电牵引采煤机远程参数化控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家“十一五”规划中“关于促进煤炭工业健康发展的若干意见”以及煤炭工业“十一五科技发展规划”指出综采工作面自动化是今后的发展方向。《国家中长期科学和技术发展规划纲要》明确提出要“重点研究煤矿等生产事故的监测、预警、预防技术”。本文以电牵引采煤机远程控制系统的研究与开发为背景,在建立电牵引采煤机冗余控制平台的基础上,结合有限状态自动机、传感信息融合理论和免疫进化理论,对电牵引采煤机的参数化控制模型、逻辑传感状态诊断、截割路径规划及其连续调节等关键技术进行了深入的研究,主要研究成果有:
     (1)建立了基于有线工业以太网和无线MESH网的采煤机远程冗余控制系统的体系结构及其参数化控制模型。在分析机载控制器I/O控制模式和记忆截割模型的基础上,提出了基于工业以太网、无线MESH网和Profibus现场总线等技术的电牵引采煤机参数化控制方法,建立了电牵引采煤机参数化控制的层次模型,给出了变频牵引参数化控制接口及其参数化控制算法。通过电牵引采煤机电气性能试验,获取了变频牵引单元的性能曲线、速度变化与加速度变化范围参数以及牵引禁速区间参数等关键参数。
     (2)提出了基于分层有限自动机的采煤机传感信息融合模型及状态诊断模型。引入了有限状态自动机并将其扩展为包含附加特征、附加约束、值函数的逻辑传感器有限状态机。定义了变频牵引控制、截割与破碎控制、行走姿态控制和滚筒调高控制等单元的逻辑传感模型。通过逻辑传感集对包含的逻辑传感成员按照附加特征队列、附加约束队列和值函数队列进行管理,通过扫描调度方法实时更新逻辑传感集状态。在逻辑传感集的状态诊断中结合物理传感量之间的特征关联向量,提出了主元变量识别与截割路径执行诊断相结合的两阶段诊断算法,为动态描述逻辑控制单元的状态及状态评估提供了新的数据融合模式。
     (3)在记忆轨迹的基础上,提出了截割路径区间的识别算法,建立了调节区间的均匀B样条表示模型,给出了调节轨迹的deBoor生成算法。针对调节区间样条函数中存在的超出滚筒调节范围、超出牵引调节范围、进入牵引禁速范围和不能推溜等四种情况,给出了截割路径的四趟迭代优化算法。
     (4)提出了采煤机截割路径及其连续调节的优化算法与免疫规划算法。应用免疫规划算法对截割路径在执行时刻的连续调节过程建立了采煤机截割路径规划执行的免疫规划模型。定义了截割路径规划的高斯变异算子、基于否定选择和概率选择相结合的免疫选择算子以及分段适应度函数。针对截割路径运行时可能出现的超出滚筒调节范围、超出牵引调节范围、进入牵引禁速范围和不能推溜等四种调节情况,定义了相应的免疫疫苗及其动态计算模型。
     工厂试验和实验室试验结果表明,基于逻辑传感和截割路径规划的电牵引采煤机参数化远程冗余控制系统达到了预期功能,为电牵引采煤机远程控制的工业化实验打下了坚实的基础。
Several suggestions about accelerating coal industry’s healthy development in china's the eleventh five-year plan and eleventh five-year science and technology plan of coal industry definitely indicated that automation would be progress direction in the fully mechanized long-wall coal mining face. The outline of the medium-term and long-term science and technology development stressfully put forward that it was necessary to research on monitoring, pre-warning and prevention technologies of the equipments in the coal mine. The remote control system of the electrical drawing shearer was studied in this paper. On the basis of building the redundancy control platform, finite state machines and multi-sensor information fusion method were adopted to research on parametric control model, status diagnosis of the logical sensor, and cutting path programming and its continuous adjustment, and so on. The main research results are showed as follows.
     The system architecture and the parametric control model of the remote control platform for the shearer were established based on wire industry Ethernet and MESH network. On the basis of I/O control pattern of the controller equipped in the shearer and memory cutting model, the parametric control method of the shearer was presented by use of industry Ethernet, MESH network and Profibus technology, and build the parametric multi-layer control model of the shearer, then bring forward the parametric control interface and control algorithm of the frequency drawing. The key parameters were obtained, which included performance curve, change range of speed and acceleration, parameter of the unwarrantable speed interval of the frequency drawing unit.
     The models of the multi-sensor information fusion and status diagnosis were put forward based on hierarchical finite state machines. Finite state machines was expanded in this paper, it included additional characteristics, restraints, and finite state machines of the value function’s logical sensor. Some logical models of the sensors were defined, which included frequency drawing control, cutting and crushing control, moving attitude control and adjustment height control of the drum. The logical sensor members were managed according to the additional characteristic queue, the restraint queue, and the value function queue, the logical sensor set was renewed in time by scanning scheduling method. In the process of the status diagnosis for the logical sensor set, two-stage diagnosis algorithm based on pivot variable identification and cutting path diagnosis was put forward, which supplied the new data fusion pattern to dynamically describing the status and status evaluation of the logical control unit.
     The work stability of the shearer was regarded as the control object, the identification algorithm of the cutting path interval was presented, and established representation model of the uniform B-spline curve in the adjustment interval, then bring forward the deBoor generation algorithm. In order to resolving the following instances which included adjustment range overrun of the drum, drawing speed overrun and not to push conveyer, the four-layer iterative algorithm of the cutting path was presented.
     The optimization algorithm and artificial immune algorithm were put forward. The artificial immune model of the shearer’s cutting path planning was built by applying immune algorithm to continuously adjustment process of the cutting path. GAUSS variation operator of the cutting path planning, immune operator based on negative selection algorithm and probability algorithm and segmented sufficiency function were defined. In order to resolving the following conditions including adjustment interval overrun of the drum, drawing adjustment overrun, drawing speed overrun and not to push conveyer, the relevant immune operators and dynamic calculation models were defined.
     The experimental result shows that the remote control system of the shearer based on logical sensor and cutting path planning can realize the anticipative function in the laboratory and the factory, the research establish the groundwork for the practical application of the shearer’s remote control.
引文
[1]国家发展改革委员会.煤炭工业发展“十一五”规划[R]. 2007.
    [2]崔民选. 2007中国能源发展报告[R].社会科学文献出版社. 2007.
    [3]戴绍成等.高产高效综合机械化采煤技术与装备.煤炭工业出版社. P215-218.
    [4]芮冰,黄钦宗.我国采煤机30年发展回顾和展望[J],煤矿机电2000(5), P36-40.
    [5]吕一中.综放工作面自动化系统的研究[J].河北工程技术职业学院学报, 2003, 5(2):P40-42.
    [6]董爱华1,刘丽红.故障检测诊断技术在煤矿机电设备中的应用[J],焦作工学院学报(自然科学版), Vol.21, No.3, May 2002.
    [7]许立华,孙晓全.国内外采煤机远程通讯和集中控制技术的现状分析[J].煤炭技术,2005,24(5).
    [8]王煜明,孙景荣,李云罡.国产电牵引采煤机工况监测和故障诊断技术的发展现状与前景[J],煤矿机电, 2000(5),P111-114.
    [9]阎二乐.基于CAN总线的采煤机监控系统的研制[M].西安科技大学,2007.
    [10]秦剑秋,采煤机自动调控用自然r射线煤岩界面识别传感技术的研究[D],中国矿业大学,博士学位论文, 1993
    [11]廉自生,基于采煤机截割力响应的煤岩界面识别技术研究[D],中国矿业大学,博士学位论文, 1995
    [12]任芳,基于多传感器数据融合技术的煤岩界面识别的理论与方法研究[D],博士学位论文,太原理工大学
    [13]Ren Fang, Yang Zhao Jian,Xiong shi Bo, Application of Wavelet Packet Decomposition and Its Energy Spectrum on the Coal-rock Interface Identification [J],Journal of Coal Science & Engineering. 2003.1
    [14]梁义为,采煤机智能调高控制理论与技术[D],博士学位论文,太原理工大学,2005
    [15]张福建.电牵引采煤机记忆截割控制策略的研究[M],煤炭科学研究总院,2007.
    [16]王丽,魏金鑫.长壁采煤机的“记忆截割”技术[J].水力采煤与管道运输,2004(4):32-33.
    [17]刘阔,刘杰,李勇,尹力.采煤机记忆截割的轨迹拟合[J],煤矿机电,2008(3).
    [18]刘春生,杨秋,李春.采煤机滚筒记忆程控截割的模糊控制系统仿真[J],煤炭学报,Vol.33, No. 7, July 2008, P.823-825.
    [19]田慕琴,辛忠东.基于记忆切割的采煤机自动调高预见控制系统[J],煤矿机电,2002(6):P29-32.
    [20]张伟,张福建.采煤机自动调高数学模型分析[J].煤矿机电2007(05).
    [21]李萍,刘春生.李晓豁采煤机调高机构的动力学分析[J].黑龙江矿业学院学报2000(4).
    [22] Wang ling, Wang Zhanlin, Design of Previewing Indicator for Manual Servo Track Control,仪器仪表学报,2000,2.
    [23]张伟.基于采煤机DSP主控平台的自动调高预测控制[M].上海交通大学, 2007.
    [24]雷玉勇等.采煤机液压自动调高系统的研究[J].重庆大学学报(自然科学版). 1994.
    [25]向虎.采煤机调高系统的虚拟样机仿真[J].煤矿机械,2007(12) vol. 27.
    [26]专利CN200520040296.6,液压牵引采煤机无线遥控装置.
    [27]专利CN200410011414.0,采煤机嵌入式数字化自动控制装置.
    [28]专利CN03145013.X,电磁调速电牵引采煤机.
    [29]专利CN02235012.8,滑差电牵引采煤机控制装置.
    [30]专利CN200620162182.3,采煤机自行装置.
    [31] Xiao-Dong Li, Tommy W. S. Chow, John K. L. Ho, and Hong-Zhou Tan,Repetitive Learning Control of Nonlinear Continuous-Time Systems Using Quasi-Sliding Mode,IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 2, MARCH 2007,P369-374.
    [32]Marcello Montanari, Sergei M. Peresada, Carlo Rossi, and Andrea Tilli,Speed Sensorless Control of Induction Motors Based on a Reduced-Order Adaptive Observer IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 6, NOVEMBER 2007,P1049-1064.
    [33] W. Leonhard, Control of Electrical Drives,3rded. Berlin, Germany: Springer-Verlag, 2001.
    [34]J. Holtz, Sensorless control of induction machines—With or without signal injection? [J], IEEE Trans. Ind. Electron., vol.53, no.1, P.7–30, Feb.2006.
    [35]H. Kubota, K. Matsuse, Speed sensorless ?eld-oriented control of inductionmotor with rotor resistance adaptation [J],IEEE Trans. Ind. Appl., vol.30, no.5, P.1219–1224, Sep. 1994.
    [36]S. Peresada, M. Montanari, A. Tilli, and S. Kovbasa, Sensorless indirect ?eld-oriented control of induction motors, based on high gain speed esti-mation [J], in Proc. 28th IEEE Conf. Ind. Electron., 2002, P.1702–1709.
    [37]Hui Peng , Kazushi Nakano, Hideo Shioya, Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial application,IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 1, JANUARY 2007,P130-143.
    [38]王磊.免疫进化计算理论及应用[D].西安电子科技大学. 2001.
    [39]Farmer J D,Packard N H,Perelson A S. The immune system, adaptation, and machine learning.Physica D,1986,22:187-204.
    [40]Mitsumoto N, Fukuta T. Control of distributed autonomous robotic system based on biologically inspired immunological architecture. IEEE international conference on roboticsand automation, Albuquerque, NM, USA, 1997,4: 3551- 3556.
    [41]Y.Ishida, N Adachi .An immune algorithm for multiagent: application to adaptive noise neutralization. Proceedings of International Conference on Intelligent Robots and Systems, 1996, 3: 1739-1746.
    [42]Lee D W, Sim K B. Artificial immune network-based cooperative control in collective autonomous mobile robots. Proceeding 6th IEEE international workshop on robot and human communication, Sendai, 1997, 58-63.
    [43]Takahashi K, Yamada T. Self-tuning immune feedback control for controlling mechanical systems. Proceedings of IEEE conference on advanced intelligent mechatronics, Tokyo, Japan, 1997, 101-107.
    [44]D.H.Kim. Intelligent tuning of a PID controller for multivariable process using immune network model based on fuzzy set. The 10th IEEE International Conference on Fuzzy Systems, 2001, 1: 93-98.
    [45]J.E.Hunt, D.E.Cooke. An adaptive, distributed learning system based on immune system. IEEE international conference on systems, man and cybernetics, 1995, 3: 2494-2-199.
    [46]J.Timmis, M.Neal, J.Hunt. Data analysis with artificial immune network: some comparisons. Proceeding of international conference on systems, man and cybernetics, Tokyo, Japan, 1999, 1:922-927.
    [47]Ishida Y, Mizessyn F. Learning algorithms on an immune network model: applications to sensor diagnosis. International conference on neural network. China, 1992, 1:33-38.
    [48]Ishida Y. An immune network model and its applications to process diagnosis. Systems and Computers,1993, 24 (6):38-45.
    [49]Chun J S, Lim J P, Jung H K. et al. Optimal design of synchronous motor with parameter correction using immune algorithm. Proceedings of International electric machines and drivers conference, Milwaukee, W l, USA, 1997, 2: 21-23.
    [50]Tasswa I, ICoakusu S, Hirata H. An evolutionary optimization based on the immune system and its application to the VLSI floor plan design problem. Electrical engineering, 1998, 122 (2):30-37.
    [51]刘克胜,曹先彬,郑浩然等.基于免疫算法的TSP问题求解.计算机工程,2000,26 (1): 1-2.
    [52]崔逊学,李森,方廷健.基于免疫原理的多目标进化算法群体多样性研究.模式识别与人工智能,2001,14 (3):291-295.
    [53]A.Gaspar. P.Collard. From GAs to artificial immune systems: improving adaptation in time dependent optimization. Proceedings of international congress on Evolutionary Computation, Washington, USA, 1999, 1:1859-1866.
    [54]De Castro L N, Timmis J I. An artificial immune network for multi-modal function optimization. Proceedings of IEEE Congress on Evolutionary Computation, 2002, 1:699-074.
    [55]D'haeseleer P, Forrest S, Helman P. An immunological approach to change detection: algorithm, analysis, and applications. Proceedings of IEEE Symposium on research in security and privacy, Okaland,CA, 1996, 1: 110-119.
    [56]Forrest S, Perelson A S, Allen L. Self-nonself discrimination in a computer. Proceeding of IEEE Symposium on research in security and privacy, Oakland, CA, 1994, 1: 202-212.
    [57]Kephart J O. Biological inspired defense against computer viruses. Proceeding of 14th international Joint Conference on Artificial Intelligent, San Mateo, CA, USA, 1997, 1:986-996.
    [58]Forrest S.Perelson A S,Allen L and Cherukuri R.Self-nonself discrimination in a computer.In:Proc.IEEE Symposium on Research in Security and Privacy, Okaland. 1994,202-212.
    [59]De Castro L N,VonZuben F J. Clonal selection algorithm with engineering applications.In: Proc GECCO’00,LasVegas,Nevada,USA,2000.36-37.
    [60]JIAO L C,WANG L.A novel genetical algorithm based on immunity.IEEE Transactions on System,Man,and Cybernetics Part A: systems and Humans, 2000, 30(5):552-561
    [61]王磊,潘进,焦李成.免疫规划.计算机学报,2000,23(8):806-812.
    [62]CHUN J S,KIMM K,JUNG H K.Shape optimization of electromagnetic devices using immune algorithm. IEEE Transactions on Magnetics,1997,33(2):1876-1879.
    [63] Naniaki T, Satoshi E, Koji Y. Immune algorithm with immune network and MHC for adaptive problem solving. Proceedings of IEEE SMC Conference, Tokyo, JAPAN, 1999, 4: 271-276.
    [64]符如康,王太续,基于PLC控制的交流变频调速电牵引采煤机[J],煤矿机电,煤矿机电, 2002.02, P96.
    [65]Michael Sipser, Introduction to the Theory of Computation. PWS, Boston. 1997. P31-47.
    [66]吴浩,王巍,李小波,刘元法基于单片机的电磁调速电牵引采煤机调速系统[J],煤炭科学技术,2005,5,P8-11.
    [67]陆铮,汪丛笑.工业以太网在全矿井综合自动化系统中的应用.工矿自动化, 2006.3
    [68]董超.基于隔爆工业以太环网的综合自动化及信息化系统展望.能源技术与管理. 2007.3
    [69]钱建生,李鹏,顾军,张智宏.基于防爆工业以太网的煤矿综合自动化系统.中国煤炭,2006 ,Vol.32 No.3
    [70]郑彦光,徐平平,常瑞.无线MESH网络技术及其应用.电力系统通信,2007,28(7):P16-20
    [71]丁旭阳,范明钰,罗惠琼.无线MESH网络链路非相关多径发现算法.计算机研究与发展,2007,44(10):1751-1756
    [72] (加拿大)Ekram Hossain, (英国)Kin K.Leung.无线MESH网络架构与协议.机械工业出版社,2009.
    [73]北京ABB电气传动系统有限公司. ACS800固件手册ACS800标准控制程序7.x
    [74]ABB PROFIBUS DP Adapter Module RPBA-12 User’s Manual.
    [75]马洪忠.电机状态监测与故障诊断p5.机械工业出版社.
    [76]鄂加强.智能故障诊断及其应用[M].长沙:湖南大学出版社,2006:2-11.?
    [77]李战明,沉若珠,张保梅.同类多传感器自适应加权估计的数据融合算法研究[J].兰州理工大学学报,2006(8):78-82.
    [78] LUN R C. Dynamic multisensory data fusion system for intelligent robots[J]. IEEE Journal of Robotics and Automation,1988,4(4):386-396.
    [79]熊春柳.人工免疫在故障诊断中的应用[D].杭州:浙江大学,2006:7-21.?
    [80] Zhou Ji,D. D. Real-Valued Negative Selection Algorithm With Variable-Sized Detectors[J]. 2004,Springer-Verlag:287-298.
    [81]Fabio Gonzalez,D.D.,Luis Fernado Nino. Arandomized real-value negative selection algorithm[C]. In Proceedings of Second International Conference on Artificial Immune System(ICARIS 2003),2003.
    [82] M. M. Polycarpou, Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach [J], IEEE Transactions Automation Control, Vol.46, No.4, P.736–742, Apr.2001.
    [83]X. Zhang, T. Parisini, and M. M. Polycarpou, Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach [J], IEEETrans.Autom.Control,Vol.49, No.8, P.1259–1274, Aug.2004.
    [84]杨莉,基于主元分析的多变量统计过程的故障辨识技术[J],信息与电子工程, Vol. 2,No. 4, Dec. 2004, P256-258.
    [85]Fogel L J,Owens A J,Walsh M J. Artificial Intelligence Through Simulated Evolution. Chichester,UK:John Wiley,1966.
    [86]Forgel D B. Evolutionaary programming in perspective: the top-down view. In: Zurada J,Marks R,Robinson. Computational Intelligence: Imitating Life.New York:IEEEnPress,1994,327~333.
    [87]Fogel D B. Evolutionary Computation. New York:IEEE Press,1995,135~155.
    [88]Fogel D B. Asymptotic convergence properties of genetic algorithm and evolutionary programming:analysis and experiments. Cybernetics and system,1994,25(3):389~407.
    [89]焦李成,免疫优化计算、学习与识别,科学出版社.2006. p72~75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700