落新妇苷固体分散体的制备、药物吸收及药物动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落新妇苷是一种二氢黄酮类化合物,可以作为一种新的免疫抑制剂用于免疫相关疾病的治疗,具有巨大的社会利益和经济价值,其研究对医药领域有着重要的意义。但落新妇苷为水难溶性药物,不易被机体吸收,生物利用度低,在临床应用上受到了一定限制。因此,如何增加落新妇苷溶解度及生物利用度是扩大其临床应用的重点也是目前药剂学研究的难点之一。本文旨在运用固体分散技术改善落新妇苷溶解度及生物利用度,为扩大落新妇苷应用提供依据。关于此方面的内容,目前国内外少见报道。
     1、落新妇苷提取分离纯化工艺研究
     本文对落新妇苷的提取纯化工艺进行了较系统的探讨和研究。首先以土茯苓总黄酮、落新妇苷的含量为指标,考察乙醇浓度、提取时间、提取次数、溶剂用量4个因素对土茯苓中落新妇苷的提取工艺的影响。研究结果表明,各因素对试验结果的影响的大小顺序为乙醇浓度>提取时间>提取次数>溶剂用量。确定最佳提取工艺条件为12倍量60%乙醇溶液回流提取2次,每次2小时。土茯苓中提取的落新妇苷并不稳定存在于土茯苓中,而因不同来源、产地、药材的不同而有差异,土茯苓中落新妇苷含量差异为1.1-25.13mg/g(0.11%-2.51%)。
     然后应用大孔吸附树脂分离纯化落新妇苷,通过测试它们对落新妇苷黄酮的吸附率、吸附速率、解吸率和产物得率及其黄酮含量,研究6种不同类型吸附树脂对土茯苓中落新妇苷黄酮的吸附特性。结果发现HPD400树脂对落新妇苷黄酮吸附量大,吸附快、解吸容易,吸附后产物黄酮含量高。可见HPD400、AB-8弱极性树脂是一种性能良好的土茯苓黄酮吸附剂,可用于从土茯苓提取物中富集总黄酮和落新妇苷,制备含量达78%以上的总黄酮和35%以上落新妇苷。
     样品经聚酰胺柱层析,用纯化水、20%、40%、60%乙醇洗脱,得到落新妇苷含量为80%以上的精制品。聚酰胺对落新妇苷有较好的吸附力,其水洗脱物中几乎不含落新妇苷。虽然95%乙醇可将残留在聚酰胺柱上的杂质洗去一些,但随着吸附与洗脱次数的增加聚酰胺对黄酮的吸附力逐渐下降,洗脱物中落新妇苷的含量均有明显下降。因此应根据需要使用几次后对聚酰胺进行有机溶剂再生处理或更换新的聚酰胺。
     精制品过葡聚糖凝胶柱色谱经80%甲醇洗脱纯化,制得落新妇苷的纯品,样品经过理化性质和波谱性质的测定、化学结构鉴定,证实得到纯度为95%以上的高纯度的单体化合物落新妇苷。该提取纯化工艺稳定性较好,科学可行。
     2、落新妇苷固体分散体制备及质量评价
     本文从提高难溶性药物溶解度的技术入手,证明了将落新妇苷制成固体分散体的可行性和科学性,深入探讨了落新妇苷固体分散体的制备方法和工艺。在处方前研究中,首先建立了完善的分析方法体系,并对原料药的理化性质进行考察,为固体分散体可行性方案的制定提供了科学的依据,此外还建立了完整的固体分散体评价指标。在落新妇苷固体分散体的制备中,采用溶剂法和溶剂-熔融法作为成型技术,以PVP K30/C15、吐温80- PVP K30/C15作为载体材料,制备出的各种溶出度都较落新妇苷原药有显著提高的固体分散体,最终确定处方(落新妇苷:吐温80:PVPK30=1:1.5:3)最优。
     对优化后的的固体分散体进行存在状态、稳定性等质量评价。通过采用热力学分析法、X晶体衍射、显微镜法等研究方法对固体分散体的物相进行鉴别,发现落新妇苷在固体分散体以微晶态的形式存在。采用影响因素稳定性实验,以高温、高湿、强光照为三个因素,对自制的固体分散体进行质量评价。结果显示固体分散体在常温条件下稳定性良好。因此自制出落新妇苷固体分散体的增溶效果理想、质量稳定、工艺可行。
     本文以自制不同时间灯盏花素缓释片累积释放百分比数据为例,探讨多种溶出度释药模型拟合的简便方法。结果发现用Excel软件对统计数据进行处理,已经大致全部包含我们平时所需的各种模型,数据准确,图文并茂,且同以往的手工处理和查表计算相比大大加快了数据处理速度,操作简便,便于推广。采用此法对落新妇苷原料药和固体分散体的释药曲线进行拟合,结果表明Weibull方程拟合度最高,落新妇苷、固体分散体分别为0.9944、0.9986。通过增溶及溶出度增加机制探讨,可见固体分散体恰恰是在于载体抑制了已被固体分散法高度分散的粒子聚集趋势(抑晶性),表面积扩大;另外载体本身对药物的溶出有促进作用,因此固体分散体较原药物的溶解度大大提高,改善了其溶出速率,促进了药物的吸收和生物利用度。
     3、首次采用Caco-2细胞模型评价固体分散体载体系统对落新妇苷转运影响
     研究建立了Caco-2细胞模型。细胞生长良好均匀,边界清晰,细胞间形成紧密连接且完整。跨膜电阻随着培养时间的增加而增大,在培养21天后TEER>500Ω·cm-2,已形成完整的细胞单层。AP侧与BL侧的碱性磷酸酶活性(ALP)分别为46.371±5.902、5.286±0.86,腔面的碱性磷酸酶是基底侧的8.77倍,两者有显著性差异(P<0.01),说明细胞生长已经形成了极性,碱性磷酸酶已经大部分集中于刷状缘一侧(AP侧),即朝向培养基的一侧.普萘洛尔的Papp值为(2.193±0.170)×10-5 cm/s(参考值为(2.397±0.630)×10-5 cm/s)。该模型具备单细胞层紧密性与完整性,完全符合药物转运实验的要求,可用以模拟体外小肠吸收特征的研究。
     对于落新妇苷和固体分散体,细胞存活率随着药物浓度的增加逐渐下降,细胞增殖抑制作用明显增强,呈现剂量依赖性。在5~400μg/mL浓度范围内,两者的细胞存活率在80%以上,固体分散体的细胞存活率均比原料药的低但无显著性差异,5-400μg/ml是Caco-2细胞的安全浓度范围。
     本研究运用Caco-2细胞模型考察了固体分散系统中PVP的浓度,PVP和表面活性剂(Tween-80)共存等因素对落新妇苷吸收的影响。不同剂量落新妇及自制固体分散体中药物的表观渗透系数随着剂量的增加而增加,不同落新妇苷用量对表观渗透系数的影响无显著性差异,固体分散体中不同落新妇苷用量对表观渗透系数的影响有显著性差异(P=0.005)。载体及表面活性剂对药物的表观渗透系数有显著性影响,PVP k30促进药物渗透效果最佳(P=0.017),FEG4000、F68作用不明显。固体分散体载体用量对药物的表观渗透系数的影响有显著性差异(P=0.006),载体量增加到一定程度,药物表观渗透系数不再增加,其中药物:载体为1:3时促进药物通透效果最佳,药物:载体为1:6时次之,药物:载体为1:1时最差。载体联用表面活性剂能显著改善药物表观渗透系数(P=0.008),用量增加到一定程度,表观渗透系数反而下降,其中表面活性剂用量为1.5时最佳,表面活性剂用量为3时次之,表面活性剂用量为0时最差。固体分散载体类型、载体与药物比例、表面活性剂是影响落新妇苷表观渗透系数的关键因素。可见将落新妇苷制成固体分散体能改善药物渗透,提示可能提高药物体内吸收。
     5、首次对落新妇苷及其固体分散体的beagle犬体内药物动力学研究
     本试验采用液相色谱一串联质谱(LC/MS/MS)分析方法测定血浆样品中落新妇苷含量,并进行了方法确证。落新妇苷和内标葛根素[M-H]-去质子峰分别为m/z 449.0和m/z 414.5,落新妇苷和内标葛根素生成的主要碎片离子分别为m/z 284.9和m/z266.9,将其作为定量分析时监测的产物离子。本方法具有快速、准确、灵敏度高的特点,落新妇苷和内标葛根素的保留时间分别为1.7 min和1.8 min,线性范围为2.5ng/ml-1000 ng/ml,定量下限为2.5 ng/ml,适合测定人血浆中落新妇苷的浓度,并成功应用到落新妇苷制剂的犬体内药代动力学研究。空白血浆中的内源性物质不干扰落新妇苷和内标葛根素的测定,精密度(RSD)均小于7.7%,相对偏差(RE)小于12.0%,准确度符合相关规定,落新妇苷在血浆浓度为5.0、50.0、500.0 ng/ml时的提取回收率分别为81.6±9.3%,82.2±3.6%,80.0±4.5%,内标的提取回收率为86.9±4.5%,低、中、高三种浓度下的基质效应分别为93.4±5.8%,96.1±3.4%,97.8±7.9%,内标的介质效应为102.1±3.2%,符合相关规定。本方法具有快速、准确、灵敏度高的特点,此分析方法符合中华人民共和国药典人体生物利用度指导原则和生物样品分析国际规范的有关要求,适合测定人血浆中落新妇苷的浓度,并成功应用到落新妇苷制剂的犬体内药代动力学研究。
     通过Beagle犬给药后学药浓度参数的比较,首次考察了落新妇苷及其固体分散体在Beagle犬体内的药动学行为及其生物利用度,血药浓度经时过程可经非隔室模型描述。原料药Tmax、Cmax、AUC0-t、Ti/2、Ke分别为1.667±0.258(h)、71.050±34.251(ng/mL)、133.186±49.071(ng/mL·h)、3.38±3.19(h)、0.31±0.16(1/h);固体分散体Tmax、Cmax、AUC0-t、T1/2、Ke分别为2.583±0.665(h)、122.550±52.740(ng/mL)、298.642±173.673(ng/mL-h)、1.106±0.218(h)、0.65±0.12(1/h)。这部分研究内容充实了落新妇苷药代动力学方面的资料,为进一步临床药代动力学研究提供了参考依据。药动学方差分析结果表明,原料药及固体分散体之间AUC0-t、Tmax、Cmax间均有显著性差异,T1/2、Ke间均无显著性差异。说明同等药物浓度条件下,固体分散技术能显著改善原料药的C_(max)和生物利用度,延长达峰浓度时间(T_(max)),但对药物的消除速率常数和半衰期无影响。通过两者Cmax、AUC(0-t)、AUC(0-∞)分别计算相对生物利用度分别为1.8、212.4%、192.0%,提示固体分散技术能提高落新妇苷的生物利用度,落新妇苷固体分散体采用较低的剂量可以达到同样的血药浓度和疗效。
Astilbin (Ast,3,3',4',5,7-pentahydroxyflavanone 3-(6-deoxy-(L-mannopyranoside))) is a flavanone compound isolated from many plants. In recent years, much attention has been paid to its immunosuppressant activity. But according to the biopharmaceutics classification system, astilbin is an extreme example of a class IV compound due to its low permeability and poor oral absorption, thus it becomes a limiting step in clinical application. This present study aimed to solve the poor solubility of Astilbin, study the effects of dispersion carriers and surfactant on astilbin transport behavior in the caco-2 monolayer model and the pharmacokinetics of astilbin complex dispersion system. The research laid the foundation of further development.
     1. Extraction and purification research of Astilbin
     This systematic research studied the optimum extraction and purification process for Astilbin. The Lg(34) orthogonal experiment was designed with content of flavonoids in Smilax glabra and Astilbin as indicators. The experimental results showed that the influence factors were in the following order:ethanol concentration> extract time> extract number> solvent amount. The optimal extractive conditions obtained was:12 times the amount of solvent,60%ethanol,2 hours for two times. Astilbin content is not stable in Smilax glabra, and differs with different origin, sources and herbs ranging within 1.1~25.13mg/g (0.11%-2.51%).
     Further, the purification technology was studied by using 6 kinds of macropomus adsorption resin with their Astilbin flavonoids adsorption rate, adsorption rate, desorption rate and product yield and flavonoid content as index. The results showed that resin HPD400 had the largest absorption capacity to Astilbin flavonoids with characters of fast adsorption and easy desorption, and its product had a higer flavonoid content after adsorption. AB-8, a weakly polar resin, is also a good kind of sorbents for Smilax glabra flavonoids, and can be used to enrichment of total flavonoids and Astilbin from Smilax glabra gaining more than 78% content of total flavonoids and 35% above Astilbin.
     Samples then passes through polyamide column chromatography, eluting with purified water,20%,40%,60% ethanol, obtaining refined products with Astilbin content more than 80%. But with the increase in the adsorption and elution, the adhesive force of polyamide to flavonoids decreased, so it was necessary of the regeneration or replacement of the polyamide after the several uses.
     Products were further refined through dextran gel column chromatography by 80% methanol elution. The sample was confirmed as the purity compound higher than 95% by determination of physical-chemical and spectral properties and chemical structure identification.
     The extraction and purification process is stable, easily-operation and suitable for industrial mass production.
     2. Preparation of astilin solid dispersion
     In this paper, the possibility and process of preparation of Astilbin solid dispersion was proved by technicals of improving the solubility of insoluble drugs. In preformulation studies, we first established a sound analysis system, inspected the physical and chemical properties of APIs, and established a complete evaluation indicator of solid dispersion to provide a scientific basis. Researches on the effects of various preparations, carriers, and the ratio between the carriers and drug were carried out. PVPK30/C15 and tweens 80 were used as joint carriers to prepare astilbin solid dispersions by solvent method and Astilin solid dispersion of drug-Tween80-PVP K30 with the proportion of 1:1.5:3 was ideal. The characteristics of astilbin solid dispersions were studied by its in vitro dissolution, solubility, Papp, microscope, X-ray diffraction, and DSC. And experiments on the influence of temperature, humidity and illumination on astilin solid dispersion were also conducted. The results of the microscope, X-ray diffraction, and DSC study showed that astilbin in solid dispersion were molecular or microcrystalline. The content of Astilin in Astilin solid dispersion decreased in high temperature, but which was free from the influence of the humidity and illumination. Solid dispersion can improve the dissolution and solubility of astilin, obviously changed Papp and then promote the in vivo absorption. Astilin content in solid dispersion decreased in high temperature but was free from the influence of the humidity and illumination and it can be kept in normal temperature.
     The use of Excel software in models fitting of in vitro drug release was discussed, with self-prepared sustained-released Breviscapine tablets as an example. It takes less than lh of time to complete using Excel, containing all of the various models, and the data is accurate and illustrated. The method is easily operated and promoted. This simple data processing method was applied in Astilbin and its solid drug release curve fitting. The results showed that the Weibull equation was highest-fitting with the r of Astilbin, solid dispersions 0.9944, 0.9986 respectively. By mechanism discussion of solubilization, we can see exactly that the solid dispersion carriers suppressed the aggregation trend of highly dispersed particle (suppressing crystalline), and the surface area was expanded. Besides carriers theirselves can promote the dissolution of drug and therefore solid dispersions greatly improved the drug's solubility, and promote the drug absorption and bioavailability.
     3. Drug transport in caco-2 monolayer
     The established Caco-2 cell were observed good and homogenous growth, Clear boundary, and the formation of tight and complete junctions between cells. TEER values of Caco-2 cell monolayer increased with the incubation time with the value> 500Ω·cm-2 after 21 days of cell culture, indicating the formation of integrate monolayer. The activity of ALP in the AP and BL side were 46.371±5.902,5.286±0.86 respectively with a significant difference (P<0.01). The activity of ALP of the AP side is 8.77 times of the BL side indicating cell polarity had been formed and ALPs were mostly concentrated in the AP side. Papp value of propranolol was (2.193±0.170)×10-5 cm/s with the reference value (2.397±0.630)×10-5 cm/s. The established Caco-2 cell monolayer model was in full compliance with the requirements of drug transport experiments, and could be used to simulate characteristics of intestinal absorption in vitro.
     For astilbin and its solid dispersion, the cell viability gradually decreased with the increase of the drug concentration, and the cell proliferation was significantly enhanced in a dose dependent manner. The cell viability of both astilbin and its solid dispersion were more than 80% in the concentration range 5~400μg/mL, and latter was lower than that of astilbin with no significant difference. The safety concentration range of astilbin in Caco-2 cell was 5-400μg/mL.
     This study explored the effect of PVP-tween 80 combined solid dispersion system on the astilbin transportation in Caco-2 cell model. Papp of the drug and drug in solid dispersion increased with dose, and Papp of the latter was significantly different (P=0.005). As to the effects of carriers to promote drug penetration (P=0.017) PVP k30 was best, while PEG4000 and F68 not significant. The effects of drug/carrier ratio on the Papp of astilbin were of significant difference (P=0.006), and the Papp of astilbin increased with the amount of the carrier in a certain range, in which the ratio of drug/carrier 1:3 was best and the ratio of 1:1 worst. Carrier and surfactant combined system can significantly improve drug apparent permeability coefficient (P=0.008), and the effect of surfactant amount on the Papp was of significantly different, in which the carrier/surfactant ratio 1:1.5 best. The carrier and the surfactant in solid dispersion system were the key factors in astilbin transporting behavior in the caco-2 monolayer model. The apparent permeability coefficient of astilbin in the caco-2 monolayer model was improved, suggesting the improved drug penetration and enhanced drug absorption in vivo by solid dispersion system.
     4. Pharmacokinetics and oral bioavailability in beagle dog
     This report describes a successful development of LC/MS/MS assay for astilbin in plasma. [M-H]-proton peak was m/z 449.0 for astilbin and m/z 414.5 for internal standard puerarin. The main fragments were m/z 284.9 for astilbin and m/z 266.9 for internal standard as the product ion for quantitative analysis. The retention time of astilbin and internal standard puerarin were 1.7 min and 1.8 min respectively and the method shows a good separation of astilbin and internal standard to the plasma constituents. The Standard profile of astilbin in plasma was linear over the concentration range of 2.5-1000|-ig/ml examined. The regression equation for astilbin was Y=-0.0023578+0.000887034*X (r= 0.9816).The precision was determined at three different concentrations (5.0,50.0,500.0 ng/mL). The relative standard deviation (R.S.D.) for every studied concentration was less than 7.7%, relative deviation (RE) less than 12.0%, indicating the precision of the method for routine purposes. The mean extraction recovery was 81.6±9.3%,82.2±3.6%,80.0±4.5% and 86.9±4.5% for astilbin at 5.0,50.0,500.0ng/mL and internal standard respectively. The medium effect was 93.4±5.8%,96.1±3.4%,97.8±7.9% and 102.1±3.2% for astilbin at 5.0,50.0,500.0ng/mL and internal standard respectively. Based on a signal-to-noise ratio (S/N)=10 (R.S.D.<20%), the limit of quantization of astilbin was 2.5 ng/m.L in plasma and the precision of LLOQ concentration of (RSD) was 3.18% (n=6). The method has been applied to pharmacokinetic studies after oral administration of the compound and its solid dispersion to beagle dogs. The sensitivity of this method appeared satisfactory for monitoring the plasma concentration.
     This is the first study on the pharmacokinetics and bioavailability of astilbin and its solid dispersions in Beagle dogs. The non-compartmental calculation indicated that the rmax of astilbin solid dispersion (2.583±0.665 h) appeared to be longer than that for API (1.667±0.258 h) of significantly different (P< 0.05). The Ke of astilbin solid dispersion (0.65±0.12 h"1) was significantly different from that of astilbin (0.31±0.16 h'1) (P< 0.01). The Cmax of astilbin solid dispersion (122.550±52.740 ng-mL"1) was significantly different from that of astilbin (71.050±34.251 ng-mL-1) (P< 0.05). Astilbin solid dispersion had a faster elimination rate with a smaller tm (1.106±0.218 h) than astilbin (3.380±3.190 h) (P< 0.05). The AUCo-t of astilbin solid dispersion (298.642±173.673 ng-mLT1) was significantly different from that of astilbin (133.186±49.071 ng-h-mL-1) (P< 0.05), while the AUC0-∞of astilbin solid dispersion (305.994±70.640 ng·h·mL-1) and the AUC0-∞of astilbin (160.048±86.874 ng·h·mL-1) was of no significantly difference (P> 0.05). Indeed, calculated on the basis of the AUC0-∞of each formulation, the oral bioavailability of astilbin solid dispersions evaluated by Cmax、AUC(0-t)、AUC(0-∞)was about 1.8、212.4%、192.0% reapectively as compared to astilbin. Comparing the pharmacokinetic parameters and oral bioavailability data indicates the effects of solid dispersions on the oral absorption of astilbin.
引文
[1]Tschesehe R, Delhvi S. Sepulveda S. et al. EucryPhin, a new chromone rhamnoside from the bark of EucryPhia cordifolia[J], Phytochemistry.1979.18(5):867-869.
    [2]Eugene K. Singleton TVL. Astilbin engeletin in grapes and wine [J]. Phytoehemist.1983. 22(2):619-620.
    [3]Moulari B, Pellequer Y, Lboutounne H, et al. Isolation and in vitro antibacterial activity of astilbin. the bioactive flavanone from the leaves of Harungana madagascariensis Lam. ex Poir. (Hypericaceae) [J], J Ethnopharmacol,2006.106:272-278.
    [4]Batista Pereira LG. Petacci F, Fernandes JB, et al. Biological activity of astilbin from Dimorphandra mollis against Anticarsia gemmatalis and Spodoptera frugiperda[J]. Pest Manag Sci.2002,58(5):503-507.
    [5]Kimura Y. Sumiyoshi M, Sakanaka M. Effects of Astilbe thunbergii rhizomes on wound healing Part 1. Isolation of promotional effectors from Astilbe thunbergii rhizomes on burn wound healing [J], J Ethnopharmacol.2007,109(1):72-77.
    [6]Eliane Carneiro, Joao B, Calixto, et al. Isolation, Chemical Identification and Pharma-cological Evaluation of Eucryphin, Astilbin and Engelitin Obtained from the Bark of Hy-menaea martiana [J], Pharmaceutical Biology,1993,31(1):38-46.
    [7]全国中草药汇编编写组.全国中草药汇编(上册)[M],北京:人民卫生出版社,1996,393.
    [8]曹正中,易以军,洪武奇,等.土茯苓化学成分的研究[J],中草药,1993,24(5):234-235.
    [9]袁久志,窦德强,陈英杰,等.土茯苓二氢黄酮醇类成分研究[J],中国中药杂志,2004,29(9):867-870.
    [10]姚毅,周翔,陈婷.高效液相色谱法测定罗汉茶中落新妇苷的含量[J],中国现代应用药学杂志,2006,23(9):920-921.
    [11]尚小雅,李帅,王映红,等.红绒毛羊蹄甲中的二氢黄酮醇苷和黄烷酮醇类成分[J],中国中药杂志,2007,32(9):815-818.
    [12]舒孝顺,高中洪,杨祥良.菝葜醋酸乙酯提取物对大鼠和小鼠的抗炎作用[J],中国中药杂志,2006,31(3):239-342.
    [13]周艳林.钟小清,严海.等.HPLC测定菝葜属4种植物中落新妇苷的含量[J],中国中药杂志,2008,33(8):959-961.
    [14]周艳林,严海,钟小清,等.菝葜药材脂溶性成分指纹图谱研究[J],中草药,2008.39(8):1246-1248.
    [15]曲佳,周军,侯文彬,等.HPLC法测定黄杞叶中落新妇苷和黄杞苷[J],中草药, 40(2):306-307.
    [16]王超,朱丽萍.杨敬芝,等.草珊瑚醋酸乙酯部位化学成分研究[J],中国中药杂志,2010,35(6):714-717.
    [17]Ken Ohmori, Hiroki Ohrui, Keisuke Suzuki. First synthesis of astilbin. biologically active glycosyl flavonoid isolated from Chinese folk medicine [J]. Tetrahedron Letters. 2000.41:5537-5541.
    [18]Qizhen Dua. Lei Li, Gerold Jerz. Purification of astilbin and isoastilbin in the extract of smilax glabra rhizome by high-speed counter-current chromatography [J], J Chrom A,2005. 1077:98-101.
    [19]徐强,孙洋.源于中药选择性效应的新型免疫抑制疗法[J].化学进展,2009,21(1):55-62.
    [20]Chen T, Li J. Cao J, et al. A new flavanone isolated from rhizoma smilacis glabrae and the structural requirements of its derivatives for preventing immunological hepatocyte damage [J], Planta Med,1999,65(l):56-59.
    [21]Chen T, Li J X. Xu Q. Phenylpropanoid glycosides from Smilax glabra[J]. Phytochemistry,2000,53 (8):1051-1055.
    [22]Ting Chen. Jian Xin Li, Yu Cai, et al. A Flavonol Glycoside from Smilax glabra [J], Chin Chem Lett,2002.13(6):537-538.
    [23]美国专利号:US6.531,505(Immuno suppressive agents).
    [24]中国专利号:CNll54488C(免疫抑制剂).
    [25]高思海,李平,潘铁成,等.落新妇甙诱导小鼠心脏移植排斥反应活化T细胞凋亡[J],中华实验外科杂志,2004,21(4):502.
    [26]高思海,陈涛,潘铁成.落新妇甙对同种反应性T细胞Bax、Bcl-2和Caspase-3表达的影响[J],中华实用中西医杂志,2003,3(16):2110-2111.
    [27]高思海,潘铁成,李平.落新妇甙对同种反应性T细胞Fas、FasL、TNF-R1和TNF-R2基因表达的调控[J],中华实用中西医杂志,2004.4(17):217-218.
    [28]高思海,李平.陈涛.落新妇甙对小鼠心脏移植后移植物血管病的抑制作用[J].中华器官移植杂志,2005,26(11):682-683.
    [29]陈涛,潘铁成,高思海,等.落新妇甙对小鼠心脏移植排斥反应的抑制作用[J],山东医药,2006,46(33):7-8.
    [30]陈涛,潘铁成,高思海.等.落新妇甙对小鼠移植心肌细胞凋亡的抑制作用[J],江西医学院学报,2006,46(5):17-18.
    [31]高思海,陈涛,潘铁成,等.落新妇甙对心脏移植排斥反应中活化T细胞穿孔素和颗粒酶B表达的影响[J].中国医师杂志,2006,8(10):1336-1338.
    [32]高思海,李平,陈涛,等.落新妇甙对心脏移植排斥反应中细胞因子表达的影响[J], 中华小儿外科杂志.2006.27(2):87-89.
    [33]高思海.李平.陈涛.等.落新妇甙诱导混合细胞培养中活化的T细胞凋亡及其机制[J].中华器官移植杂志.2006,27(10):580-582.
    [34]高思海.李平,陈涛.等.落新妇甙对心脏移植效应性T细胞磷脂酰肌醇信号通路的影响[J],中华胸心血管外科杂志,2007.23(1):47-49.
    [35]高思海,潘铁成,李平.等.小鼠心脏移植急性排斥反成体外模型的建立[J].中华实验外科杂志,2003,20(12):1152.
    [36]高思海,李平,陈涛,等.落新妇苷对心脏移植排斥反应中活化T细胞p38丝裂原激活蛋白激酶信号传导通路的影响[J],中国医院药学杂志.2007,27(2):153-156.
    [37]高思海,李平,陈涛,等.落新妇甙对心脏移植排斥反应中活化T细胞蛋白激酶C信号传导通路的影响[J],中华小儿外科杂志,2007,28(1):35-38.
    [38]Qiang Xu, Feihua Wu. Jingsong Cao, et al. Astilbin selectively induces dysfunction of liver infiltrating cells-novel protection from liver damage[J], Eur J Pharmacol,1999,377(1): 93-100.
    [40]Cai Y, Chen T, Xu Q. Astilbin suppresses collagen-induced arthritis via the dysfunction of lymphocytes [J], Inflamm Res,2003,52(8):334-340.
    [41]慕宁.王海梁,傅宏,等.落新妇苷通过促进IL-10表达保护小鼠缺血再灌注损伤肝脏[J],第二军医大学学报,2008,29(12):1429-1432.
    [42]林慧庆,王建军,唐建,等.落新妇甙对大鼠肺移植排斥反应的抑制作用[J],微循环学杂志,2008,18(2):8-9.
    [43]林慧庆,王建军,唐建,等.落新妇甙对肺移植术后急性排斥反应的作用[J],中国胸心血管外科临床杂志,2008,15(5):365-368.
    [44]Zhao JP, Li P, Zhang YF. et al. The inhibitory effect of Astilbin on the arteriosclerosis of murine thoracic aorta transplant [J], J huazhong universityof science and technology (medical science),2009,29(2):212-214.
    [45]宋少华,沈筱芸,等.落新妇苷对大鼠肾脏缺血再灌注损伤的保护作用[J].中西医结合学报,2009.7(8):753-757.
    [46]Xu Q, Wu F, Cao J, et al. Astilbin selectively induces dysfunction of liver-infiltrating cells-novel protection from liver damage [J], Eur J Pharmacol,1999,377(1):93-100.
    [47]Yan R. Xu Q. Astilbin selectively facilitates the apoptosis of interleukin-2-dependent phytohemagglutinin-activated jurkat cells [J], Pharmacol Res.2001,44(2):135-139.
    [49]Cai Y. Chen T, Xu Q. Astilbin suppresses delayed-type hypersensitivity by inhibiting lymphocyte migration [J]. J Pharm Pharmacol,2003,55(5):691-696.
    [50]高思海.李平,陈涛.等.落新妇甙对心脏移植排斥反应中细胞因子表达的影响[J],中华小儿外科杂志,2006,27(2):87-89.
    [51]Mingjian Fei. Xuefeng Wu. Qiang Xu. Astilbin inhibits contact hypersensitivity through negative cytokine regulation distinct from cyclosporine A [J], J Allergy Clin Immunol.2005.116(6):1350-1356.
    [52]Hong-wei Yi. Xiao-min Lu. Feng Fang, et al. Astilbin inhibits the adhesion of T lymphocytes via decreasing TNF-alpha and its associated MMP-9 activity and CD44 expression[J]. Int Immunopharmacol.2008.8(10):1467-1474.
    [53]宋少华.沈筱芸,丁国善.等.落新妇苷对小鼠骨髓来源树突状细胞成熟及免疫功能的抑制作用[J],中西医结合学报.2010,8(2):145-151.
    [54]高思海.李平,陈涛,等.落新妇苷对心脏移植排斥反应中活化T细胞p38丝裂原激活蛋白激酶信号传导通路的影响[J],中国医院药学杂志,2007,27(2):153-156.
    [56]Jun Wang, Ying Zhao, Qiang Xu. Astilbin prevents concanavalin A-induced liver injury by reducing TNF-a production and T lymphocyte adhesion [J], J Pharm Pharmacol, 2004,56(4):495-502.
    [57]Yang XL, Sun Y, Xu Q, et al. Synthesis and immunosuppressive activity of L-rhamno-pyranosyl flavonoids [J], Org Biomol Chem,2006.4(12):2483-2491.
    [58]Yi HW, Lu XM, Fang F. Astilbin inhibits the adhesion of T lymphocytes via decreas-ing TNF-a and its associated MMP-9 activity and CD44 expression[J],Int Immuno-pharmacol,2008,8(10):1467-1474.
    [59]Mizutani K, Masuda K. Kanbara T, et al. Active oxygen scavengers for therapeutical and cosmetic uses [J], Heisei,1994,9:1-9.
    [60]Closa D, Torres M, Hotter G, et al. Prostanoids and free radicals in C14C-induced hepatotoxicity in rats:effect of astilbin [J], Prostaglandins, Leukotrienes and Essential Fatty Acids,1997,56(4):331-334.
    [61]Kimura Y, Sumiyoshi M, Sakanaka M. Effects of Astilbe thunbergii rhizomes on wound healing Part 1. Isolation of promotional effectors from Astilbe thunbergii rhizomes on burn wound healing [J]. J Ethnopharmacol.2007,109(1):72-7.
    [62]Kozo hayashi, Kazuhiko Ouchi. Misc. Repts. Research. Inst Nat Resources. CA.. V47 (1953)705.
    [63]Xu Q, Cao J, Jianq J, et al. Astilbin selectively induces dysfunction of liver-infiltrating cells--novel protection from liver damage [J], Eur J Pharmacol,1999,377(1):93-100.
    [64]吴丽明,张敏.土茯苓中落新妇甙的利尿和镇痛作用[J],中药材,1995,18(12):627-630.
    [65]张白嘉,刘亚欧,刘榴,等,土茯苓及落新妇苷抗炎、镇痛、利尿作用研究[J],中药药理与临床,2004,20(1):11-12.
    [66]Haraguchi H, Mochida Y, Sakai S, et al. Protection against oxidative damage by dihydroflavonols in Engelhardtia chrysolepis [J], Biosci Biotechnol Biochem.1996,60(6): 945-948.
    [67]Igarashi K. Uchida Y. Murakami N. et al. Effect of astilbin in tea processed from leaves of Engelhardtia chrysolepis on the serum and liver lipid concentrations and on the erythrocyte and liver antioxidative enzyme activities of rats [J], Biosci Biotechnol Biochem, 1996.60(3):513-5.
    [68]Cechinel-Filho V, Vaz ZR, Zunino L, et al. Antinociceptive and anti-oedematogenic properties of astilbin, taxifolin and some related compounds[J], Arzneimittelforschung. 2000; 50(3):281-285.
    [69]高思海,潘铁成.落新妇苷的提取及对心肌缺血再灌注损伤的保护作用研究[J],中华实用中西医杂志,2003,3(16):1693-1694.
    [70]Zhang QF, Zhang ZR, Cheung HY. Anti-oxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent astilbin [J], Food Chemistry,2009,115:297-303.
    [71]Moulari B, Pellequer Y. Lboutounne H, et al. Isolation and in vitro antibacterial activity of astilbin. the bioactive flavanone from the leaves of Harungana madagascariensis Lam. Ex Poir. (Hypericaceae) [J], J Ethnopharmacol,2006,106:272-278.
    [72]Sa F, Gao JL, Fung KP, et al. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines[J], Chem Biol Interact,2008,171(1):1-14.
    [73]Tso-Hsiao Chen, Ju-Chi Liu, Jun-Jen Chang, et al. The In Vitro Inhibitory Effect of Flavonoid Astilbin on 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase on Vero Cells[J]. Chin Med J (Taipei).2001.64(7):382-387.
    [74]Lucas-Filho MD, Silva GC, Cortes SF, et al. ACE inhibition by astilbin isolated from Erythroxylum gonocladum (Mart.) O.E. Schulz [J], phytomedicine,2010,17(5):383-387.
    [75]Han LK, Ninomiya H, Taniguchi M, et al. Norepinephrine-augmenting lipolytic effectors from Astilbe thunbergii rhizomes [J], J Nat Prod,1998,61(8):1006-1011.
    [76]Motoyashiki T, Miyake M. Morita T. et al. Enhancement of the vanadate-stimulated release of lipoprotein lipase activity by astilbin from the leaves of engelhardtia chrysolepis [J], Biol Pharm Bull,1998.21:517-519.
    [77]郭建明,硕士论文.中国药科大学,2004,落新妇苷药代动力学及体内代谢研究.
    [78]Jianming Guo, Qiang Xu, Ting Chen. Quantitative determination of astilbin in rabbit plasma by liquid chromatography [J], J Chromatogra B,2004,805(2):357-360.
    [79].Tianming Guo, Feng Qian, Jianxin L, et al. Identification of a new metabolite of astilbin. 3'-O-methylastilbin, and its immunosuppressive activity against contact dermatitis [J], Clin Chem.2007.53(3):465-471.
    [80]王晓丹,博士论文.2009,花旗松素和落新妇苷体外转运和大鼠体内药物代谢动力 学研究,浙江大学.86-100.
    [81]Yan Liang. Qiang Xu. An Kang. et al. Validation and application of an LC-ES1-MS method for simultaneous determination of astilbin and its major metabolite 3'-O-methylastilbin in rat plasma [J]. J Chromatogra B.2009.877 (18-19):1765-1770.
    [82]王晓丹.博士论文,2009.花旗松素和落新妇苷体外转运和大鼠体内药物代谢动力学研究,浙江大学.6-39.
    [83]Wang XD. Meng MX. Gao LB. et al. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp [J], Int J Pharm.2009.378(1-2):1-8.
    [84]Markowska M. Oberle R. Juzwin S, et al. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis [J]. J Pharmacol Toxicol Method. 2001,46(1):51-56.
    [85]Annette B, Sibylle H, Kayoshi S, et al. Cell cultures as tools in biopharmacy [J]. Eur J Pharm Sci,2000,11 (Suppl 2):51.
    [86]关溯.Caco-2细胞模型-药物吸收研究的有效“工具”[J],中国药理学通报,2004,20(6):609-611.
    [87]Gan LL, Dhiren RT. Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium [J].Adv Drug Deliv Rev,1997,23(1):77-81.
    [88]王广基.药物代谢动力学[M].北京:化学工业出版社,2005,
    [89]王琰,李正荣,潘飞燕,等.纳米脂质体包裹胰岛素经Caco-2细胞转运的研究[J],中国药理学通报,2005,21(1):78-81.
    [90]郭健新,平其能,董隽,等.醋酸亮丙瑞林脂质体及壳聚糖包衣脂质体经肠道及Caco-2细胞转运机制[J],药学学报,2005,40(1):65-70.
    [91]刘志伟.Caco-2细胞单层模型及其在毒理学中的应用[J].卫生研究,2004,33(6):756.
    [92]Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth[J], Pharm Res,1997,14(6):763-6.
    [93]杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用[J],药学学报,2000,35(10):797-780.
    [94]张向荣,张逸凡,张大放.体外Caco-2细胞模型在药物吸收中的应用进展[J],中国医院药学杂志,2004,24(12):773.
    [95]Sha X Y. Studies on the intestinal absorptive mechanism and self-microemulsifying drug delivery system of 9-nitrocamp-tothecin [A].Dissertation of Doctor Degree of Fudan University [D]. Shanghai:Fudan University,2005.
    [96]Sunil Prabhu. Maru Ortega. Chan Ma. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam[J]. Int J Pharm.2005.301(1-2):209-216.
    [97]Ventura CA. Giannone I, Paolino D. et al. Preparation of celecoxib- dimethyl-β-cyclodextrin inclusion complex:characterization and in vitro permeation study [J]. Eur J Med Chem,2005.40(7):624-631.
    [98]于少云.郑爱萍,赵莹.等.壳聚糖对胰岛素透过Caco-2细胞单层的影响[J].中国新药杂志,2006,15(06):436-440.
    [99]Zerrouk N. Corti G, Ancillotti S. et al. Influence of cyclodextrins and chitosan, separately or in combination, on glyburide solubility and permeability [J]. Eur J Pharm Biopharm.2006.62(3):241-246.
    [100]Rose-Marie Dannenfelser, Handan He. Yatindra Joshi, et al. Development of clinical dosage forms for a poorly water soluble drug I:Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system [J], J Pharm Sci,93(5):1165-1175.
    [101]Haiping Hao, Guangji Wang, Nan Cui. et al. Pharmacokinetics, Absorption and Tissue Distribution of Tanshinone IIA Solid Dispersion[J], Planta Med,2006.72(14): 1311-1317.
    [102]Francis MF, Cristea M, Winnik FM. Exploiting the Vitamin B12 Pathway to enhance oral drug delivery via polymeric micelles [J], Biomacromolecules,2005,6(5):2462-2467.
    [103]Sundeep Sethia, Emilio Squillante. In vitro-in vivo evaluation of supercritical processed solid dispersions:Permeability and viability assessment in Caco-2 cells [J], J Pharm Sci,2004,93(12):2985-2993.
    [104]Saha P, Kou JH. Effect of solubilizing excipients on permeation of poorly water-soluble compounds across Caco-2 cell monolayers [J], Eur J Pharm Biopharm,2000, 50(3):403-11.
    [105]Amit Kokate, Xiaoling Li, Bhaskara Jasti. Transport of a novel anti-cancer agent, fenretinide across Caco-2 monolayers [J],2007,25(3):197-203.
    [106]Liu C, Liu D, Bai F, et al. In vitro and in vivo studies of lipid-based nanocarriers for oral N3-o-toluyl-fluorouracil delivery [J]. Drug Deliv.2010.17(5):352-363.
    [107]Pepic I, Hafner A. Lovric J, et al. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation [J], J Pharm Sci,2010,99(10):4317-25.
    [108]Baek JS, Kwon HH. Hwang JS. et al. Alendronate-loaded microparticles for improvement of intestinal cellular absorption [J]. J Drug Target.2010,19(1):37-48.
    [109]Degim Z. Mutlu NB, Yilmaz S, et al. Investigation of liposome formulation effects on rivastigmine transport through human colonic adenocarcinoma cell line (CACO-2) [J]. Pharmazie.2010,65(1):32-40.
    [110]Ratzinger G, Wang X. Wirth M, Gabor F. Targeted PLGA microparticles as a novel concept for treatment of lactose intolerance [J]. J Control Release.2010,147(2):187-192.
    [111]Thanou M.. Florea BI. Langemeyer MWE. et al. N-Trimethylated Chitosan Chloride (TMC) Improves the Intestinal Permeation of the Peptide Drug Buserelin In Vitro (Caco-2 Cells) and In Vivo (Rats) [J]. Pharm Res,2000.17(1):27-31.
    [112]Kotze AF. Luessen HL, de Leeuw B.T. et al. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2) [J], J Control Release,1998.51(1):35-36.
    [113]Thanou MM. Kotze AF, Scharringhausen T. et al. Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers [J], J Control Release.2000.64(1-3):15-25.
    [114]Rege BD, Yu LX. Hussain AS, et al. Effect of common excipients on Caco-2 transport of low-permeability drugs [J], J Pharm Sci, 2001.90(11):1776-1786.
    [115]Lars Hovgaard, Helle Brandsted. Drug delivery studies in Caco-2 monolayers. IV. Absorption enhancer effects of cyclodextrins [J], Pharml Res,1995.12(9):1328-1332.
    [116]Sandri G, Bonferoni MC, Rossi S, et al. Insulin-loaded nanoparticles based on N-trimethyl chitosan:in vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties [J]. AAPS Pharm Sci Tech. 2010,11(1):362-371.
    [117]Wang Xue, He Yongjie, Wu Jiayan. et al. Investigation of archaeosomes as carriers for oral delivery of peptides[J], Biochem Biophys Res Commun.2010,394(2):412-417.
    [118]Cox DS. Raje S, Gao H.et al. Enhanced permeability of molecular weight markers and poorly bioavailable compounds across Caco-2 cell monolayers using the absorption enhancer, zonula occludens toxin[J]. Pharm Res,2002,19(11):1680-1688.
    [119]Ofokansi K, Winter G. Flicker G. et al. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery [J], Eur J Pharm Biopharm.2010.76(01):1-9.
    [120]Foraker AB, Walczak RJ, Cohen MH, et al.. Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal caco-2 cell monolayers [J].Pharm Res,2003,20(1):110-116.
    [121]李正荣,王琰,潘飞燕,等.Caco-2细胞模型建立及其在纳米脂质体包裹胰岛素体外吸收研究中的应用[J],南京师大学报(自然科学版),2004,27(03):88-91.
    [122]吴正红.平其能,雷晓敏,等.壳聚糖及其衍生物包覆的脂质体对胰岛素细胞旁路转运的促进作用[J],中国药科大学学报,2005,36(04):306-310.
    [123]Makoto Kataoka, Yoshie Masaoka. Yukako Yamazaki. et al. In Vitro System to Evaluate Oral Absorption of Poorly Water-Soluble Drugs:Simultaneous Analysis on Dissolution and Permeation of Drugs [J], Pharm Res.2003,20(10):1674-1680.
    [124]Makoto Kataoka. Yoshie Masaoka. Shinji Sakuma, et al. Effect of food intake on the oral absorption of poorly water-soluble drugs:In vitro assessment of drug dissolution and permeation assay system [J]. J Pharm Sci,2006,95(9):2051-2061.
    [125]鲁鑫焱,蒋惠娣.曾苏.黄酮类化合物在Caco-2细胞模型上的转运和代谢研究进展[J],中国药学杂志2006,41(17):1289-1292.
    [126]Takara K. Tsujimoto M. Ohnishi N, et al. Effects of continuous exposure to digoxin on MDR1 function and expression in Caco-2 cells [J], J Pharm Pharmacol.2003.55(5): 675-681.
    [127]Maeng H J, Yoo H J, Kim I W, et al. P-glycoprotein-mediated transport of berberine across Caco-2 cell monolayers[J], J Pharm Sci,2002,91(12):2614-2621.
    [128]潘国宇,王广基,孙建国,等.小檗碱对葡萄糖吸收的抑制作用[J],药学学报.2003,38(12):911-914.
    [129]Gupta E, Vyas V, Ahmed F,et al. Pharmacokinetics of orally administered camptothecins [J], Ann N Y Acad Sci,2000,922:195-204.
    [130]Sha X Y. Studies on the intestinal absorptive mechanism and self-microemulsifying drug delivery system of 9-nitrocamp-tothecin [A], Dissertation of Doctor Degree of Fudan University [D]. Shanghai:Fudan University,2005.
    [131]Woo J S, Lee C H, Shin C K,et al. Enhanced oral biovailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KP30031 [J], Pharm Res,2003,20(1): 24-30.
    [132]Oitate M, Nakaki R, Koyabu N, et al. Transcellular transport of genistein, a soybean-derived isoflavone, across human colon carcinoma cell line (Caco-2) [J], Biopharm Drug Dispos,2001,22(1):23-29.
    [133]Walgren R A, Karnaky K J, Lindenmayer G E.et al. Efflux of dietary flavonoid quercetin 4'-β-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2 [J]. J Pharmacol Exp Ther.2000.294(3): 830-836.
    [134]Xie H T, Wang G J, Zhao X C.et al. Study on uptake and metabolism of ginsenoside Rg3 [J], Chin J Pharmacol Ther,2004,9(3):257-260.
    [135]Konishi Y, Shimizu M. Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers [J], Biosci Biotechnol Biochem,2003.67(4): 856-862.
    [136]Zhang L, Zheng Y, Chow M S, et al. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model [J], Int J Pharm.2004. 287(1-2):1-12.
    [137]王来友,关溯,黄民,等.补骨脂素在Caco-2细胞模型中的吸收特性研究[J].中国药学杂志,2005,40(24):1868-1870.
    [138]谢海棠,王广基,赵小辰,等.Caco-2细胞对人参皂苷Rg3的摄取及代谢研究[J],中国临床药理学与治疗学.2004.9(3):257-260.
    [139]关溯,毕惠嫦.陈孝,等.隐丹参酮在Caco-2细胞模型中的吸收机制[J],中国临床药理学杂志.2005,21(4):268-271.
    [140]李莉,袁媛,蒋学华,等.丹参脂溶性成分在Caco-2:细胞模型中吸收机制研究[J],中国药学杂志.2006,41(2):108-112.
    [141]朱狄峰,赵筱萍,程翼宇.丹参素在Caco-2细胞单层模型中的跨膜转运研究[J].中国中药杂志.2006,31(18):1517-1521.
    [142]宋丽,张宁,徐德生.芍药苷在Caco-2细胞模型中吸收机制的研究[J],中草药,2008,39(01):41-44.
    [143]刘西京,贾强,汪程远,等.葛根素及其纳米粒在Caco-2细胞模型的吸收机制研究[J],中药材,2009,32(08):1252-1255.
    [144]刘史佳,居文政,熊宁宁,等.秦皮甲素在Caco-2细胞模型中吸收机制的研究[J],中成药,2009,31(06):852-855.
    [145]李正荣,王琰,潘飞燕,等.Caco-2细胞模型建立及其在纳米脂质体包裹胰岛素体外吸收研究中的应用[J].南京师大学报(自然科学版),2004,27(03):88-91.
    [146]冷薇,郑颖,李绍平,等.莪术油在Caco-2;细胞模型中的吸收机制研究[J],中国药学杂志,2007,42(16):1228-1232.
    [147]郑姣妮,龙潇鸿,邱峰,等.蜕皮甾酮在Caco-2细胞模型中的摄取和跨膜转运研究[J],中国药理学通报,2009,25(04):545-548.
    [148]马莲,王莹,杨秀伟,利用Caco-2细胞模型研究白鲜碱和茵芋碱在人小肠的吸收[J],中国新药杂志,2008,17(02):124-128.
    [149]王彦荣,何应.Caco-2细胞模型在天然药物吸收研究中的应用[J],中国生化药物杂志,2007,28((1):66-69.
    [150]Lee K. Johnson N, Castelo J,et al. Effect of experimental pH on thein vitro-permeability in intact rabbit intestines and Caco-2 monolayer [J]. Eur J Pharm Sci.2005. 25(2-3):193-200.
    [151]Dannenfclser RM. He H. Joshi Y, et al. Dvelopment of clinical dosage forms for a poorly water soluble drug:application of polyethylene glycol polysorbate 80 solid disp ersion carrier system [J], J Pharm Sci.2004,93 (5):1165-1175.
    [152]Sekiguchi K. Obi N. Studies on absorption of eutectic mixture I A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man [J]. Chem Pharm Bull.1961.9:866-872.
    [153]Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification systems [J]. Eur.1 Pharm Sci.2006.29:278-287.
    [154]Aso Y. Yoshioka S. Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions[J], J Pharm Sci.2004.93(2):384-391.
    [155]Guidance for Industry (2000):Waiver of In Vitro Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER).
    [156]Amidon G.L.; Lennernas H.; Shah V.P.; et al. a theoretical basis for a bio-pharmaceutical drug classification:the correlation of in vitro drug product dissolution and in vivo bioavailability [J], Pharm Res,1995, (12):413-420.
    [157]Yu. LX. Amidon, GL, Polli, JL, et al. Biopharmaceutical classification system:The scientific basis for biowaiver extensions [J], Pharm Res,2002,19:921-925.
    [158]Lobenberg R, Amidon GL. Modern bioavailability bioequivalence and bio-pharmaceutics classification system:New scientific approaches to international regulatory standards [J], Eur J Pharm Biopharm,2000,50:3-12.
    [159]Serajuddin AT. Solid dispersion of poorly water soluble drugs:Early promises, subsequent problems and recent breakthrough [J], J Pharm Sci 1999,88:1058-66.
    [160]Sharma DK, Joshi SB. Solubility enhancement strategies for poorly water soluble drugs in solid dispersion:A Review[J], Asian J Pharm,2007,1:9-19.
    [161]Rao M G. Suneetha R, Reddy P S, et al. Preparation and evaluation of solid dispersions of naproxen[J], Indian J Pharm Sci,2005,67(1):26-29.
    [162]Soniwala M M, Patel P R. Mansuri N S, et al. Indian J. Pharm. Sci 67(1),2005.61-65.
    [163]Jain R K. Sharma D K. Jain S, et al. Studies on solid dispersions of nimesulide with pregelatinized starch[J], Biosci Biotech Res Asia,2006,3(1 a):151-153.
    [164]Suhagia B N, Patel H M, Shah S A, et al. polyvinylpyrrolidone K30 solid dispersions [J]. Acta Pharm,2006,56(3):285-298.
    [165]王璐璐,汪仁芸.郑稳生.板蓝根脂溶性成分-PVPK30固体分散体的研究[J],中国新药杂志,2006,15(13):1078-1081.
    [166]吕文莉,戎飞,平其能.番茄红素-泊洛沙姆188固体分散体的制备及溶出度和生物利用度研究[J],中国药科大学学报,2009,40(06):514-518.
    [167]陈洁,邱利焱,胡敏新,等.多烯紫杉醇固体分散体的制备和体内外研究[J].中 国药学杂志.2007.44(22):1717-1722.
    [168]Jia-Bei Sun. Xiang-Rui Liu. Jian-Cheng Wang, et al. Preparation,physicochemical characterization and cyctotoxicity of solid dispersion of paclitaxel and polyvinylpyrrolidone [J]. J Chin Pharm Sci,2008.17(02):113-117.
    [169]Zajc N. Obreza A. Bele M, et al. Physical properties and dissolution behavior of nefidipine/mannitol solid dispersions prepared by hot melt method[J]. Int J Pharm.2005. 291(1-2):51-58.
    [170]Wang L, Cui F D. Hayse T. et al. Preparation and evaluation of solid dispersion for nitrendipine-carbopol and nitrendipine HPMCP systems using twin screw extruder[J]. Chem Pharm Bull 2005.53(10):1240-1245.
    [171]Bandry M B, Fathy M. Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30[J], Drug Dev Ind Pharm,2006,32 (2):141-150.
    [172]Weuts I, Kempen D, Verreck G. et al. Study of the physicochemical properties and stability of solid dispersions of loperamide and PEG 6000 prepared by spray drying[J], Eur J Pharm Biopharm,2005,59(1):119-126.
    [173]袁菊勇:毛声俊;沈千万;等.载体联用固体分散技术对丹参酮Ⅱ_A体外溶出的影响[J],中国中药杂志,2009,34(06):685-689.
    [174]Vasconceleos T, Sarmento B. Costa P. Solid dispersion as strategy to improve oral bioavailability of poor water soluble drugs[J], Drug Discov Today,2007.12(23-24): 1068-75.
    [175]黄华,王显著.表面活性剂对葛根素固体分散体体外溶出的影响[J].中国药科大学学报,2004,35(4):315-317.
    [176]Ghebremeskel A N, Vemavarapu C and Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API:Selection of polymer surfactant combinations using solubility parameters and testing the processability[J]. Int J Pharm. 2007.328(2):119-129.
    [177]李凤前,胡晋红,等.PEG6000固体分散体系对难溶性药物水飞蓟素的增溶作用与晶格变化的关系[J].药学学报,2002,37(4):294-298.
    [178]Li FQ, Hu JH, Jiang YY. Preparation and Characterization of Solid Dispersions of Silymarin with Polyethylene Glycol 6000 [J]. J Chin Pharm Sci,2003.12(02):76-81.
    [179]周毅生,贾永艳,申小清,等.葛根素固体分散体的制备及其体外研究[J],中国药学杂志,2003,38(01):42-44.
    [180]王展,韩立炜,任天池.葛根素-聚乙二醇6000固体分散体的制备及其溶解性能的研究[J],北京中医药大学学报,2007,30(05):346-349.
    [181]阮氏越秋.赵浩如.齐墩果酸固体分散体的制备及体外溶出度测定[J].中国药科大学学报.2003,34(03):236-239.
    [182]李宝红,张立坚,东野广智.等.槲皮素聚维酮固体分散体的研制[J],中国药房,2004,15(11):660-661.
    [183]翟光喜,娄红祥.毕殿洲.磷脂固体分桑体对槲皮素溶出促进作用的研究[J],沈阳药科大学学报,2003,20(4):235-238.
    [184]肖若蕾,陈莉.茜草双酯固体分散体的制备及体外溶出实验[J].解放军药学学报,2009.25(05):457-459.
    [185]孙考祥,吕会芳,梁容才.等.人参皂苷Rg3固体分散体的制备与体外特性研究[J].中草药,2008,39(1):48-50.
    [186]索绪斌,张云凌,杨兆琪,等.穿心莲内酯固体分散体的制备及体外溶出度测定[J],中成药,2007(04):594-596.
    [187]乔淑娟,金描真,杨亮.龙血竭固体分散体的制备及其溶出效果的研究[J],广东药学院学报,2007,23(3):263-265.
    [188]葛月宾,王旭彬,郭伟林,等.大豆苷元-水溶性壳聚糖固体分散体的制备[J],中国中药杂志,2010,35(03):293-296
    [189]洪涛,欧阳五庆.固体分散体的载体选择及质量评价的新进展[J],黑龙江畜牧兽医,2004,(9):84-86.
    [190]赵巧玲,高永良.固体分散体的释药机制及其稳定性的研究进展[J],国外医学药学分册,2005,32(1):52-60.
    [191]Aso Y. Yoshioka S, Kojima S. Molecular mobility-based estimation Of the crystallization rate so famorthous nifedipineand Phenobarbitalin poly(vinylpyrolidone)solid dispersions[J], J Pharm Sci,2004,93(2):384-391.
    [192]马艳秋,曲韵智,李津明.固体分散体老化现象与抗老化的研究进展[J],中国新药杂志,2007,16(6):442-446.
    [193]陈幸,李彬,黎万寿,等.HPLC法测定土茯苓中落新妇昔的含量[J],药物分析杂志,2004,24(4):437.
    [194]周艳林,钟小清,吕高荣,等.RP-HPLC法测定黄杞叶中落新妇苷和黄杞苷[J],中国药学杂志,2008,43(14):1103-1105.
    [195]周军,曲佳,寿国香,等.HPLC法测定土茯苓中落新妇苷及黄杞苷[J],中国药品标准,2009,10(5):372-374.
    [196]石明达,张朝晖,易以筚.土茯苓及其制剂中落新妇苷含量测定[J],时珍国医国药.1999,10(11):817-818.
    [197]张广财,张朔,李可强.等.高效液相色谱波长切换法同时测定肿节风中多指标成分的含量[J],中国医院药学杂志,2008,28(23):2051-2052.
    [198]张义生.张荒生.王进军.高效液相色谱法测定痛风颗粒中落新妇苷的含量[J].中国医院药学杂志,2009,29(02):171-172.
    [199]贾玮,刘海,王峥涛.测定土茯苓中二氢黄酮醇类含量的UPLC法和HPLC法的建立与比较[J],中国药科大学学报.2009,40(4):337-341.
    [200]《药品注册的国际技术要求(质量部分)》,主译:周海钧,人民卫生出版社出版,2000.79.
    [201]袁久志,窦德强,陈英杰.等.土茯苓二氢黄酮醇类成分研究[J],中国中药杂志,2004,29(9):867-870.
    [202]陈广耀.沈连生.蒋佩芬.土茯苓中二氢黄酮纯苷的研究[J],中国中药杂志,1996,21(6):355-357.
    [203]《中医大辞典》编辑委员会.中医大辞典.中药分册.北京:人民卫生出版社.1982:19.
    [204]严瑞琪,陈志英,覃国忠,等.当归等三种中药及联苯双酯对黄曲霉素B1致大鼠肝癌作用的影响[J],癌症,1986,5(2):141.
    [205]李玉琪,周承明,王晓雯,等.赤土茯苓甙对异丙肾上腺素诱发的小鼠缺血心肌的保护作用[J],中草药,1996,27(7):418.
    [206]杨庆仙,刘瑞禾.李风英,等.赤土茯苓治疗冠心病的初步临床观察[J],中国新药杂志,1992,1(3):56-59.
    [207]霍燕兰.药物分析技术[M],1版.北京:化学工业出版社,2005:64-65.
    [208]《中国药典》2005版,二部.
    [209]洪涛,欧阳五庆.固体分散体的载体选择及质量评价的新进展[J],黑龙江畜牧兽医,2004,8(9):85-86.
    [210]张惠平,向大雄,罗杰英,等.固体分散技术在药剂学中的研究进展[J],中国药学杂志,2007,42(11):807-810.
    [211]王志强,吴继禹,张秀华.用Excel软件对溶出数据进行多种曲线拟合和处理[J],海峡药学,2006,18(1):47-49.
    [212]张莉,夏运岳.用电子表格Excel计算药物溶出度Weibull分布参数[J],药学进展,2002,26(1):48-50.
    [213]Dredan J. Antal I. Racz I. Evaluation of mathematical models describing drug release from lopopilic matrices [J], Int J Pharm,1996,145:61-64.
    [214]Upadrasha SM. Katikaneni PR, Hileman GA, et al. Direct compression controlled release tablets using ethyl cellulose matrices [J], Drug Dev Int Pharm,1993,19:449-460.
    [215]黄献.刘裕恒,莫志江.用SPSS拟合药物溶出度Weibull参数[J],中国药学,2006,17(14):1079-1081.
    [216]陈幼亭.威布尔分布函数处理溶出数据应注意的问题[J],中国医院药学杂志, 1998,18(9):419-420.
    [217]莫志江.危华玲.利用SPSS软件估算药物体外释放参数[J].时珍国医国药.2007.18(6):1419-1420.
    [218]彭永富、董慧.药物溶出度Weibul分布的计算机求解[J],中国药学杂志.1996.31(10):606-608.
    [219]Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers [J]. Int J Pharm,2002,231(2):131-244.
    [220]Lloyd GR, Craig DQ, Smith A. A calorimetric investigation into the interaction between paracetamol and polyethlene glycol 4000 in physical mixes and solid dispersions [J], Eur J Pharm Biopharm,1999,48(1):59-65.
    [221]Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization[J], Pharm Res.1999,16(11):1722-1728.
    [222]Verheyen S, Blaton N, Kinget R, et al. Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions[J], Int J Pharm, 2002,249(1-2):45-58.
    [223]Kushida I, Ichikawa M, Asakawa N. Improvement of dissolution and oral absorption of ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor with anti-inflammatory activity by preparing solid dispersion[J], J Pharm Sci,2002.91(1): 258-266.
    [224]钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题[J],药物分析杂志,1996,16(5):343-346.
    [225]梁文权.生物药剂学与药物动力学(第二版).北京:人民卫生出版社,2003,346-359.
    [226]Shah VP, Midha KK, Findlay JW, el al. Bioanalytical method validation:A revisit with a decade of progress [J], Pharm. Res.2000,17:1551-1557.
    [227]化学药物制剂人体生物利用度和生物等效性研究技术指导原则.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700