane crosslinking process[J]. Plastics Rubber and Composites,39:357-363.
    [59]. Yao DH, Qu BJ, Wu QH.2007. Photoinitiated crosslinking of ethylene-vinyl acetate copolymers and characterization of related properties[J]. Polymer Enginering and Science,47:1761-1767.
    [60]. Hu YW, Wu QH, Qu BJ.2010. Photocrosslinking of EVA/inorganic filler blends and characteristics of related properties [J]. Polymers for Advanced Technologys,3:177-182.
    [61].鲁红典.2006.阻燃和交联聚乙烯复合材料的制备与机理研究:[博士].合肥:中国科学技术大学.
    [62].焦传梅.2007.无卤阻燃EVA、 POE及其交联改性复合材料的制备和性能研究:[博士].合肥:中国科学技术大学.
    [63]. Mateev M, Karageorgiev S.1998. The effect of electron beam irradiation and content of EVA upon the gel-forming processes in LDPE-EVA films[J]. Radiation Physics and Chemistry,51:205-206.
    [64]. Gheysari D, Behjat A.2002. The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer [J]. European Polymer Journal,38:1087-1093.
    [65]. Lu HD, Hu Y, Kong QH.2005. Gamma irradiation of high density poly(ethylene)/ethylene-vinyl acetate/clay nanocomposites:possible mechanism of the influence of clay on irradiated nanocomposites[J]. Polymers for Advanced Technologys, 16:688-692.
    [66]. Jiao CM, Wang ZZ, Chen XL.2006. Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus [J]. Radiation Physics and Chemistry,75:557-563.
    [1]. Bras ML, Bugajny Ml, Lefebvre JM, et al.2000. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations[J]. Polym Int,49:1115-1124.
    [2]. Bras ML, Bourbigot S.1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science,34:5777-5782.
    [3]. Bourbigot S, Bras ML, Dabrowski F, et al.2000. PA-6 Clay Nanocomposite Hybrid as Char Forming Agent in Intumescent Formulations [J]. Fire Mater,24:201-208.
    [4]. Li B, Jia H, Guan LM, et al.2009. A Novel Intumescent Flame-Retardant System for Flame-Retarded LLDPE/EVA Composites [J]. Journal of Applied Polymer Science, 114:3626-3635.
    [5]. Nie SB, Hu Y, Song L, et al.2008. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene[J], Polymers for Advanced Technology,19:1077-1083.
    [6]. Wu K. Wang ZZ.2008. Intumescent Flame Retardation of EVA Using Microencapsulated Ammonium Polyphosphate and Pentaerythritols[J]. Polymer-Plastics Technology and Engineering,47:247-254.
    [7]. Wu K, Shen MM, Hu Y.2010. Combustion Behavior and Thermal Oxidative Degradation of EVA Containing Intumescent Flame Retardant[J]. Polymer-Plastics Technology and Engineering,49:1527-1533.
    [8]. Ni JX, Chen LJ, Zhao KM, et al.2011. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites [J]. Polymers for Advanced Technologys,22:1824-1831.
    [9]. Tang Y, Hu Y, Song L, et al.2003. Preparation and thermal stability of polypropylene/montmorillonite nanocomposites [J]. Polym Degrad Stab,82:127-131.
    [10]. Ye L, Qu, BJ.2008. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blend[J]. Polym Degrad Stab,93,918-924.
    [11]. Lu HD, Hu Y, Kong QH, et al.2005. Gamma irradiation of high density poly(ethylene)/ethylene-vinyl acetate/clay nanocomposites:possible mechanism of the influence of clay on irradiated nanocomposites [J]. Polym Adv Technol,16:688-692.
    [12]. Zanetti M, Camino G, Reichert P, et al.2001. Thermal behaviour of poly(propylene) layered silicate nanocomposites[J], Macromol Rapid Commun,22:176-180.
    [1].程买增,曾幸荣,李伟明,等.2003.阻燃性有机硅高分子材料的研究进展[J].有机硅材料,17:21-25.
    [2].张利利,刘安华.2005.磷硅阻燃剂协同效应及其应用[J].塑料工业,33:203-205.
    [3].欧育湘.2002.实用阻燃技术[M].北京:化学工业出版社.
    [4].王永强.2002.高聚物成炭的阻燃作用[J].塑料助剂,32:11-18.
    [5]. Marosi G, Maauo A, Anna P, et al.2002. Ceramic precursor in flame retardant systems[J]. Polymer Degradation and Stability,77:259-265.
    [6]. Stoer W, Fink A, Bohn E.1968. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. J Colloid Interface Sci,26:62-69.
    [7]Zoldesi CI, Walree CA, Imhof A. Deformable hollow hybrid silica/siloxane colloids by emulsion templating[J]. Langmuir,22:4343-4352.
    [8]Sullivan M, Zhang ZB, Vincent B.2009. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress[J]. Langmuir,25:7962-7966.
    [9]Shukoor MI, Natalio F, Therese HA, et al.2008. Fabrication of a silica coating on magnetic y-Fe2O3 nanoparticles by an immobilized enzyme[J]. Chem Mater,20:3567-3573.
    [10]Shukla A, Degen P, Rehage H.2007. Synthesis and Characterization of Monodisperse Poly(organosiloxane) Nanocapsules with or without Magnetic CoresfJ]. J Am Chem Soc, 129:8056-8057.
    [11]. Lu Y, Yin YD, Li ZY, et al.2002. Synthesis and self-assembly of Au@SiO2 core-shell colloids [J]. Nano Letters,2:785-788.
    [12]. Ni JX, Chen LJ, Zhao KM, et al.2011. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites [J]. Polymers for Advanced Technologys,22:1824-1831.
    [13]. Nie SB, Hu Y, Song L, et al.2008. Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene[J]. Polym Adv Technol,19:489-495.
    [14]. Song PG, Shen Y, Du BX, et al.2009. Effects of Reactive Compatibilization on the Morphological, Thermal, Mechanical, and Rheological Properties of Intumescent Flame-Retardant Polypropylene[J]. Appl Mater Inter,1:452-459.
    [15]. Liu SP, Ying JR, Zhou XP, et al.2009. Dispersion, thermal and mechanical properties of polypropylene/magnesium hydroxide nanocomposites compatibilized by SEBS-g-MA[J]. Compos Sci Technol,69:1873-1879.
    [16]. Chiang CL, Chang RC.2008. Synthesis, characterization and properties of novel self-extinguishing organic-inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol-gel method[J]. Compos Sci Technol,68:2849-2857.
    [17]. Chiang WY, Hu CH.2001. Approaches of interfacial modification for flame retardant polymeric materials[J]. Compos Part A-APPL S,32:517-524.
    [1].王建琪.2005.无卤阻燃聚合物基础与应用[M].北京:北京科学出版社.
    [2]. Ye L, Meng XY, Ji X, et al.2009. Synthesis and characterization of expandable graphite poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams[J]. Polymer Degradation and Stability,94:971-979.
    [3]. Machado HB, Correia RN, Covas JA.2010. Synthesis, extrusion and rheological behaviour of PU/HA composites for biomedical applications[J]. J Mater Sci Mater Med,21:2057-2066.
    [4]. Suh TS, Joo CK, Kim YC, et al.2002. Surface Modification of Polymethyl Methacrylate Intraocular Lenses with the Mixture of Acrylic Acid and Acrylamide via Plasma-Induced Graft Copolymerization[J]. J Appl Polym Sci,85:2361-2366.
    [5]. Bourbigot S, Le MB, Delobel R, et al.1997. XPS study an intumescent coating II Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent[J]. Appl Surf Sci,120:15-29.
    [6]. Ni JX, Chen LJ, Zhao KM, et al.2011. Preparation of gel silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites [J]. Polym Adv Technol,22:1824-1831.
    [7].黄发荣,万里强.2012.酚醛树脂生产技术[M].北京:化学工业出版社.
    [8].赵小玲,齐暑华,张剑.2003.酚醛树脂改性研究的最新进展[J].现代塑料加工应用,15:56-60
    [9]. Jiang YB, Wang DJ, Zhao T.2007. Preparation, Characterization, and Prominent Thermal Stability of Phase-Change Microcapsules with Phenolic Resin Shell and n-Hexadecane Core[J]. J Appl Polym Sci,104:2799-2806.
    [10].田卓,李克智,李贺军,et a1.2008.碳泡沫导热性能及力学性能研究[J].无机材料学报,23:1171-1174.
    [11].葛东彪,王书忠,胡福增.2003.酚醛树脂增韧改性的进展[J].玻璃钢/复合材料,5:37-41.
    [1].许冬生.2001.纤维素衍生物[M].北京:化学工业出版社.
    [2].骆介禹,骆希明.2003.纤维素基质材料阻燃技术:织物、木材、涂料及纸制品的阻燃处理[M].北京:化学工业出版社,
    [3]. Bahri ZE, Taverdet JL.2007. Preparation and Optimization of 2,4-D Loaded Cellulose Derivatives Microspheres by Solvent Evaporation Technique[J]. Journal of Applied Polymer Science,103:2742-2751.
    [4]Junyaprasert VB, Manwiwattanakul G.2008. Release profile comparison and stability of diltiazem-resin microcapsules in sustained release suspensions [J]. International Journal of Pharmaceutics,352:81-91.
    [5]Fundueanu G, Constantin M, Esposito E, et al.2005. Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system[J], Biomaterials, 26:4337-4347.
    [6]. Edgar KJ.2007. Cellulose esters in drug delivery[J]. Cellulose,14:49-64.
    [7]Badulescu R, Vivod V, Jausovec D, et al.2008. Grafting of ethylcellulose microcapsules onto cotton fibers[J]. Carbohydrate Polymers,71:85-91.
    [8]. Salaun F, Devaux E, Bourbigot S, et al.2010. Influence of the solvent on the microencapsulation of an hydrated salt[J]. Carbohydrate Polymers,79:964-974.
    [9]. Liu Y, Feng ZQ, Wang Q.2009. The investigation of intumescent flame-retardant polypropylene using a new macromolecular charring agent polyamide 11 [J]. Polymer Composites,30:221-225.
    [10]. Ma ZL, Zhang WY, Liu XY.2006. Using PA6 as a charring agent in intumescent polypropylene formulations based on carboxylated polypropylene compatibilizer and nano-montmorillonite synergistic agent[J]. Journal of Applied Polymer Science, 101:739-746.
    [11]. Nie SB, Hu Y, Song L, et al.2008. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene[J]. Polym Adv Technol,19:1077-1083.
    [12]. Choi MJ, Ruktanonchai U, Min SG, et al.2010. Physical characteristics of fish oil encapsulated by β-cyclodextrin using an aggregation method or polycaprolactone using an emulsion-diffusion method[J]. Food Chemistry,119:1694-1703.
    [13]. Bochot A, Trichard L, Bas GL, et al.2007. α-Cyclodextrin/oil beads:An innovative self-assembling system[J]. International Journal of Pharmaceutics,339:121-129.
    [14]. Paramera El, Konteles SJ, Karathanos VT.2011. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch[J], Food Chemistry,125:913-922.
    [15]. Alongi J, Poskovic M, Frache A.2010. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties [J]. Polymer Degradation and Stability,95:2093-2100.
    [16]. Feng JX, Su SP, Zhu J.2011. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA)[J]. Polym Adv Technol,22:1115-1122.
    [17]. Bras ML, Bourbigot S, Tallec Y L, et al.1997. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene Formulations [J]. Polymer Degradation and Stability,56:11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700