核—壳结构金属—有机骨架催化材料的可控制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架(Metal-Organic Frameworks,简称MOFs)是一种具有永久孔洞结构的新颖晶体材料,其结构是由金属离子和多功能的有机配体在合适的溶剂中通过配位键自组装形成的。与传统的无机多孔材料相比,MOFs具有超大的比表面积、可控的孔洞尺寸和可调的内表面性质等优势,这些鲜明的优势使其在气体储存和分离、药物载体、传感和催化等领域具有潜在的应用前景。除了以上优势,MOFs骨架中还具有高密度的配位不饱和金属活性位点和大的孔隙率使其可以应用于多相催化,尤其是当金属纳米颗粒负载到MOFs孔洞中后,催化活性大大提高。到目前为止,已经有一些关于MOF负载金属纳米颗粒或双金属合金纳米颗粒在催化方面的研究报道。但是,基于MOF核-壳结构催化剂的研究还是非常的少。
     本论文提出了一种简单的合成基于MOF核-壳结构催化剂的方法,并研究了其在催化方面的应用。此外,对材料的核-壳结构以及壳层厚度与其催化性能之间的关系进行了初步探讨,为新型高效多孔核-壳催化材料的开发提供一些借鉴意义。具体的研究内容与成果主要有以下几个方面:
     1.通过简单的层层自组装方法制备了一种新型的基于MOF的Fe3O4@MIL-100(Fe)磁性核-壳多孔催化剂。制备的磁性核-壳催化剂在Claisen-Schmidt缩合反应中不仅表现了高的催化活性和选择性,而且利用一个简单的外界磁场就可以方便的将催化剂从反应溶液中分离、回收起来。催化结果显示,经过多次循环催化使用后,催化剂的催化反应活性并没有明显的降低。因此,与其它报道的Claisen-Schmidt缩合反应催化剂相比,这类基于MOF的磁性核-壳催化剂既绿色环保又便宜,更适合于大规模的工业应用。
     2.制备了一种新型的多孔Au@MIL-100(Fe)核-壳纳米催化剂,核-壳结构中MIL-100(Fe)的壳层厚度可以通过自组装的循环次数进行有效的调控。此外,我们还研究了所合成的核-壳纳米催化剂在催化还原对硝基苯酚为对氨基苯酚反应中的催化性能。催化结果表明,在相同的反应条件下,Au@MIL-100(Fe)核-壳纳米催化剂比纯的Au和MIL-100(Fe)具有更高的催化反应活性,说明了核-壳结构中Au核与MIL-100(Fe)壳在催化反应中具有协同催化的作用。而且,经过多次循环催化反应之后,核-壳纳米催化剂的催化活性几乎没有改变。
     3.由于经济和环境的原因,不管是多相催化还是均相催化,对昂贵催化剂的回收和再循环使用都是非常重要的。我们报道了一种多功能的基于Au的磁性核-壳催化剂,这个催化剂不仅制备简单而且在催化还原对硝基苯酚反应中具有非常高的催化活性。制备的Au-Fe3O4@MOF催化剂是由超顺磁性的Au-Fe3O4核和厚度可控的多孔MOF壳组成的,Au纳米颗粒催化剂像三明治似得均匀的分散在Fe304核和MOF壳之间。Au-Fe3O4@MOF磁性核-壳催化剂在催化反应中具有协同催化的作用,其在催化还原对硝基苯酚的反应中比报道的其它基于Au催化剂的催化活性都高。此外,因为它具有超顺磁性的核,所以回收非常方便。
     4.甲酸是一种安全方便的氢气能源材料,其在化学合成和可持续的能源储存方面具有极大的应用前景,但是合成一种在室温下就可以可控的和有效的催化分解甲酸制氢的催化剂具有非常大的挑战。我们通过一步快速的合成方法制备了一种新型的AgPd@MIL-100(Fe)核-壳纳米颗粒,而且第一次把它应用于室温下、不加任何添加剂的条件下催化分解甲酸制氢反应。非常有意义的是,在所有制备的催化剂中,具有7nm壳层厚度的AgPd@MIL-100(Fe)核-壳纳米颗粒表现了最高的催化反应活性,说明了核-壳结构中MIL-100(Fe)壳层对催化反应活性具有非常重要的影响,而且其壳层厚度是影响催化结果的一个重要因素。这个工作说明了基于MOF的核-壳材料在甲酸分解制氢的催化应用中具有潜在的应用前景。
     5.第一次采用一种无表面活性剂的共还原方法将基于非贵金属的CoAuPd三金属合金纳米颗粒成功的负载到了多孔MIL-101骨架上,金属Co0在纳米合金结构的保护下稳定性提高,使其成功的应用于甲酸分解制氢反应。更有趣的是,在室温不添加任何添加剂的条件下,所制备的具有低消耗贵金属的Co0.3Au0.35Pd0.35/MIL-101纳米复合催化剂在分解甲酸制氢的反应中展现了100%的制氢选择性、最高的催化活性和非常好的稳定性。因此,利用多孔MOFs作为金属纳米颗粒的载体,尤其是负载基于非贵金属纳米颗粒,这将为今后发展成本便宜且高效的分解甲酸制氢催化剂带来了机遇。
     6.可见光催化具有成本低、相对安全而且环境友好等特点,所以在有机合成中引起了广泛的关注。我们以多孔的MIL-100(Fe)为载体,醋酸镉为CdS的前驱体,通过简单的水热合成方法制备了一种新型的CdS-MIL-100(Fe)纳米复合可见光催化剂,并研究了其在选择性光催化氧化苯甲醇为苯甲醛中的催化性能。相比于纯的CdS, CdS-MIL-100(Fe)纳米复合光催化剂在该光催化反应中具有更高的光催化效率,复合光催化剂光催化性能的提高可以归属为对光的吸收能力增强、更有效的分离光电子-空穴对和具有更大的比表面积等因素的共同作用。这个结果说明了基于MOF的纳米复合材料在光催化有机合成中具有非常好的应用价值。
Metal-organic frameworks (MOFs) are permanently porous materials synthesized by assembling metal ions with organic ligands in appropriate solvents. Compared with conventional inorganic porous materials, MOFs possess extraordinarily high surface areas, tunable pore size, and adjustable internal surface properties. These distinct characteristics make them very promising for a variety of applications, including gas storage and separation, drug delivery, sensing, and catalysis. Because of the large density of active sites in which the constitutional metal nodes have free or exchangeable coordination positions, and the high porosity of these materials, their logical application, especially when metal nanoparticles (NPs) are embedded into their pores, could be for heterogeneous catalysis. To date, there have been a few pioneering studies on the MOF supported metal NPs or bimetallic alloy NPs for heterogeneous catalysis. By contrast, researches on MOF-based core-shell catalysts with functional NPs as core and MOFs as shell have not been popular to date.
     In this dissertation, we present a simple encapsulation strategy for the fabrication of well-defined MOF-based core-shell heterogeneous catalysis, which shows a novel enhanced catalytic property. In addition, we have also investigated the relationship between the catalytic properties and core-shell structure, as well as thickness of the MOF shell. The results obtained will be helpful for designing and constructing new classes of high-performance core-shell porous catalysts. The details are summarized briefly are as follows:
     1. A novel type of MOF-based core-shell magnetic porous catalysts, i.e., Fe3O4@MIL-100(Fe) magnetic microspheres, have been fabricated by a simple step-by-step assembly strategy. These magnetic catalysts not only show high catalytic activities and selectivity towards the Claisen-Schmidt condensation reactions, but remarkably, they can be easily separated and recycled without significant loss of catalytic efficiency after used for many times by simply applying external magnetic fields. Therefore, compared to other reported catalysts used in the Claisen-Schmidt condensation reactions, such MOF-based core-shell magnetic catalysts are green, cheap and more suitable for large scale industrial applications.
     2. Novel Au@MIL-100(Fe) core-shell nanocatalysts with a controllable MIL-100(Fe) shell thickness were fabricated by using a versatile step-by-step fashion. Moreover, we have tested the catalytic properties of the core-shell nanocatalysts using the liquid-phase reduction of4-nitrophenol (4-NP) to4-aminophenol (4-AP). Catalytic studies show that the Au@MIL-100(Fe) core-shell nanocatalysts exhibit much higher catalytic activity than the pure Au and MIL-100(Fe) NPs, suggesting that the MIL-100(Fe) shell enhances the catalytic activity via a synergistic effect. Furthermore, this high catalytic activity remains almost unchanged after a number of reaction cycles.
     3. Recovery and reuse of expensive catalysts are important in both heterogeneous and homogenous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalysts which can be easily prepared and shows remarkable catalytic properties in the reduction of4-NP. The novel Au-Fe3O4@MOF catalysts consist of a superparamagnetic Au-Fe3O4core and a porous MOF shell with controllable thickness. The gold catalyst NPs are sandwiched between the Fe3O4core and porous MOF shell. Catalytic studies show a strong synergistic effect of core-shell structured Au-Fe3O4@MOF, which have much higher catalytic activities than other reported Au-based catalysts toward the reduction of4-NP. Moreover, the Au-Fe3O4@MOF core-shell magnetic catalysts could be easily recycled due to their superparamagnetic core.
     4. Formic acid (FA) has tremendous potential as a safe and convenient source of hydrogen for sustainable chemical synthesis and renewable energy storage, but controlled and efficient dehydrogenation of FA by heterogeneous catalysts at room temperature constitutes a major challenge. Here, we report a facile one-pot method for the fabrication of a novel core-shell AgPd@MIL-100(Fe) NPs, which were used for the first time as high performance MOF-based bimetallic catalysts for hydrogen production from FA without using any additive at room temperature. Remarkably, the resulting core-shell AgPd@MIL-100(Fe) NPs with a shell thickness of7nm shows the highest activity among all the prepared catalysts, suggesting that the MIL-100(Fe) shell exhibits a significant influence on the catalytic activity and moreover, the shell thickness is a key factor in determining the test results. This work demonstrates that MOF-based core-shell materials hold great promises in the practical application of hydrogen production from FA.
     5. CoAuPd alloy NPs based on a non-noble metal were successfully immobilized to MIL-101for the first time by a surfactant-free co-reduction method. The elevated stability of Co0in the protected alloy NPs makes its application in FA dehydrogenation successful. More interestingly, the resulting Coo.3Auo.35Pd0.35/MIL-101composites with the lower consumption of noble metals exhibit the100%hydrogen selectivity, highest activity and excellent stability toward hydrogen generation from FA without any additive at room temperature. Therefore, the present results open up new avenues for developing cost effective and high-performance catalysts for the generation of hydrogen from FA by using porous MOFs as hosts for metal NPs, especially non-noble metal based NPs.
     6. Visible-light initiated organic transformations have received much attention because they have advantages in terms of low cost, relative safety, and environmental friendliness. We report a novel type of visible-light-driven photocatalysts, namely, CdS-MIL-100(Fe) nanocomposites, which were prepared by a simple solvothermal method in which porous MIL-100(Fe) served as the support and cadmium acetate (Cd(Ac)2) as the CdS precursor. Using selective oxidation of benzyl alcohol to benzaldehyde as the probe reaction, the results show that the introduction of MIL-100(Fe) into the semiconductor CdS can remarkably enhance the photocatalytic efficiency at room temperature as compared to that using pure CdS. The enhanced photocatalytic performance can be attributed to the integrative effects of enhanced light absorption intensity, more efficient separation of the photogenerated electron-hole pairs, and increased surface area of CdS due to the presence of MIL-100(Fe). This work demonstrates that MOF-based materials hold great promises in the applications of solar energy conversion into chemical energy.
引文
[1]S.H. Feng, R.R. Xu, New materials in hydrothermal synthesis, Accounts of Chemical Research, 34 (2001) 239-247.
    [2]A.K. Cheetham, G. Ferey, T. Loiseau, Open-framework inorganic materials, Angewandte Chemie-International Edition,38 (1999) 3268-3292.
    [3]J.V. Smith, Topochemistry of zeolites and related materials.1. Topology and geometry, Chemical Reviews,88 (1988) 149-182.
    [4]O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Accounts of Chemical Research,43 (2010) 1166-1175.
    [5]B. Chen, S. Xiang, G. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Accounts of Chemical Research,43 (2010) 1115-1124.
    [6]A.U. Czaja, N. Trukhan, U. Mueller, Industrial applications of metal-organic frameworks, Chemical Society Reviews,38 (2009) 1284-1293.
    [7]S.L. James, Metal-organic frameworks, Chemical Society Reviews,32 (2003) 276-288.
    [8]J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks:a new class of porous materials, Microporous and Mesoporous Materials,73 (2004) 3-14.
    [9]J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chemical Society Reviews,38 (2009) 1213-1214.
    [10]H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chemical Reviews,112 (2012) 673-674.
    [11]F.G.A. Stone, W.A.G. Graham, Inorganic polymers, Academic Press, New York, (1962).
    [12]章慧,配位化学,化学化工出版社,(2008).
    [13]A. Werner, Beitrag zur Konstitution anorganischer Verbindungen, Z. Anorg. Chem.,,3 (1893) 267-330.
    [14]H.J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, The crystal structure of Prussian Blue:Fe4 [Fe(CN)6]3-xH2O, Inorg. Chem.,16 (1977) 2704-2710.
    [15]B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of 3 dimensionally linked rod-like segments, Journal of the American Chemical Society,111 (1989) 5962-5964.
    [16]M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a 2-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine, Journal of the American Chemical Society,116 (1994) 1151-1152.
    [17]O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature,378 (1995) 703-706.
    [18]S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science,283 (1999) 1148-1150.
    [19]H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature,402 (1999) 276-279.
    [20]N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science,300 (2003) 1127-1129.
    [21]H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature,427 (2004) 523-527.
    [22]A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, Journal of the American Chemical Society, 127 (2005) 17998-17999.
    [23]Y. Li, R.T. Yang, Gas adsorption and storage in metal-organic framework MOF-177, Langmuir,23 (2007) 12937-12944.
    [24]P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.-S. Chang, D.-Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101, Langmuir,24 (2008) 7245-7250.
    [25]G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science,309 (2005) 2040-2042.
    [26]G. Garberoglio, A.I. Skoulidas, J.K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, Journal of Physical Chemistry B,109 (2005) 13094-13103.
    [27]C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids:MIL-53 or Cr(?)(OH) {CO2C-C6H4-CO2}-{HO2C-C6H4-CO2H}x-H2Oy, Journal of the American Chemical Society, 124(2002)13519-13526.
    [28]C. Volkringer, T. Loiseau, N. Guillou, G. Ferey, E. Elkaim, A. Vimont, XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga), Dalton Transactions, (2009) 2241-2249.
    [29]K. Koh, A.G. Wong-Foy, A.J. Matzger, A porous coordination copolymer with over 5000 m2/g BET surface area, Journal of the American Chemical Society,131 (2009) 4184-4185.
    [30]D.-Y. Hong, Y.K. Hwang, C. Serre, G. Ferey, J.-S. Chang, Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:Surface functionalization, encapsulation, sorption and catalysis, Advanced Functional Materials,19 (2009) 1537-1552.
    [31]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science,295 (2002) 469-472.
    [32]T. Dueren, Y.-S. Bae, R.Q. Snurr, Using molecular simulation to characterise metal-organic frameworks for adsorption applications, Chemical Society Reviews,38 (2009) 1237-1247.
    [33]M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of Cu2(btc)3(H2O)3 and Cu2(btc)(OH)(H2O), Microporous and Mesoporous Materials,132 (2010) 121-127.
    [34]M. O'Keeffe, Design of MOFs and intellectual content in reticular chemistry:a personal view, Chemical Society Reviews,38 (2009) 1215-1217.
    [35]A. Dhakshinamoorthy, M. Opanasenko, J. Cejka, H. Garcia, Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups, Advanced Synthesis & Catalysis, 355 (2013) 247-268.
    [36]L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk, P.A. Jacobs, D.E. De Vos, Probing the Lewis acidity and catalytic activity of the metal-organic framework Cu3(btc)2 (BTC= benzene-1,3,5-tricarboxylate), Chemistry-a European Journal,12 (2006) 7353-7363.
    [37]O.I. Lebedev, F. Millange, C. Serre, G. Van Tendeloo, G. Ferey, First direct imaging of giant pores of the metal-organic framework MIL-101, Chemistry of Materials,17 (2005) 6525-6527.
    [38]R. Li, Y.-P. Yuan, L.-G. Qiu, W. Zhang, J.-F. Zhu, A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives, Small,8 (2012) 225-230.
    [39]A. Pichon, S.L. James, An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends, Crystengcomm,10 (2008) 1839-1847.
    [40]A. Pichon, A. Lazuen-Garay, S.L. James, Solvent-free synthesis of a microporous metal-organic framework, Crystengcomm,8 (2006) 211-214.
    [41]W. Yuan, T. Friscic, D. Apperley, S.L. James, High reactivity of metal-organic frameworks under grinding conditions:parallels with organic molecular materials, Angewandte Chemie-International Edition,49 (2010) 3916-3919.
    [42]E. Biemmi, S. Christian, N. Stock, T. Bein, High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1, Microporous and Mesoporous Materials,117 (2009) 111-117.
    [43]J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chemical Society Reviews,38 (2009) 1450-1459.
    [44]A. Corma, H. Garcia, F. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chemical Reviews,110 (2010) 4606-4655.
    [45]M. Yoon, R. Srirambalaji, K. Kim, Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis, Chemical Reviews,112 (2012) 1196-1231.
    [46]K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Microporous and Mesoporous Materials,73 (2004) 81-88.
    [47]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [48]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Claisen-Schmidt condensation catalyzed by metal-organic frameworks, Advanced Synthesis & Catalysis,352 (2010) 711-717.
    [49]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Aerobic oxidation of benzylic alcohols catalyzed by metal-organic frameworks assisted by TEMPO, Acs Catalysis,1 (2011) 48-53.
    [50]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal-organic frameworks (MOFs) as heterogeneous catalysts for the chemoselective reduction of carbon-carbon multiple bonds with hydrazine, Advanced Synthesis & Catalysis,351 (2009) 2271-2276.
    [51]J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature,404 (2000) 982-986.
    [52]T. Uemura, R. Kitaura, Y. Ohta, M. Nagaoka, S. Kitagawa, Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers, Angewandte Chemie-International Edition,45 (2006) 4112-4116.
    [53]Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angewandte Chemie-International Edition,47 (2008) 4144-4148.
    [54]A. Arnanz, M. Pintado-Sierra, A. Corma, M. Iglesias, F. Sanchez, Bifunctional metal organic framework catalysts for multistep reactions:MOF-Cu(BTC)-Pd catalyst for one-pot heteroannulation of acetylenic compounds, Advanced Synthesis & Catalysis,354 (2012) 1347-1355.
    [55]H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols, Journal of Physical Chemistry C,114 (2010) 13362-13369.
    [56]X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, Journal of the American Chemical Society,133 (2011) 11822-11825.
    [57]Q.-L. Zhu, J. Li, Q. Xu, Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance, Journal of the American Chemical Society,135 (2013) 10210-10213.
    [1]C. Palomo, M. Oiarbide, J.M. Garcia, The aldol addition reaction:An old transformation at constant rebirth, Chemistry-a European Journal,8 (2002) 37-44.
    [2]Y. Xia, Z.Y. Yang, P. Xia, K.F. Bastow, Y. Nakanishi, K.H. Lee, Antitumor agents. Part 202: Novel 2'-amino chalcones:Design, synthesis and biological evaluation, Bioorganic & Medicinal Chemistry Letters,10 (2000) 699-701.
    [3]H.K. Hsieh, L.T. Tsao, J.P. Wang, C.N. Lin, Synthesis and anti-inflammatory effect of chalcones, Journal of Pharmacy and Pharmacology,52 (2000) 163-171.
    [4]G. Marciniak, A. Delgado, G. Leclerc, J. Velly, N. Decker, J. Schwartz, New 1,4-dihydropyridine derivatives combining calcium antagonism and alpha-adrenolytic properties, Journal of Medicinal Chemistry,32 (1989) 1402-1407.
    [5]J.R. Patel, M.H. Malani, B.Z. Dholakiya, Silica sulfuric acid-catalyzed Claisen-Schmidt condensation of 1,3,4 trisubstituted pyrrole 2,5 dione to chalcones, Research on Chemical Intermediates,38 (2012) 2371-2381.
    [6]J.K. Bartley, C. Xu, R. Lloyd, D.I. Enache, D.W. Knight, G.J. Hutchings, Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst, Applied Catalysis B-Environmental,128 (2012) 31-38.
    [7]K. Kandel, S.M. Althaus, C. Peeraphatdit, T. Kobayashi, B.G. Trewyn, M. Pruski, I.I. Slowing, Substrate inhibition in the heterogeneous catalyzed aldol condensation:A mechanistic study of supported organocatalysts, Journal of Catalysis,291 (2012) 63-68.
    [8]A. Kumar, M. Dewan, A. De, A. Saxena, S. Aerry, S. Mozumdar, Aldol condensation in PEG-400 catalyzed by recyclable L-proline supported on nano gold surface, Rsc Advances,3 (2013) 603-607.
    [9]C. Xu, Y. Gao, X. Liu, R. Xin, Z. Wang, Hydrotalcite reconstructed by in situ rehydration as a highly active solid base catalyst and its application in aldol condensations, Rsc Advances,3 (2013)793-801.
    [10]F. Dong, C. Jian, Z. Fei, G. Kai, Z. Liu, Synthesis of chalcones via Claisen-Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids, Catalysis Communications,9 (2008) 1924-1927.
    [11]R.K. Zeidan, S.-J. Hwang, M.E. Davis, Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids, Angewandte Chemie-International Edition,45 (2006) 6332-6335.
    [12]R.K. Zeidan, M.E. Davis, The effect of acid-base pairing on catalysis:An efficient acid-base functionalized catalyst for aldol condensation, Journal of Catalysis,247 (2007) 379-382.
    [13]H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chemical Reviews,112 (2012) 673-674.
    [14]O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Accounts of Chemical Research,43 (2010) 1166-1175.
    [15]S.M. Cohen, Postsynthetic methods for the functionalization of metal-organic frameworks, Chemical Reviews,112 (2012) 970-1000.
    [16]R.B. Getman, Y.-S. Bae, C.E. Wilmer, R.Q. Snurr, Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks, Chemical Reviews,112 (2012) 703-723.
    [17]D. Farrusseng., Metal-organic frameworks:Applications from catalysis to gas storage, Wiley: New York, (2011).
    [18]J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chemical Society Reviews,38 (2009) 1477-1504.
    [19]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Commercial metal-organic frameworks as heterogeneous catalysts, Chemical Communications,48 (2012) 11275-11288.
    [20]A. Corma, H. Garcia, F. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chemical Reviews,110 (2010) 4606-4655.
    [21]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Aerobic oxidation of benzylic alcohols catalyzed by metal-organic frameworks assisted by TEMPO, Acs Catalysis,1 (2011) 48-53.
    [22]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Claisen-Schmidt condensation catalyzed by metal-organic frameworks, Advanced Synthesis & Catalysis,352 (2010) 711-717.
    [23]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Metal-organic frameworks (MOFs) as heterogeneous catalysts for the chemoselective reduction of carbon-carbon multiple bonds with hydrazine, Advanced Synthesis & Catalysis,351 (2009) 2271-2276.
    [24]J. Hermannsdoerfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kuemmel, R. Kempe, Ni/Pd@MIL-101:Synergistic catalysis with cavity-conform Ni/Pd nanoparticles, Angewandte Chemie-International Edition,51 (2012) 11473-11477.
    [25]X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, Journal of the American Chemical Society,133 (2011) 11822-11825.
    [26]A. Arnanz, M. Pintado-Sierra, A. Corma, M. Iglesias, F. Sanchez, Bifunctional metal organic framework catalysts for multistep reactions:MOF-Cu(BTC)-Pd catalyst for one-pot heteroannulation of acetylenic compounds, Advanced Synthesis & Catalysis,354 (2012) 1347-1355.
    [27]F. Ke, L.-G. Qiu, Y.-P. Yuan, X. Jiang, J.-F. Zhu, Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell, Journal of Materials Chemistry,22 (2012) 9497-9500.
    [28]J.W. Yoon, Y.-K. Seo, Y.K. Hwang, J.-S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P.L. Llewellyn, C. Serre, P. Horcajada, J.-M. Greneche, A.E. Rodrigues, G. Ferey, Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption, Angewandte Chemie-International Edition,49 (2010)5949-5952.
    [29]Y. Xu, H. Zhang, X. Duan, Y. Ding, Preparation and investigation on a novel nanostructured magnetic base catalyst MgAl-OH-LDH/CoFe2O4, Materials Chemistry and Physics,114 (2009)795-801.
    [30]H. Zhang, R. Qi, D.G. Evans, X. Duan, Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core, Journal of Solid State Chemistry,177 (2004) 772-780.
    [31]Y.H. Deng, C.H. Deng, D.W. Qi, C. Liu, J. Liu, X.M. Zhang, D.Y. Zhao, Synthesis of Core/Shell colloidal magnetic zeolite microspheres for the immobilization of trypsin, Advanced Materials,21 (2009) 1377-1382.
    [32]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [33]M. Descostes, F. Mercier, N. Thromat, C. Beaucaire, M. Gautier-Soyer, Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium, Applied Surface Science,165 (2000) 288-302.
    [34]L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property, Angewandte Chemie-International Edition,52 (2013) 3741-3745.
    [35]R.J.T. Houk, B.W. Jacobs, F. El Gabaly, N.N. Chang, A.A. Talin, D.D. Graham, S.D. House, I.M. Robertson, M.D. Allendorf, Silver cluster formation, dynamics, and chemistry in metal-organic frameworks, Nano Letters,9 (2009) 3413-3418.
    [1]M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chemistry Letters, (1987) 405-408.
    [2]K.Q. Sun, S.W. Luo, N. Xu, B.Q. Xu, Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution, Catalysis Letters,124 (2008) 238-242.
    [3]J.P. Ge, Q. Zhang, T.R. Zhang, Y.D. Yin, Core-satellite nanocomposite catalysts protected by a porous silica shell:Controllable reactivity, high stability, and magnetic recyclability, Angewandte Chemie-International Edition,47 (2008) 8924-8928.
    [4]Z. Ma, S. Dai, Development of novel supported gold catalysts:A materials perspective, Nano Research,4 (2011)3-32.
    [5]X.J. Wu, D.S. Xu, Formation of Yolk/SiO2 shell structures using surfactant mixtures as template, Journal of the American Chemical Society,131 (2009) 2774-2775.
    [6]J. Lee, J.C. Park, J.U. Bang, H. Song, Precise tuning of porosity and surface functionality in Au@SiO2 nanoreactors for high catalytic efficiency, Chemistry of Materials,20 (2008) 5839-5844.
    [7]J. Lee, J.C. Park, H. Song, A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol, Advanced Materials,20 (2008) 1523-1528.
    [8]O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Accounts of Chemical Research,43 (2010) 1166-1175.
    [9]A. Corma, H. Garcia, F.X.L. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chemical Reviews,110 (2010) 4606-4655.
    [10]J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chemical Society Reviews,38 (2009) 1477-1504.
    [11]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angewandte Chemie-International Edition,45 (2006) 5974-5978.
    [12]K.M.L. Taylor-Pashow, J. Della Rocca, Z.G. Xie, S. Tran, W.B. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery, Journal of the American Chemical Society,131 (2009) 14261-14263.
    [13]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G Ferey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials,9 (2010) 172-178.
    [14]Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angewandte Chemie-International Edition,47 (2008) 4144-4148.
    [15]H.L. Liu, Y.L. Liu, Y.W. Li, Z.Y. Tang, H.F. Jiang, Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols, Journal of Physical Chemistry C,114 (2010) 13362-13369.
    [16]S. Hermes, M.K. Schroter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.W. Fischer, R.A. Fischer, Metal@MOF:Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angewandte Chemie-International Edition,44 (2005) 6237-6241.
    [17]H.L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, Au@ZIF-8:CO oxidation over gold nanoparticles deposited to metal-organic framework, Journal of the American Chemical Society,131 (2009) 11302-11303.
    [18]H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, Journal of the American Chemical Society,133 (2011) 1304-1306.
    [19]X.J. Gu, Z.H. Lu, H.L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, Journal of the American Chemical Society,133 (2011) 11822-11825.
    [20]G. Lu, S.Z. Li, Z. Guo, O.K. Farha, B.G Hauser, X.Y. Qi, Y. Wang, X. Wang, S.Y. Han, X.G Liu, J.S. DuChene, H. Zhang, Q.C. Zhang, X.D. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y.H. Yang, J.T. Hupp, F.W. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nature Chemistry,4 (2012) 310-311.
    [21]F. Ke, L.G. Qiu, Y.P. Yuan, X. Jiang, J.F. Zhu, Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell, J. Mater. Chem.,,22 (2012) 9497-9500.
    [22]L. Zhang, D.A. Blom, H. Wang, Au-Cu2O core-shell nanoparticles:A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties, Chemistry of Materials,23 (2011) 4587-4598.
    [23]Y.N. Wu, F.T. Li, Y.X. Xu, W. Zhu, C.A. Tao, J.C. Cui, GT. Li, Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate, Chemical Communications,47 (2011) 10094-10096.
    [24]O. Shekhah, H. Wang, S. Kowarik, F. Schreiber, M. Paulus, M. Tolan, C. Sternemann, F. Evers, D. Zacher, R.A. Fischer, C. Woll, Step-by-step route for the synthesis of metal-organic frameworks, Journal of the American Chemical Society,129 (2007) 15118-15119.
    [25]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [26]B.P. Bastakoti, S. Guragain, S.-i. Yusa, K. Nakashima, Novel synthesis route for Ag@SiO2 core-shell nanoparticles via micelle template of double hydrophilic block copolymer, Rsc Advances,2 (2012) 5938-5940.
    [27]Y.W. Zhang, S. Liu, W.B. Lu, L. Wang, J.Q. Tian, X.P. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catalysis Science & Technology,1 (2011) 1142-1144.
    [28]W.B. Lu, R. Ning, X.Y. Qin, Y.W. Zhang, G.H. Chang, S. Liu, Y.L. Luo, X.P. Sun, Synthesis of Au nanoparticles decorated graphene oxide nanosheets:Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol, Journal of Hazardous Materials,197 (2011) 320-326.
    [29]J. Hermannsdoerfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kuemmel, R. Kempe, Ni/Pd@MIL-101:Synergistic catalysis with cavity-conform Ni/Pd nanoparticles, Angewandte Chemie-International Edition,51 (2012) 11473-11477.
    [30]R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon,49 (2011) 741-772.
    [1]K.C.F. Leung, S.H. Xuan, X.M. Zhu, D.W. Wang, C.P. Chak, S.F. Lee, W.K.W. Ho, B.C.T. Chung, Gold and iron oxide hybrid nanocomposite materials, Chemical Society Reviews,41 (2012)1911-1928.
    [2]J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Magnetic nanocomposites with mesoporous structures: Synthesis and applications, Small,7 (2011) 425-443.
    [3]S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts:Bridges between homogeneous and heterogeneous catalysis, Angewandte Chemie-International Edition,49 (2010) 3428-3459.
    [4]N.A. Frey, S. Peng, K. Cheng, S.H. Sun, Magnetic nanoparticles:synthesis, functionalization, and applications in bioimaging and magnetic energy storage, Chemical Society Reviews,38 (2009) 2532-2542.
    [5]S. Shylesh, J. Schweizer, S. Demeshko, V. Schunemann, S. Ernst, W.R. Thiel, Nanoparticle supported, magnetically recoverable oxodiperoxo molybdenum complexes:Efficient catalysts for selective epoxidation reactions, Advanced Synthesis & Catalysis,351 (2009) 1789-1795.
    [6]Y.M. Zhai, L. Han, P. Wang, G.P. Li, W. Ren, L. Liu, E.K. Wang, S.J. Dong, Superparamagnetic plasmonic nanohybrids:Shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria, Acs Nano,5 (2011) 8562-8570.
    [7]Z.C. Xu, Y.L. Hou, S.H. Sun, Magnetic core/shell Fe3O3/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties, Journal of the American Chemical Society,129 (2007) 8698-8699.
    [8]J.P. Ge, Q. Zhang, T.R. Zhang, Y.D. Yin, Core-satellite nanocomposite catalysts protected by a porous silica shell:Controllable reactivity, high stability, and magnetic recyclability, Angewandte Chemie-International Edition,47 (2008) 8924-8928.
    [9]K.M. Yeo, J. Shin, I.S. Lee, Reductive dissolution of Fe3O4 facilitated by the Au domain of an Fe3O4/Au hybrid nanocrystal:formation of a nanorattle structure composed of a hollow porous silica nanoshell and entrapped Au nanocrystal, Chemical Communications,46 (2010) 64-66.
    [10]J. Lee, J. Yang, H. Ko, S.J. Oh, J. Kang, J.H. Son, K. Lee, S.W. Lee, H.G. Yoon, J.S. Suh, Y.M. Huh, S. Haam, Multifunctional magnetic gold nanocomposites:Human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy, Advanced Functional Materials,18 (2008) 258-264.
    [11]H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chemical Reviews,112 (2012) 673-674.
    [12]J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chemical Reviews, 112(2012)869-932.
    [13]Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Luminescent functional metal-organic frameworks, Chemical Reviews,112 (2012) 1126-1162.
    [14]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials,9 (2010) 172-178.
    [15]K.M.L. Taylor-Pashow, J. Della Rocca, Z.G. Xie, S. Tran, W.B. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery, Journal of the American Chemical Society,131 (2009) 14261-14263.
    [16]P. Horcajada, C. Serre, G. Maurin, N.A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Flexible porous metal-organic frameworks for a controlled drug delivery, Journal of the American Chemical Society,130 (2008) 6774-6780.
    [17]P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-organic frameworks as efficient materials for drug delivery, Angewandte Chemie-International Edition,45 (2006) 5974-5978.
    [18]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Commercial metal-organic frameworks as heterogeneous catalysts, Chemical Communications,48 (2012) 11275-11288.
    [19]A. Corma, H. Garcia, F. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chemical Reviews,110 (2010) 4606-4655.
    [20]Y.Y. Pan, B.Z. Yuan, Y.W. Li, D.H. He, Multifunctional catalysis by Pd@MIL-101:one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework, Chemical Communications,46 (2010) 2280-2282.
    [21]T Ishida, M. Nagaoka, T. Akita, M. Haruta, Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols, Chemistry-a European Journal,14 (2008) 8456-8460.
    [22]Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angewandte Chemie-International Edition,47 (2008) 4144-4148.
    [23]J. Hermannsdorfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kummel, R. Kempe, Ni/Pd@MIL-101:Synergistic catalysis with cavity-conform Ni/Pd nanoparticles, Angewandte Chemie-International Edition,51 (2012) 11473-11477.
    [24]C.-H. Kuo, Y. Tang, L.-Y. Chou, B.T. Sneed, C.N. Brodsky, Z. Zhao, C.-K. Tsung, Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control, Journal of the American Chemical Society,134 (2012) 14345-14348.
    [25]G. Lu, S.Z. Li, Z. Guo, O.K. Farha, B.G. Hauser, X.Y. Qi, Y. Wang, X. Wang, S.Y. Han, X.G. Liu, J.S. DuChene, H. Zhang, Q.C. Zhang, X.D. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y.H. Yang, J.T. Hupp, F.W. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nature Chemistry,4 (2012) 310-316.
    [26]F. Ke, J. Zhu, L.-G. Qiu, X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance, Chemical Communications,49 (2013) 1267-1269.
    [27]Y.H. Deng, C.H. Deng, D.W. Qi, C. Liu, J. Liu, X.M. Zhang, D.Y. Zhao, Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin, Advanced Materials,21 (2009) 1377-1382.
    [28]Z.M. Cui, L.Y. Hang, W.G. Song, Y.G. Guo, High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries, Chemistry of Materials,21 (2009) 1162-1166.
    [29]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [30]L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Lin, Z. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property, Angewandte Chemie-International Edition,52 (2013) 3741-3745.
    [31]R. Canioni, C. Roch-Marchal, F. Secheresse, P. Horcajada, C. Serre, M. Hardi-Dan, G. Ferey, J.M. Greneche, F. Lefebvre, J.S. Chang, Y.K. Hwang, O. Lebedev, S. Turner, G. Van Tendeloo, Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe), Journal of Materials Chemistry,21 (2011) 1226-1233.
    [32]H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, Journal of the American Chemical Society,133 (2011) 1304-1306.
    [33]X. Guo, Q. Zhang, Y.H. Sun, Q. Zhao, J. Yang, Lateral etching of core-shell Au@Metal nanorods to metal-tipped Au nanorods with improved catalytic activity, Acs Nano,6 (2012) 1165-1175.
    [34]F. Dong, W. Guo, S.K. Park, C.S. Ha, Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications, Chemical Communications,48 (2012) 1108-1110.
    [35]Y.W. Zhang, S. Liu, W.B. Lu, L. Wang, J.Q. Tian, X.P. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catalysis Science & Technology,1 (2011) 1142-1144.
    [36]V. Mazumder, M. Chi, K.L. More, S.H. Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction, J. Am. Chem. Soc,132 (2010) 7848-7849.
    [37]S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nature Materials,7 (2008) 333-338.
    [38]J.R. Kitchin, J.K. Norskov, M.A. Barteau, J.G. Chen, Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces, Physical Review Letters,93 (2004).
    [39]Y. Mikhlin, M. Likhatski, Y. Tomashevich, A. Romanchenko, S. Erenburg, S. Trubina, XAS and XPS examination of the Au-S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions, Journal of Electron Spectroscopy and Related Phenomena,177 (2010)24-29.
    [40]J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks, Chemical Communications,49 (2013) 6761-6763.
    [41]Y. Jiang, P. Yin, Y. Li, Z. Sun, Q. Liu, T. Yao, H. Cheng, F. Hu, Z. Xie, B. He, G. Pan, S. Wei, Modifying the atomic and electronic structures of gold nanocrystals via changing the chain length of n-alkanethiol ligands, Journal of Physical Chemistry C,116 (2012) 24999-25003.
    [42]S. Ji-Ming, Z. Song-Song, Y. Shu-Hong, Multifunctional Co0.85Se-Fe3O4 nanocomposites: Controlled synthesis and their enhanced performances for efficient hydrogenation of p-nitrophenol and adsorbents, Small,10 (2014) 717-724.
    [1]J.F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D.J. Szalda, J.T. Muckerman, E. Fujita, Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures, Nature Chemistry,4 (2012) 383-388.
    [2]Z.-W. Zhang, W.-T. Zheng, Q. Jiang, Hydrogen adsorption on Ce/BNNT systems:A DFT study, International Journal of Hydrogen Energy,37 (2012) 5090-5099.
    [3]R. Coontz, B. Hanson, Not so simple, Science,305 (2004) 957-957.
    [4]L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature,414 (2001)353-358.
    [5]M. Grasemann, G. Laurenczy, Formic acid as a hydrogen source-recent developments and future trends, Energy & Environmental Science,5 (2012) 8171-8181.
    [6]Z.-L. Wang, J.-M. Yan, Y. Ping, H.-L. Wang, W.-T. Zheng, Q. Jiang, An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature, Angewandte Chemie-International Edition,52 (2013) 4406-4409.
    [7]C. Hu, S.-W. Ting, J. Tsui, K.-Y. Chan, Formic acid dehydrogenation over PtRuBiOx/C catalyst for generation of CO-free hydrogen in a continuous-flow reactor, International Journal of Hydrogen Energy,37 (2012) 6372-6380.
    [8]A. Boddien, B. Loges, F. Gaertner, C. Torborg, K. Fumino, H. Junge, R. Ludwig, M. Beller, Iron-catalyzed hydrogen production from formic acid, Journal of the American Chemical Society,132 (2010) 8924-8934.
    [9]B. Loges, A. Boddien, H. Junge, M. Beller, Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells, Angewandte Chemie-International Edition,47 (2008) 3962-3965.
    [10]M. Ojeda, E. Iglesia, Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures, Angewandte Chemie-International Edition,48 (2009) 4800-4803.
    [11]K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A.J. Bagot, E.A. Marquis, G.D.W. Smith, S.C.E. Tsang, Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst, Nature Nanotechnology,6 (2011) 302-307.
    [12]X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, T. Lu, High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C, Chemical Communications, (2008) 3540-3542.
    [13]O. Metin, X. Sun, S. Sun, Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions, Nanoscale,5 (2013) 910-912.
    [14]S. Zhang, O. Metin, D. Su, S. Sun, Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid, Angewandte Chemie-International Edition, 52(2013)3681-3684.
    [15]G. Lu, S.Z. Li, Z. Guo, O.K. Farha, B.G. Hauser, X.Y. Qi, Y. Wang, X. Wang, S.Y. Han, X.G. Liu, J.S. DuChene, H. Zhang, Q.C. Zhang, X.D. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y.H. Yang, J.T. Hupp, F.W. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nature Chemistry,4 (2012) 310-316.
    [16]X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, Journal of the American Chemical Society,133 (2011) 11822-11825.
    [17]Q.-L. Zhu, J. Li, Q. Xu, Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance, Journal of the American Chemical Society,135 (2013) 10210-10213.
    [18]J. Hermannsdoerfer, M. Friedrich, N. Miyajima, R.Q. Albuquerque, S. Kuemmel, R. Kempe, Ni/Pd@MIL-101:Synergistic catalysis with cavity-conform Ni/Pd nanoparticles, Angewandte Chemie-International Edition,51 (2012) 11473-11477.
    [19]C.-H. Kuo, Y. Tang, L.-Y. Chou, B.T. Sneed, C.N. Brodsky, Z. Zhao, C.-K. Tsung, Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control, Journal of the American Chemical Society,134 (2012) 14345-14348.
    [20]L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, Z. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property, Angewandte Chemie-International Edition,52 (2013) 3741-3745.
    [21]F. Ke, J. Zhu, L.-G. Qiu, X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance, Chemical Communications,49 (2013) 1267-1269.
    [22]Y. Yuan, Z. Zhao, J. Zheng, M. Yang, L. Qiu, Z. Li, Z. Zou, Polymerizable complex synthesis of BaZr1-xSnxO3 photocatalysts:Role of Sn4+in the band structure and their photocatalytic water splitting activities, Journal of Materials Chemistry,20 (2010) 6772-6779.
    [23]K. Sugikawa, Y. Furukawa, K. Sada, SERS-active metal-organic frameworks embedding gold nanorods, Chemistry of Materials,23 (2011) 3132-3134.
    [24]I. Pastoriza-Santos, L.M. Liz-Marzan, N,N-dimethylformamide as a reaction medium for metal nanoparticle synthesis, Advanced Functional Materials,19 (2009) 679-688.
    [25]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [26]J. Feng, C. Ma, P.J. Miedziak, J.K. Edwards, G.L. Brett, D. Li, Y. Du, D.J. Morgan, G.J. Hutchings, Au-Pd nanoalloys supported on Mg-A1 mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol, Dalton transactions,42 (2013) 14498-14508.
    [27]H. Rong, S. Cai, Z. Niu, Y. Li, Composition-dependent catalytic activity of bimetallic nanocrystals:AgPd-catalyzed hydrodechlorination of 4-chlorophenol, Acs Catalysis,3 (2013) 1560-1563.
    [28]F. Ke, L.-G. Qiu, Y.-P. Yuan, X. Jiang, J.-F. Zhu, Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell, Journal of Materials Chemistry,22 (2012) 9497-9500.
    [29]M. Yadav, T. Akita, N. Tsumori, Q. Xu, Strong metal-molecular support interaction (SMMSI):Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid, Journal of Materials Chemistry,22 (2012) 12582-12586.
    [30]Q.-Y. Bi, X.-L. Du, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions, Journal of the American Chemical Society,134 (2012) 8926-8933.
    [31]S.-W. Ting, S. Cheng, K.-Y. Tsang, N. van der Laak, K.-Y. Chan, Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure, Chemical Communications, (2009) 7333-7335.
    [32]Y. Huang, X. Zhou, M. Yin, C. Liu, W. Xing, Novel PdAu@Au/C core-shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation, Chemistry of Materials,22 (2010) 5122-5128.
    [33]M. Martis, K. Mori, K. Fujiwara, W.-S. Ahn, H. Yamashita, Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature, Journal of Physical Chemistry C,117 (2013) 22805-22810.
    [34]K. Mori, M. Dojo, H. Yamashita, Pd and Pd-Ag nanoparticles within a macroreticular basic resin:An efficient catalyst for hydrogen production from formic acid decomposition, Acs Catalysis,3 (2013) 1114-1119.
    [1]X. Hong, D. Wang, S. Cai, H. Rong, Y. Li, Single-crystalline octahedral Au-Ag nanoframes, Journal of the American Chemical Society,134 (2012) 18165-18168.
    [2]H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd, Chemical Society Reviews,41 (2012) 8035-8049.
    [3]Y.-G. Guo, J.-S. Hu, L.-J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Advanced Materials,20 (2008) 2878-2887.
    [4]R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature,443 (2006) 63-66.
    [5]A. Morozan, B. Jousselme, S. Palacin, Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes, Energy & Environmental Science,4 (2011) 1238-1254.
    [6]H.-L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles, Journal of Materials Chemistry,21 (2011) 13705-13725.
    [7]A.K. Singh, Q. Xu, Synergistic catalysis over bimetallic alloy nanoparticles, Chemcatchem,5 (2013) 652-676.
    [8]P. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting:Recent progress and future challenges, Energy & Environmental Science,5 (2012) 6012-6021.
    [9]D.-1. Ma, Z.-y. Cao, H.-g. Wang, X.-l. Huang, L.-m. Wang, X.-b. Zhang, Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries, Energy & Environmental Science,5 (2012) 8538-8542.
    [10]A. Boddien, H. Junge, Catalysis acidic ideas for hydrogen storage, Nature Nanotechnology,6 (2011)265-266.
    [11]Q.-Y. Bi, X.-L. Du, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions, Journal of the American Chemical Society,134 (2012) 8926-8933.
    [12]Z.-L. Wang, J.-M. Yan, H.-L. Wang, Y. Ping, Q. Jiang, Pd/C synthesized with citric acid:An efficient catalyst for hydrogen generation from formic acid/sodium formate, Scientific Reports,2 (2012).
    [13]V. Mazumder, M. Chi, M.N. Mankin, Y. Liu, O. Metin, D. Sun, K.L. More, S. Sun, A facile synthesis of MPd (M=Co, Cu) nanoparticles and their catalysis for formic acid oxidation, Nano Letters,12 (2012) 1102-1106.
    [14]D. Sun, V. Mazumder, O. Metin, S. Sun, Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles, Acs Nano,5 (2011) 6458-6464.
    [15]C. Wang, M. Chi, D. Li, D. van der Vliet, G. Wang, Q. Lin, J.F. Mitchell, K.L. More, N.M. Markovic, V.R. Stamenkovic, Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts, Acs Catalysis,1 (2011) 1355-1359.
    [16]X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage, Journal of the American Chemical Society,133 (2011) 11822-11825.
    [17]Q.-L. Zhu, J. Li, Q. Xu, Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance, Journal of the American Chemical Society,135 (2013) 10210-10213.
    [18]A. Aijaz, A. Karkamkar, Y.J. Choi, N. Tsumori, E. Roennebro, T. Autrey, H. Shioyama, Q. Xu, Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:A double solvents approach, Journal of the American Chemical Society,134 (2012) 13926-13929.
    [19]H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework, Journal of the American Chemical Society,133 (2011) 1304-1306.
    [20]Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation, Angewandte Chemie-International Edition,47 (2008) 4144-4148.
    [21]G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science,309 (2005) 2040-2042.
    [22]Z.-L. Wang, J.-M. Yan, Y. Ping, H.-L. Wang, W.-T. Zheng, Q. Jiang, An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature, Angewandte Chemie-International Edition,52 (2013) 4406-4409.
    [23]B. Yuan, Y. Pan, Y. Li, B. Yin, H. Jiang, A highly active heterogeneous palladium catalyst for the suzuki-miyaura and ullmann coupling reactions of aryl chlorides in aqueous media, Angewandte Chemie-International Edition,49 (2010) 4054-4058.
    [24]D. Wang, Y. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, Journal of the American Chemical Society,132 (2010)6280-6281.
    [25]O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys, Materials Research Bulletin,36 (2001) 2183-2198.
    [26]A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, Journal of Non-Crystalline Solids,334 (2004) 317-322.
    [27]H.-L. Jiang, Q. Xu, Porous metal-organic frameworks as platforms for functional applications, Chemical Communications,47 (2011) 3351-3370.
    [28]K. Tedsree, T. Li, S. Jones, C.W.A. Chan, K.M.K. Yu, P.A.J. Bagot, E.A. Marquis, G.D.W. Smith, S.C.E. Tsang, Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst, Nature Nanotechnology,6 (2011) 302-307.
    [29]X. Zhou, Y. Huang, W. Xing, C. Liu, J. Liao, T. Lu, High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C, Chemical Communications, (2008) 3540-3542.
    [30]M. Yadav, T. Akita, N. Tsumori, Q. Xu, Strong metal-molecular support interaction (SMMSI):Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid, Journal of Materials Chemistry,22 (2012) 12582-12586.
    [31]S.-W. Ting, S. Cheng, K.-Y. Tsang, N. van der Laak, K.-Y. Chan, Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure, Chemical Communications, (2009) 7333-7335.
    [32]Y. Huang, X. Zhou, M. Yin, C. Liu, W. Xing, Novel PdAu@Au/C core-shell catalyst: Superior activity and selectivity in formic acid decomposition for hydrogen generation, Chemistry of Materials,22 (2010) 5122-5128.
    [33]M. Martis, K. Mori, K. Fujiwara, W.-S. Ahn, H. Yamashita, Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature, Journal of Physical Chemistry C,117 (2013) 22805-22810.
    [1]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: Possibilities and challenges, Advanced Materials,24 (2012) 229-251.
    [2]J. Xuan, W.-J. Xiao, Visible-light photoredox catalysis, Angewandte Chemie-International Edition,51 (2012) 6828-6838.
    [3]H. Kisch, Semiconductor photocatalysis mechanistic and synthetic aspects, Angewandte Chemie-International Edition,52 (2013) 812-847.
    [4]J. Liu, S. Wen, Y. Hou, F. Zuo, G.J.O. Beran, P. Feng, Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts, Angewandte Chemie-International Edition,52 (2013) 3241-3245.
    [5]H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma, T. Zhai, One-dimensional CdS nanostructures:A promising candidate for optoelectronics, Advanced materials,25 (2013) 3017-3037.
    [6]Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua, X. Zhong, Highly efficient inverted type-I CdS/CdSe ccore/shell structure QD-sensitized solar cells, Acs Nano,6 (2012) 3982-3991.
    [7]W. Zhao, Z. Bai, A. Ren, B. Guo, C. Wu, Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers, Applied Surface Science,256 (2010) 3493-3498.
    [8]Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, Journal of the American Chemical Society,133 (2011) 10878-10884.
    [9]W. Haihua, S. Zhenhua, L. Qiuhong, Z. Fanwu, S. Dangsheng, One-pot synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property, Small, 8(2012)1167-1172.
    [10]N. Zhang, Y. Zhang, X. Pan, X. Fu, S. Liu, Y.-J. Xu, Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions, Journal of Physical Chemistry C,115 (2011) 23501-23511.
    [11]N. Zhang, S. Liu, X. Fu, Y.-J. Xu, Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions, Journal of Materials Chemistry,22 (2012) 5042-5052.
    [12]A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials, Advanced Materials,22 (2010) 103-+.
    [13]N. Zhang, Y. Zhang, X. Pan, M.-Q. Yang, Y.-J. Xu, Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation, Journal of Physical Chemistry C,116 (2012) 18023-18031.
    [14]Y. Hu, X. Gao, L. Yu, Y. Wang, J. Ning, S. Xu, X.W. Lou, Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity, Angewandte Chemie-International Edition,52 (2013) 5636-5639.
    [15]R.B. Getman, Y.-S. Bae, C.E. Wilmer, R.Q. Snurr, Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks, Chemical Reviews,112 (2012) 703-723.
    [16]S.S. Nagarkar, B. Joarder, A.K. Chaudhari, S. Mukherjee, S.K. Ghosh, Highly selective detection of nitro explosives by a luminescent metal-organic framework, Angewandte Chemie-International Edition,52 (2013) 2881-2885.
    [17]P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chemical Reviews,112 (2012) 1232-1268.
    [18]A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Commercial metal-organic frameworks as heterogeneous catalysts, Chemical Communications,48 (2012) 11275-11288.
    [19]C. Wang, Z. Xie, K.E. deKrafft, W. Lin, Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis, Journal of the American Chemical Society,133 (2011) 13445-13454.
    [20]C.-K. Lin, D. Zhao, W.-Y. Gao, Z. Yang, J. Ye, T. Xu, Q. Ge, S. Ma, D.-J. Liu, Tunability of band gaps in metal-organic frameworks, Inorganic Chemistry,51 (2012) 9039-9044.
    [21]H. Khajavi, J. Gascon, J.M. Schins, L.D.A. Siebbeles, F. Kapteijn, Unraveling the optoelectronic and photochemical behavior of Zn4O-based metal organic frameworks, Journal of Physical Chemistry C,115 (2011) 12487-12493.
    [22]M. Alvaro, E. Carbonell, B. Ferrer, F.X. Llabres i Xamena, H. Garcia, Semiconductor behavior of a metal-organic framework (MOF), Chemistry-a European Journal,13 (2007) 5106-5112.
    [23]F.X.L.i. Xamena, A. Corma, H. Garcia, Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors, Journal of Physical Chemistry C,111 (2007) 80-85.
    [24]C.A. Kent, D. Liu, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching, Journal of the American Chemical Society,133 (2011) 12940-12943.
    [25]J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks, Chemical Communications,49 (2013) 6761-6763.
    [26]S. Jin, H.-J. Son, O.K. Farha, G.P. Wiederrecht, J.T. Hupp, Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting, Journal of the American Chemical Society,135 (2013) 955-958.
    [27]D. Esken, S. Turner, C. Wiktor, S.B. Kalidindi, G. Van Tendeloo, R.A. Fischer, GaN@ZIF-8: Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework, Journal of the American Chemical Society,133 (2011) 16370-16373.
    [28]D. Buso, J. Jasieniak, M.D.H. Lay, P. Schiavuta, P. Scopece, J. Laird, H. Amenitsch, A.J. Hill, P. Falcaro, Highly luminescent metal-organic frameworks through quantum dot doping, Small,8 (2012) 80-88.
    [29]G. Lu, S.Z. Li, Z. Guo, O.K. Farha, B.G. Hauser, X.Y. Qi, Y. Wang, X. Wang, S.Y. Han, X.G. Liu, J.S. DuChene, H. Zhang, Q.C. Zhang, X.D. Chen, J. Ma, S.C.J. Loo, W.D. Wei, Y.H. Yang, J.T. Hupp, F.W. Huo, Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation, Nature Chemistry,4 (2012) 310-316.
    [30]L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process:an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols, Journal of Materials Chemistry A,1 (2013) 11473-11482.
    [31]J.W. Yoon, Y.-K. Seo, Y.K. Hwang, J.-S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P.L. Llewellyn, C. Serre, P. Horcajada, J.-M. Greneche, A.E. Rodrigues, G. Ferey, Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption, Angewandte Chemie-International Edition,49 (2010) 5949-5952.
    [32]P. Horcajada, S. Surble, C. Serre, D.Y. Hong, Y.K. Seo, J.S. Chang, J.M. Greneche, I. Margiolaki, G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chemical Communications, (2007) 2820-2822.
    [33]F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry,21 (2011) 15171-15174.
    [34]Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:What advantage does graphene have over its forebear carbon nanotube?, Acs Nano,5 (2011) 7426-7435.
    [35]M. Zhang, C. Chen, W. Ma, J. Zhao, Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO, Angewandte Chemie-International Edition,47 (2008) 9730-9733.
    [36]N. Zhang, X. Fu, Y.-J. Xu, A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst, Journal of Materials Chemistry,21 (2011) 8152-8158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700