光固化膨胀阻燃涂层的制备及交联聚乙烯的热老化与机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对用于电线电缆的聚乙烯树脂高耐热高阻燃的要求,一方面研究了抗氧剂的种类和分子量对XLPE热老化进程的影响,揭示了抗氧剂的分子量和分子结构对延缓XLPE老化的重要性;另一方面研究了高膨胀阻燃涂层的阻燃特性和热解特性的影响因素,揭示涂层组成、结构与性能内在本质关系;同时优化阻燃体系,初步探讨其用于XLPE防火保护的可行性。主要研究工作如下:
     (1)从膨胀阻燃体系的要素出发,首先用两种光活性单体三(丙烯酰氧基乙基)磷酸酯(TAEP)和三聚氰胺丙烯酸酯(MAAR)制备了磷氮体系的高膨胀阻燃涂层。通过对燃烧性能以及碳渣形貌的表征发现当TAEP与MAAR的质量比为2/1时,燃烧时可以形成表面致密、内部有许多大尺寸的薄壁泡孔结构的高膨胀炭层。通过对阻燃涂层的热解过程的研究发现固化膜的热解有着自己的独特性:含磷部分对气源部分的降解有着明显的催化作用;多种可燃气体甚至毒性气体cO的生成量比两者单独生成的都低。但所形成的高膨胀炭层在高温下仍有不少被氧化降解。为此,我们又制备了含磷氮硅和磷氮硼的燃涂层。通过对燃烧性能研究发现当涂层有合适的磷氮硅比或者磷氮硼比时,燃烧时既能形成高膨胀的蜂窝状炭层,义能够有效提高炭层的机械强度。对它们热解过程的研究发现含硅和含硼陶瓷前驱体的加入均对膨胀阻燃涂层的热解性能造成显著影响:炭渣在高温下的耐氧化性显著提高;多种气体的释放量显著降低;均可以有效抑制有毒气体cO的释放。
     (2)基于延缓抗氧剂的物理损失以及化学消耗的理念,首先研究了不同分子量的受阻酚类抗氧剂对XLPE老化进程的影响,发现受阻酚类抗氧剂分子量越高,XLPE的老化进程越缓慢。其次研究了不同辅助抗氧剂与主抗氧剂1010复配稳定的XLPE的老化进程,发现硫醚类与受阻酚类抗氧剂的协同抗氧效果远比亚磷酸酯类与受阻酚类之间的协同效果好。第三,合成了一种高分子量的含硫受阻酚抗氧剂,并将其对XLPE的稳定效果与工业上两种同类抗氧剂进行比较,发现对于该类抗氧剂,硫原子的化学环境十分关键,不直接键接在受阻酚的对位上的或者直接与两个受阻酚相连的抗氧剂有较好的耐辐照性,其稳定的XLPE也体现出较高耐老化性。
     (3)基于前面对高膨胀阻燃涂层的研究,将TAEP/MAAR/SiMA体系用于XLPE的防火保护中。锥形量热仪结果表明TAEP/MAAR/SiMA体系对XLPE有一定的防火保护作用,受热时可以有效生成高膨胀蜂窝状的炭层,对质量和热量的传递有较好的延迟效应。但由于XLPE与涂层或者膨胀炭层在受热时变形程度差异较大,导致了涂层或者炭层破裂,引发了其保护的XLPE燃烧,结果是总热释放量和质量损失程度相差无几。
     (4)为了说明本论文所制备的阻燃耐热XLPE电缆料的优点,我们将高膨胀阻燃涂层涂覆的高耐热XLPE的性能与氢氧化铝阻燃的XLPE的性能进行比较,发现氢氧化铝阻燃的XLPE的力学性能、体积电阻率、耐热老化性明显恶化,原因在于大量无机粉体的加入导致了界面问题的产生。另外,虽然膨胀阻燃涂层处理的XLPE的总惹释放量与纯XLPE相差无几,但其热释放和质量损失更为缓和。
Polyethylene resin, when applied in the wire and cable materials, often has to reach the excellent flame retardance and high resistance to thermal aging. On the one hand, the effects of the kinds and molecular weight of various antioxidants on the thermal aging progress of cross-linking polyethylene (XLPE) were studied and the results revealed that the molecular weight and structure of antioxidants were of great importance to lengthen the lifetime of XLPE. On the other hand, the influence of the coating composition and structure on its thermal stability, combustion performance and fire resistance was investigated. The flame retardant systems were optimized for the protection of XLPE with high resistance to thermal aging. This dissertation consists of the following parts:
     (1) Based on the intumescent flame retardant mechanism, the ratios of tri(acryloyloxyethyl) phosphate (TAEP) to melamine-based acrylate resin (MAAR) were adjusted to prepare a series of flame-retarded coatings containing phosphorus and nitrogen by UV-cured technology. The characterization of the flammability and the char morphologies of these coatings displayed that the highly intumescent char with compact outer layer and lots of thin-walled large pore structure in the inner layer for the PN-2which containing2/1mass ratio of TAEP to MAAR. The investigation for the thermal degradation process of the coatings showed that the decomposition of the blowing agents could be catalyzed by the acid source. Moreover, the amount of many evolved gas products, even extremely toxic carbon oxide, decreased obviously. The intumescent char layer, however, still presented large weight loss at high temperature due to the oxidative-degradation. So a series of the coatings containing phosphorus-nitrogen-silicon or phosphorus-nitrogen-boron were prepared. It can be found from the results of their flammability that the coatings with suitable amount of silicon or boron elements can produce the char layer with higher mechanical strength, but also exhibited little negative effect on the formation of dramatically intumescent char layer. Furthermore, the study of their thermal degradation gave the clear results that the addition of silicon-or boron-bearing monomers could endow the char layer with high tolerance of the oxidative-degradation at high temperature. Besides, to our surprise, the release of carbon oxide for these coatings could effectively be suppressed.
     (2) It is relied that the improving efficiency of antioxidants on the stabilization of XLPE can be attained by retarding the physical loss and chemical exhaustion of antioxidants. To begin with, the influence of several hindered phenolic antioxidants with different molecular weight on the aging progress of XLPE was studied and it was found that the higher the molecular weight of antioxidant, the slower the aging development of XLPE. Then the primary antioxidant1010was combined with various second antioxidants to stabilize XLPE and the results showed that sulfur-bearing second antioxidants presented a better synergistic effect with antioxidant1010than phosphorus-containing ones. Finally, a novel sulfur-containing hindered phenolic antioxidant with a high molecular weight was prepared and its effect on protecting XLPE was compared with that of two antioxidants with similar structure. It was shown that the chemical circumstance of sulfur atom is the key point to determine the stability of antioxidants and the effect on the protection of XLPE. In other words, the antioxidants, in which sulfur atom is not bonded directly onto or have two direct chemical linkages with the hindered phenolic group, displayed better resistance to the electron-beam irradiation and better protection of XLPE from thermal aging.
     (3) On the basement of the above study, the optimized flame retardant systems (TAEP/MAAR/SiMA) were used to protect XLPE. The flammability analysis by cone calorimeter showed that the extremely intumescent flame retardant coatings could effectively reduce the HRR and PHRR and postpone the mass loss and heat transfer, but had difficulties in avoid the combustion of XLPE due to the crack of the cured coating or the rigid char layer led by the large deformation of XLPE exposed to heat flux.
     (4) In order to show the good points of XLPE wire and cable materials prepared in this dissertation, several significant properties of XLPE flame-retarded by the coating and ATH, respectively, were compared. It was shown that ATH worsened the mechanical properties, volume resistivity and tolerance of thermal aging of XLPE, which was ascribed to the poor compatibility of ATH with XLPE. In addition, it is noteworthy that XLPE flame-retarded by the coating presented the slower heat release rate and more moderate mass loss than XLPE flame-retarded by ATH, despite the lower THR for the latter.
引文
[1]Lai, SM, Liu, JL, Hu, SH, Huang, CH, Wang, SJ, Chien, SC. Fracture Behaviors of Metallocene Catalyzed Polyethylene Elastomer Via Peroxide Crosslinking[J]. J Appl Polym Sci.2009;113:3791-3798.
    [2]Kudla, S. Assessment of the influence of mineral fillers on polyethylene crosslinking process in the presence of peroxide by rheometric method[J]. Polimery-W.2009;54:577-580.
    [3]Smedberg, A, Wald, D. Determination of diffusion constants for peroxide by-products formed during the crosslinking of polyethylene[J]. Ieee Int Sym Elec In.2008:586-590.
    [4]Anbarasan, R, Babout, O, Degueil, M, Maillard, B. Functionalization and cross-linking of high-density polyethylene in the presence of dicumyl peroxide-An FTIR study[J]. J Appl Polym Sci.2005;97:766-774.
    [5]Nordin, R, Ismail, H, Ahmad, Z, Rashid, A. Performance improvement of (linear low-density polyethylene)/poly(vinyl alcohol) blends by in situ silane crosslinking[J]. J Vinyl Addit Techn.2012; 18:120-128.
    [6]Chen, WC, Lai, SM, Qiu, RY, Tang, SX. Role of silane crosslinking on the properties of melt blended metallocene polyethylene-g-silane/clay nanocomposites at various clay contents[J]. J Appl Polym Sci.2012; 124:2669-2681.
    [7]Azizi, H, Morshedian, J, Barikani, M. Silane Grafting and Moisture Crosslinking of Polyethylene:The Effect of Molecular Structure[J]. J Vinyl Addit Techn.2009; 15:184-190.
    [8]Azizi, H, Barzin, J, Morshedian, J. Silane crosslinking of polyethylene:the effects of EVA, ATH and Sb(2)O(3) on properties of the production in continuous grafting of LDPE[J]. Express Polym Lett.2007; 1:378-384.
    [9]Yao, DH, Qu, BJ, Wu, QH. Photoinitiated crosslinking of ethylene-vinyl acetate copolymers and characterization of related properties[J]. Polym Eng Sci.2007;47:1761-1767.
    [10]Hu, YW, Wu, QH, Qu, BJ. Photocrosslinking of EVA/inorganic filler blends and characteristics of related properties[J]. Polym Advan Technol.2010;21:177-182.
    [11]Perez, CJ, Valles, EM, Failla, MD. The effect of post-irradiation annealing on the crosslinking of high-density polyethylene induced by gamma-radiation[J]. Radiat Phys Chem. 2010;79:710-717.
    [12]Song, YH, Zheng, Q. Influence of Irradiation Crosslinking on the Self-Heating and Conduction of an Acetylene Carbon Black Filled High-Density Polyethylene Composite in the Electric-Thermal Equilibrium State[J]. J Appl Polym Sci.2008;110:3009-3013.
    [13]Zhu, AR, Cao, XL. The electron-beam irradiation cross-linking and modifying of high density polyethylene insulation[J]. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Vols 1 & 2.2000:213-216.
    [14]Dole, M. History of the Irradiation Cross-Linking of Polyethylene[J]. J Macromol Sci Chem. 1981;A 15:1403-1409.
    [15]鲁红典.阻燃和交联聚乙烯复合材料的制备与机理研究[博十].合肥:中国科学技术大学.2006.
    [16]焦传梅.无卤阻燃EVA、POE及其交联改性复合材料的制备和性能研究[博十].合肥:中国科学技术大学.2007.
    [17]汪碧波.核-壳协同微胶囊化膨胀型阻燃剂的制备及其交联阻燃乙烯-醋酸乙烯酯共聚物性能的研究[博士].合肥:中国科学技术大学.2012.
    [18]Bateman, L. Olefin Oxidation[J]. Q Rev Chem Soc.1954;8:147-167.
    [19]Pospisil, J. Mechanistic Action of Phenolic Antioxidants in Polymers-a Review[J]. Polym Degrad Stabil.1988;20:181-202.
    [20]Klemchuk, PP, Horng, PL. Transformation Products of Hindered Phenolic Antioxidants and Color Development in Polyolefins[J]. Polym Degrad Stabil.1991;34:333-346.
    [21]胡行俊.抗氧剂[M].北京:国防工业出版社.2009.
    [22]王克智.聚合物抗氧剂技术进展[J].现代塑料加工技术.2005;17:55-58.
    [23]Liu, MO, Lin, HF, Yang, MC, Lai, MJ. Chang, CC, Feng, MC, Shiao, PL, Chen, IM. Thermal oxidation and molding feasibility of cycloolefin copolymers (COCs) with high glass transition temperature[J]. Polym Degrad Stabil.2006;91:1443-1447.
    [24]董平,齐泮仓,邵伟,关旭.IrganoxR HP-136的抗氧化机理及对聚丙烯加工稳定性的影响[J].塑料科技.2007:8-10.
    [25]Howard, JA, Ingold, KU. Inhibited Autoxidation of Styrene.1. Deuterium Isotope Effect for Inhibition by 2,6-Di-Tert-Butyl-4-Methylphenol[J]. Can J Chem.1962;40:1851-&.
    [26]Foti, MC. Antioxidant properties of phenols[J].J Pharm Pharmacol.2007;59:1673-1685.
    [27]Gryn'ova, G, Ingold, KU, Coote, ML. New Insights into the Mechanism of Amine/Nitroxide Cycling during the Hindered Amine Light Stabilizer Inhibited Oxidative Degradation of Polymers[J]. J Am Chem Soc.2012; 134:12979-12988.
    [28]Richaud, E, Monchy-Leroy, C, Colin, X, Audouin, L, Verdu, J. Kinetic modelling of stabilization coupled with stabilizer loss by evaporation. Case of dithioester stabilized polyethylene[J]. Polym Degrad Stabil.2009;94:2004-2014.
    [29]Brigati, G, Lucarini, M, Mugnaini, V, Pedulli, GF. Determination of the substituent effect on the O-H bond dissociation enthalpies of phenolic antioxidants by the EPR radical equilibration technique[J]. J Org Chem.2002;67:4828-4832.
    [30]Amorati, R, Fumo, MG, Menichetti, S, Mugnaini, V, Pedulli, GF. Electronic and hydrogen bonding effects on the chain-breaking activity of sulfur-containing phenolic antioxidants[J]. J Org Chem.2006;71:6325-6332.
    [31]Nishiyama, T, Andoh, Y, Sugimoto, T, Okamoto, T. New bifunctional antioxidants intramolecular synergistic effects between chromanol and thiopropionate groups[J]. Polym Degrad Stabil.2003;81:409-413.
    [32]Allen, NS, Enriquez, LJ, Edge, M, Liauw, CM, Fontan, E. Performance and antioxidant activity of phenol/phosphite antioxidants in synergistic blends in the thermal and photooxidation of high-density polyethylene (HDPE) film:Influence of zinc stearate[J]. J Vinyl Addit Techn.2001;7:110-122.
    [33]Hawkins, WL, Sautter, H. Synergistic Antioxidant Combinations-Mechanism of Stabilization with Organo-Sulfur Compounds[J]. J Polym Sci Part A.1963;1:3499-&.
    [34]Yachigo, S, Sasaki, M, Kojima, F. Studies on Polymer Stabilizers.2. A New Concept of a Synergistic Mechanism between Phenolic and Thiopropionate Type Antioxidants[J]. Polym Degrad Stabil.1992;35:105-113.
    [35]Bauer, I, Habicher, WD, Korner, S, AlMalaika, S. Antioxidant interaction between organic phosphites and hindered amine light stabilizers:Effects during photoxidation of polypropylene.2.[J]. Polym Degrad Stabil.1997;55:217-224.
    [36]Pospisil, J. Chemical and Photochemical Behavior of Phenolic Antioxidants in Polymer Stabilization-a State-of-the-Art Report.2.[J]. Polym Degrad Stabil.1993;39:103-115.
    [37]Podesva, J, Kovarova, J, Hrdickova, M, Netopilik, M. Stabilization of polyurethanes based on liquid OH-telechelic polybutadienes:Comparison of commercial and polymer-bound antioxidants[J]. Polym Degrad Stabil.2009;94:647-650.
    [38]Wilen, CE, Luttikhedde, H, Hjertberg, T, Nasman, JH. Copolymerization of ethylene and 6-tert-butyl-2-(1,1-dimethylhept-6-enyl)-4-methylphenol over three different metallocene-alumoxane catalyst systems[J]. Macromolecules.1996;29:8569-8575.
    [39]Gao, XW, Meng, XF, Wang, HT, Wen, B, Ding, YF, Zhang, SM, Yang, MS. Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene[J]. Polym Degrad Stabil.2008;93:1467-1471.
    [40]Gao, XW, Hu, GJ, Qian, ZZ, Ding, YF, Zhang, SM, Wang, DJ, Yang, MS. Immobilization of antioxidant on nanosilica and the antioxidative behavior in low density polyethylene[J]. Polymer.2007;48:7309-7315.
    [41]Li, CQ, Wang, J, Ning, MM, Zhang, HP. Synthesis and antioxidant activities in polyolefin of dendritic antioxidants with hindered phenolic groups and tertiary amine[J]. J Appl Polym Sci.2012;124:4127-4135.
    [42]Xue, B, Ogata, K, Toyota, A. Synthesis and radical scavenging ability of new polymers from sterically hindered phenol functionalized norbornene monomers via ROMP[J]. Polymer. 2007;48:5005-5015.
    [43]Bergenudd, H, Eriksson, P, DeArmitt, C, Stenberg, B, Jonsson, EM. Synthesis and evaluation of hyperbranched phenolic antioxidants of three different generations[J]. Polym Degrad Stabil.2002;76:503-509.
    [44]潘江庆.抗氧剂在高分子领域的研究和应用[J].高分子通报.2002:57-66.
    [45]胡源,宋磊,尤飞,钟茂华.火灾化学导论[M].北京:化学工业出版社.2007.
    [46]Jimenez, M, Duquesne, S, Bourbigot, S. Fire protection of polypropylene and polycarbonate by intumescent coatings[J]. Polym Advan Technol.2012;23:130-135.
    [47]Jimenez, M, Gallou, H, Duquesne, S, Jama, C, Bourbigot, S, Couillens, X, Speroni, F. New routes to flame retard polyamide 6,6 for electrical applications[J]. J Fire Sci. 2012;30:535-551.
    [48]刑伟义,含双键磷氮硅单体及其光固体涂层的设计、阻燃性能与机理的研究[博士].合 肥:中国科学技术大学.2011.
    [49]Xing, WY, Hu, Y, Song, L, Chen, XL, Zhang, P, Ni, JX. Thermal degradation and combustion of a novel UV curable coating containing phosphorus[J]. Polym Degrad Stabil. 2009;94:1176-1182.
    [50]Chen, XL, Hu, Y, Jiao, CM, Song, L. Preparation and thermal properties of a novel flame-retardant coating[J]. Polym Degrad Stabil.2007;92:1141-1150.
    [51]Chen, XL, Jiao, CM. Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique[J]. Polym Degrad Stabil.2008;93:2222-2225.
    [52]Chen, XL, Song, L, Hu, Y. Flammability and Thermal Degradation of Epoxy Acrylate Modified with Phosphorus-Containing Compounds[J]. J Appl Polym Sci. 2010;115:3332-3338.
    [53]Liang. H, Shi, WF. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings[J]. Polym Degrad Stabil.2004;84:525-532.
    [54]Wang, QF, Shi, WF. Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins[J]. Eur Polym J. 2006;42:2261-2269.
    [55]Huang, ZG, Shi, WF. Thermal behavior and degradation mechanism of poly(bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer[J]. Polym Degrad Stabil. 2006;91:1674-1684.
    [56]Liang, HB, Ding, J, Shi, WF. Kinetics and mechanism of thermal oxidative degradation of UV cured epoxy acrylate/phosphate triacrylate blends[J].Polym Degrad Stabil. 2004;86:217-223.
    [57]Liang, HB, Shi, WF, Gong, M. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system[J]. Polym Degrad Stabil.2005;90:1-8.
    [58]Liang, HB, Asif, A, Shi, WF. Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings[J]. Polym Degrad Stabil.2005;87:495-501.
    [59]Chen, XL, Hu, Y, Song, L, Jiao, C. Preparation and thermal properties of a novel UV-cured star polyurethane acrylate coating[J]. Polym Advan Technol.2008; 19:322-327.
    [60]Cheng, XE, Shi, WF. UV-curing behavior and properties of tri/di(acryloyloxyethyloxy) phenyl silane used for flame-retardant coatings[J]. Prog Org Coat.2010;69:252-259.
    [61]Xing, WY, Song, L, Hu, Y, Zhou, S, Wu, K, Chen, LJ. Thermal properties and combustion behaviors of a novel UV-curable flame retarded coating containing silicon and phosphorus[J]. Polym Degrad Stabil.2009;94:1503-1508.
    [62]Liu, P, Gu, AJ, Liang, GZ, Guan, QB, Yuan, L. Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperbranched polysiloxane coatings[J]. Prog Org Coat.2012;74:142-150.
    [63]张月琴,叶旭初.硼系阻燃剂的发展及现状[J].塑料科技.2007;35.
    [64]葛春华,邓敏,李鸿图.硼酸氨基三乙酯的合成及水解稳定性的研究[J].辽宁大学学报.1998:25.
    [65]Liu, YH, Jing, XL. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J]. Carbon.2007;45:1965-1971.
    [66]Chen, LJ, Song, L, Lv, P, Jie, GX, Tai, QL, Xing, WY, Hu, YA. A new intumescent flame retardant containing phosphorus and nitrogen:Preparation, thermal properties and application to UV curable coating[J]. Prog Org Coat.2011;70:59-66.
    [67]Huang, ZG, Shi, WF. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings[J]. Eur Polym J. 2007;43:1302-1312.
    [68]Qian, XD, Song, L, Hu, YA, Yuen, RKK, Chen, LJ, Guo, YQ, Hong, NN, Jiang, SH. Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen[J]. Ind Eng Chem Res. 2011;50:1881-1892.
    [69]Xing, WY, Song, L, Hu, YA, Lv, XQ, Wang, X. Combustion and thermal behaviors of the novel UV-cured intumescent flame retardant coatings containing phosphorus and nitrogen[J]. E-Polymers.2010:1-11.
    [70]Cheng, XE, Liu, SY, Shi, WF. Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings[J]. Prog Org Coat. 2009;65:1-9.
    [1]Bourbigot S., LeBras M., Delobel R., Breant P., Tremillon J.M.4A zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers-Study of the effect of the constituent monomers [J]. Polym Degrad Stabil.1996.54:275-287.
    [2]Jimenez M, Duquesne S., Bourbigot S. Multiscale experimental approach for developing high-performance intumescent coatings[J]. Ind Eng Chem Res.2006.45:4500-4508.
    [3]Jimenez M., Duquesne S., Bourbigot S. Intumescent fire protective coating:Toward a better understanding of their mechanism of action[J]. Thermochim Acta.2006.449:16-26.
    [4]Jimenez M, Duquesne S., Bourbigot S. Characterization of the performance of an intumescent fire protective coating[J]. Surf Coat Tech.2006.201:979-987.
    [5]Chen X.L., Hu Y., Song L., Xing W.Y. Thermal properties and combustion behaviors of UV-cured phosphate triacrylate/star poly(urethane acrylate) oligomer blends[J]. Polym Advan Technol.2008.19:393-398.
    [6]Shan X.Y., Zhang P., Song L, Hu Y, Lo S.M. Compound of Nickel Phosphate with Ni(OH)(PO4)(2-) Layers and Synergistic Application with Intumescent Flame Retardants in Thermoplastic Polyurethane Elastomer[J]. Ind Eng Chem Res.2011.50:7201-7209.
    [7]Wang D.Y., Das A., Costa F.R., Leuteritz A., Wang Y.Z.. Wagenknecht U., Heinrich G. Synthesis of Organo Cobalt Aluminum Layered Double Hydroxide via a Novel Single-Step Self-Assembling Method and Its Use as Flame Retardant Nanofiller in PP[J]. Langmuir.2010. 26:14162-14169.
    [8]Shehata A.B. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide[J]. Polym Degrad Stabil.2004.85:577-582.
    [9]Liu J., Jiang Z.W., Yu H.O., Tang T. Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process[J]. Polym Degrad Stabil.2011. 96:1711-1719.
    [10]Song R.J., Zhang B.Y., Huang B.T., Tang T. Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene[J]. J Appl Polym Sci.2006.102:5988-5993.
    [11]Song R.J., Jiang Z.W., Yu H.O., Liu J., Zhang Z.J., Wang Q.W., Tang T. Strengthening carbon deposition of polyolefin using combined catalyst as a general method for improving fire retardancy [J]. Macromol Rapid Comm.2008.29:789-793.
    [12]Marosfoi B.B., Marosi G.J., Szep A., Anna P., Keszei S., Nagy B.J., Martvona H., Sajo I.E. Complex activity of clay and CNT particles in flame retarded EVA copolymer[J]. Polym Advan Technol.2006.17:255-262.
    [13]Bourbigot S., Fontaine G, Gallos A., Bellayer S. Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite:processing, characterization and flame retardancy [J]. Polym Advan Technol.2011.22:30-37.
    [14]Gerard C, Fontaine G, Bourbigot S. Synergistic and antagonistic effects in flame retardancy of an intumescent epoxy resin[J]. Polym Advan Technol.2011.22:1085-1090.
    [15]Mainil M., Urbanczyk L., Calberg C., Germain A., Jerome C., Bourbigot S., Devaux J., Sclavons M. Morphology and Properties of SAN-Clay Nanocomposites Prepared Principally by Water-Assisted Extrusion[J]. Polym Eng Sci.2010.50:10-21.
    [16]Bourbigot S., Samyn F., Turf T., Duquesne S. Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants[J]. Polym Degrad Stabil.2010.95:320-326.
    [17]Zhang Y., Hu Y., Song L., Wu J., Fang S.L. Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite[J]. Polym Advan Technol.2008.19:960-966.
    [18]Wang X., Song L, Yang H.Y., Lu H.D., Hu Y. Synergistic Effect of Graphene on Antidripping and Fire Resistance of Intumescent Flame Retardant Poly(butylene succinate) Composites[J]. Ind EngChem Res.2011.50:5376-5383.
    [19]Xing W.Y., Song L., Wang X., Lv X.Q., Hu Y. Preparation, combustion, and thermal behavior of UV-cured epoxy-based coatings containing layered double hydroxide[J]. Polym Advan Technol.2011.22:1859-1864.
    [20]Xing W.Y., Jie G.X., Song L., Wang X.. Lv X.Q., Hu Y.A. Flame retardancy and thermal properties of epoxy acrylate resin/alpha-zirconium phosphate nanocomposites used for UV-curing flame retardant films[J]. Mater Chem Phys.2011.125:196-201.
    [21]Huang G.B., Chen S.Q., Tang S.W., Gao J.R. A novel intumescent flame retardant-functionalized graphene:Nanocomposite synthesis, characterization, and flammability properties[J]. Mater Chem Phys.2012.135:938-947.
    [22]Liao S.H., Liu P.L., Hsiao M.C., Teng C.C., Wang C.A., Ger M.D., Chiang C.L. One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite[J]. Ind Eng Chem Res.2012. 51:4573-4581.
    [23]Bao C.L., Guo Y.Q., Yuan B.H., Hu Y., Song L. Functionalized graphene oxide for fire safety applications of polymers:a combination of condensed phase flame retardant strategies[J]. J Mater Chem.2012.22:23057-23063.
    [24]Guo Y.Q., Bao C.L., Song L., Yuan B.H., Hu Y. In Situ Polymerization of Graphene, Graphite Oxide, and Functionalized Graphite Oxide into Epoxy Resin and Comparison Study of On-the-Flame Behavior[J]. Ind Eng Chem Res.2011.50:7772-7783.
    [25]Chen X.L., Hu Y., Song L. Thermal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon[J]. Polym Eng Sci.2008.48:116-123.
    [26]Liu Y.H., Jing X.L. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J]. Carbon.2007.45:1965-1971.
    [27]Cheng X.E., Liu S.Y., Shi W.F. Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings[J]. Prog Org Coat.2009. 65:1-9.
    [28]Yu J.G., Li H.S., Chen S.Z., Gao J.P., Lin T. Influence of metal ion on the degradation of LDPE at the composting temperatures[J]. Macromol Symp.1999.144:201-209.
    [29]Hong J.Y., Lee E., Carter J.C., Masse J.A., Oksanen D.A. Antioxidant-accelerated oxidative degradation:A case study of transition metal ion catalyzed oxidation in formulation[J]. Pharm Dev Technol.2004.9:171-179.
    [30]Guo Y.Q., Bao C.L., Song L., Qian X.D., Yuan B.H., Hu Y. Radiation Cured Epoxy Acrylate Composites Based on Graphene, Graphite Oxide and Functionalized Graphite Oxide with Enhanced Properties[J]. J Nanosci Nanotechno.2012.12:1776-1791.
    [31]Wu G.L., Liu G.P., Zang Y.L., Lu Y.B., Xiong Y.Q., Xu W.J. Preparation and Characteration of UV-cured EA/MMT Nanocomposites Via In-Situ Polymerization[J]. J Macromol Sci A.2010. 47:647-654.
    [32]Xing W.Y., Song L., Hu Y.A., Lv X.Q., Wang X. Combustion and thermal behaviors of the novel UV-cured intumescent flame retardant coatings containing phosphorus and nitrogen[J]. E-Polymers.2010.1-11.
    [33]Huang Z.G., Shi W.F. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings[J]. Eur Polym J.2007.43:1302-1312.
    [34]Liang H., Shi W.F. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings[J]. Polym Degrad Stabil.2004.84:525-532.
    [35]Bugajny M., Bourbigot S., Le Bras M., Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750[J]. Polym Int.1999. 48:264-270.
    [36]Le Bras M., Bourbigot S., Revel B. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. J Mater Sci.1999.34:5777-5782.
    [37]Bourbigot S., LeBras M., Delobel R., Tremillon J.M. Synergistic effect of zeolite in an intumescence process-Study of the interactions between the polymer and the additives[J]. J Chem Soc Faraday T.1996.92:3435-3444.
    [38]Zhu S.W., Shi W.F. Thermal degradation of a new flame retardant phosphate methacrylate polymer[J]. Polym Degrad Stabil.2003.80:217-222.
    [39]Setnescu R., Jipa S., Setnescu T., Kappel W., Kobayashi S., Osawa Z. IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile[J]. Carbon.1999. 37:1-6.
    [40]Braun U., Knoll U., Schartel B., Hoffmann T., Pospiech D., Artner J., Ciesielski M., Doring M., Persz-Gratero R., Sandler J.K.W., Altstadt V. Novel phosphorus-containing poly(ether sulfone)s and their blends with an epoxy resin:Thermal decomposition and fire retardancy[J]. Macromol Chem Physic.2006.207:1501-1514.
    [41]Mori H., Lanzendorfer M.G., Muller A.H.E., Klee J.E. Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups[J]. Macromolecules.2004.37:5228-5238.
    [42]Liu P., Gu A.J., Liang G.Z., Guan Q.B., Yuan L. Preparation and properties of novel high performance UV-curable epoxy acrylate/hyperbranched polysiloxane coatings[J]. Prog Org Coat.2012.74:142-150.
    [43]Wang X., Hu Y.A., Song L., Xing W.Y., Lu H.D. Thermal Degradation Behaviors of Epoxy Resin/POSS Hybrids and Phosphorus-Silicon Synergism of Flame Retardancy[J]. J Polym Sci Pol Phys.2010.48:693-705.
    [1]Gao, XW, Hu, GJ, Qian, ZZ, Ding, YF, Zhang, SM, Wang, DJ, Yang, MS. Immobilization of antioxidant on nanosilica and the antioxidative behavior in low density polyethylene[J]. Polymer.2007;48:7309-7315.
    [2]Gao, XW, Meng, XF, Wang, HT, Wen, B, Ding, YF, Zhang, SM, Yang, MS. Antioxidant behaviour of a nanosilica-immobilized antioxidant in polypropylene[J]. Polym Degrad Stabil.2008;93:1467-1471.
    [3]Podesva, J, Kovarova, J, Hrdickova, M, Netopilik, M. Stabilization of polyurethanes based on liquid OH-telechelic polybutadienes:Comparison of commercial and polymer-bound antioxidants[J]. Polym Degrad Stabil.2009;94:647-650.
    [4]Wilen, CE, Luttikhedde, H, Hjertberg, T, Nasman, JH. Copolymerization of ethylene and 6-tert-butyl-2-(1,1-dimethylhept-6-enyl)-4-methylphenol over three different metallocene-alumoxane catalyst systems[J]. Macromolecules.1996;29:8569-8575.
    [5]Li, CQ, Wang, J, Ning, MM. Zhang, HP. Synthesis and antioxidant activities in polyolefin of dendritic antioxidants with hindered phenolic groups and tertiary amine[J]. J Appl Polym Sci.2012;124:4127-4135.
    16] Xue, B, Ogata, K, Toyota. A. Synthesis and radical scavenging ability of new polymers from sterically hindered phenol functionalized norbornene monomers via ROMP[J]. Polymer. 2007;48:5005-5015.
    [7]Bergenudd, H, Eriksson, P, DeArmitt, C, Stenberg, B, Jonsson, EM. Synthesis and evaluation of hyperbranched phenolic antioxidants of three different generations[J]. Polym Degrad Stabil.2002;76:503-509.
    [8]Amorati, R, Fumo, MG, Menichetti, S, Mugnaini, V, Pedulli, GF. Electronic and hydrogen bonding effects on the chain-breaking activity of sulfur-containing phenolic antioxidants[J]. J OrgChem.2006;71:6325-6332.
    [9]Nishiyama, T, Andoh, Y, Sugimoto, T, Okamoto, T. New bifunctional antioxidants-intramolecular synergistic effects between chromanol and thiopropionate groups[J]. Polym Degrad Stabil.2003;81:409-413.
    [10]Allen, NS, Enriquez, LJ, Edge, M, Liauw, CM, Fontan, E. Performance and antioxidant activity of phenol/phosphite antioxidants in synergistic blends in the thermal and photooxidation of high-density polyethylene (HDPE) film:Influence of zinc stearate[J]. J Vinyl Addit Techn.2001;7:110-122.
    [11]Hawkins, WL, Sautter, H. Synergistic Antioxidant Combinations-Mechanism of Stabilization with Organo-Sulfur Compounds[J]. J Polym Sci Part A.1963;1:3499-&.
    [12]Yachigo, S, Sasaki, M, Kojima, F. Studies on Polymer Stabilizers.2. A New Concept of a Synergistic Mechanism between Phenolic and Thiopropionate Type Antioxidants[J]. Polym Degrad Stabil.1992;35:105-113.
    [13]Bauer, I, Habicher, WD, Korner, S, AlMalaika, S. Antioxidant interaction between organic phosphites and hindered amine light stabilizers:Effects during photoxidation of polypropylene.2.[J]. Polym Degrad Stabil.1997;55:217-224.
    [14]Pospisil, J. Chemical and Photochemical Behavior of Phenolic Antioxidants in Polymer Stabilization-a State-of-the-Art Report.2.[J]. Polym Degrad Stabil.1993;39:103-115.
    [15]Grigoriadou, I, Paraskevopoulos, KM, Chrissafis, K, Pavlidou, E, Stamkopoulos, TG, Bikiaris, D. Effect of different nanoparticles on HDPE UV stability[J]. Polym Degrad Stabil. 2011:96:151-163.
    [16]Dintcheva, NT, La Mantia, FP, Malatesta, V. Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films[J]. Polym Degrad Stabil. 2009;94:162-170.
    [17]Fearon, PK, Bigger, SW, Billingham, NC. Dsc combined with chemiluminescence for studying polymer oxidation[J]. J Therm Anal Calorim.2004;76:75-83.
    [18]Hoyle, CE, Lee, TY, Roper, T. Thiol-enes:Chemistry of the past with promise for the future[J]. J Polym Sci Pol Chem.2004;42:5301-5338.
    [19]Hoyle, CE, Bowman, CN. Thiol-Ene Click Chemistry[J]. Angew Chem Int Edit. 2010;49:1540-1573.
    [20]Djouani, F, Richaud, E, Fayolle, B, Verdu, J. Modelling of thermal oxidation of phosphite stabilized polyethylene[J]. Polym Degrad Stabil.2011;96:1349-1360.
    [21]Richaud, E, Monchy-Leroy, C, Colin, X, Audouin, L, Verdu, J. Kinetic modelling of stabilization coupled with stabilizer loss by evaporation. Case of dithioester stabilized polyethylene[J]. Polym Degrad Stabil.2009;94:2004-2014.
    [22]Yokoyama. Hiroaki. Methods for Producing 2,6-Di-tert-butyl-4-mercaptophenol and 4,4'-isoproplidenedithiobis[2,6-tert-butylphenol][J]. EP1849768A1.2007.
    [23]Li, GZ, Randev, RK, Soeriyadi, AH, Rees, G, Boyer, C, Tong, Z, Davis, TP, Becer, CR, Haddleton, DM. Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts[J]. Polym Chem-Uk.2010;1:1196-1204.
    [24]Brigati, G, Lucarini, M, Mugnaini, V, Pedulli, GF. Determination of the substituent effect on the O-H bond dissociation enthalpies of phenolic antioxidants by the EPR radical equilibration technique[J]. J Org Chem.2002;67:4828-4832.
    [25]Park, D, Kobayashi, D, Suh, H, Cho, Y, Lee, A. Synthesis of (3-tert-butyl-4-hydroxy-5-methylphenyl) propionate derivatives and their thermal antioxidation behavior for POM[J]. J Appl Polym Sci.2012; 124:1731-1736.
    [1]Jimenez M, Duquesne S., Bourbigot S. Fire protection of polypropylene and polycarbonate by intumescent coatings[J]. Polym Advan Technol.2012.23:130-135.
    [2]Jimenez M., Gallou H., Duquesne S., Jama C., Bourbigot S., Couillens X., Speroni F. New routes to flame retard polyamide 6,6 for electrical applications[J]. J Fire Sci.2012. 30:535-551.
    [3]杨建文,曾兆华,陈用烈.光固化涂料及应用[M].北京:化学工业出版社.2004.
    [4]Buckley D.J., Robison S.B. Ozone Attack on Rubber Vulcanizates[J]. J Polym Sci.1956. 19:145-158.
    [5]Briggs D., Brewis D.M., Konieczko M.B. X-Ray Photoelectron-Spectroscopy Studies of Polymer Surfaces.3. Flame Treatment of Polyethylene[J]. J Mater Sci.1979.14:1344-1348.
    [6]Price D., Liu Y., Hull T.R., Milnes G.J., Kandola B.K., Horrocks A.R. Burning behaviour of foam/cotton fabric combinations in the cone calorimeter[J]. Polym Degrad Stabil.2002. 77:213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700