煤矿救援机器人系统运载车关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机器人的应用已经遍及海陆空,但迄今为止煤矿救援机器人在国内外煤矿事故救援中尚无成功应用的实例。针对我国煤矿瓦斯爆炸等不安全事故频发,救援水平较低的现状,在国家自然科学基金和陕西省自然科学基金的资助下,深入研究了煤矿救援机器人的体系结构、机械本体、运动特性和导航算法等关键技术问题,为构建高速、可靠、安全、有效的煤矿救援机器人系统奠定了坚实的基础。
     针对煤矿瓦斯事故多发生在距井口较远的工作面的实际,首次提出采用轨道轮式运载车加履带式探测机器人的两级救援机器人系统,运载车借助于矿车轨道快速行驶将履带式探测机器人运至距事故现场最近处,探测机器人在事故现场实施信息采集。两级机器人系统的救援体系结构,充分利用了井下已有的运输轨道,发挥轮式移动机器人和履带式移动机器人各自的优点,达到了快速救援的目的。
     在充分论证运载车可行性的基础上,对运载车机械本体的运行安全性进行了定义,分析了影响运载车运行安全性的因素,研究了基于运行安全性的运载车运动性能评价指标,提出了以脱轨系数、轮重减载率、离心加速度为评价指标,结合轮轨蠕滑力、纵横向振动位移和加速度进行评判的运载车运行安全性评价体系。
     基于虚拟样机技术,采用模块化、参数化设计思想,设计了运载机车的结构,包括以轨道轮为主的行走装置、电气加机械的双重制动装置、车体和行走机构的连接缓冲装置以及车体等部分,完成了全部的零件图设计并进行了装配设计,为运载车的运动仿真提供了理论依据和原始数据。
     利用具有非完整约束的多体系统动力学理论,建立了运载车的力学模型和数学模型,将运载车分解成由11个刚体、12个铰和6个力元组成的多体系统,通过切割铰的方式建立了运载车的有根树系统力学模型,推导出运载车的纵向运动学、动力学和振动学方程。同时分析了运载车工作的轨道环境,建立了基于随机信号理论的煤矿井下轨道不平顺模型和基于现场实际的轨道线路模型。
     通过分析影响运载车的移动性能的因素,研究了运载车运行安全性评价参数,建立了基于虚拟样机的运载车综合评价与分析仿真环境,采用单参数和多参数的复合优化方法,以运载车的运行安全性为目标,以轮轨接触状况为评价参数,以虚拟样机技术为工具,设计并研究了运载车几何参数和运动参数评价方法,并对结果进行了评价。
     研究了基于煤矿井下GIS的运载车自主导航方法,研究了基于图论的煤矿井下轨道模型的建立方法,以轨道的交点为顶点,以相邻两顶点之间的轨道为弧,以每条弧的长度、倾斜度、与其它弧的连接因子、通行因子为评价函数,建立了带权的井下轨道的地图模型,在此基础上提出了基于广度优先的载机器人最佳路径搜索算法。
Robots have been widely used on land, in sea and in the sky, but there has still not been a successful instance in the mine accident rescue so far, no matter from home or abroad. In view of the frequent accidents of coal mine and the lower levels of rescue automation, the architecture, mechanical structure, kinetic characteristics, navigation algorithm and other the key technical problems of the mine rescue robots have been studied in-depth, which has been supported by The National Natural Science Fund and Shaanxi Provincial Natural Science. It has laid a solid foundation for the establishment of a fast, reliable, safe and effective system of the mine rescue robots.
     According to the fact that coal gas accident always happens at the working face far from well, The two-level rescue robots system of coal mine is put forward firstly, which contains carrier with rail-wheel and exploration robot with track. The carrier carries fleetly the exploration robot to the scene of accident by dint of tramroad, and the exploration robot collected the information at the scene of accident. The two-level rescue robots system architecture full utilize the existing tramroads, bring into play respective merits of rail-wheel and track, achieve the purpose of quick rescue.
     Based on fully argumentation the basis of carrier feasibility, movement safety was defined to the carrier that the mechanism part of carrier, then analysed the influenced factors of the carrier movement safety, studied the evaluation indexes of the carrier movement safety based on running security, brought forward the evaluation system of tha carrier movement safety, which using Nadal, D. Ration and acceleration as evaluation indexes and combining creep forces of wheel-rail contact, displacement and acceleration.
     Based technical prototype, use modular and parameterized method, designed the carrier mechanical structure that contain moving equipment with wheel-rail, braking equipment with pneumatics, joint buffer between the carrier body and the moving structure and carrier body etc. The all parts and assemble design have been finished in SolidWorks, it offered the theoretical foundation and the raw data for the carrier movement simulation.
     According to the dynamic theory of multibody systems with non-holonomic constraint, built the mechanical models and mathematical models of the carrier, disassembled the carrier into multibody system form 11 rigid bodies, 12 joints and 6 force elements, established the mechanics model of spanning tree system by cutting the way of joints, followed the kinematics and dynamics equations in the longitudinal of the carrier. Also analyzed the rail environment of the carrier working, established irregularity model based on the random signal theory and the rail track model based on actual of the coal mine.
     Via analyzing the factors that influence the carrier locomotion performance, studied the evaluation parameters of the carrier movement safety, established the simulated environment of comprehensive evaluation and analysis based on virtual prototyping technology. Using the complex optimize method of single parameter and multiple parameters, as the carrier movement safety for aim, as the wheel-rail contact for evaluation parameters, as the virtual prototyping technology for tool, designed and studied the evaluation methods of geometry parameters and movement parameters, and evaluated the simulation results.
     Researched the carrier automotive navigation methods based on mine GIS and the building model methods of mine rail track based on the graph theory, made the points of rail intersection as vertex, made the rail between the two neighboring as edge, and made the length, gradient, with other arcs connection factors, transit factors as evaluation function, established the mine rail map model with weighted, based on these put forward the search algorithm for finding optimization path based on the breadth first search methods.
引文
[1]中国能源发展战略与政策研究报告课题组.中国能源发展战略与政策研究报告.经济研究参考,2004,83
    [2]高瑞霞译.美国的灭火与救援机器人研发综述消防技术与产品信息2005年第3期
    [3] Nilsson N J.A mobile automation: an application of artificial intelligence techniques.In Proceedings of the 1st International Joint Conference on Artificial Intelligence. 1969:509~520
    [4] R.Murphy.Rescue Robot Demonstrated for Mine Disasters.Kanga,Shahrukh Proceedings of the First Conference on Sustainable Range Management 2004,C1-05
    [5] Thayer,Scott.Groundhog day-Mapping the subterranean Word. Materials World. V11.n11 November,2003:25~26
    [6] L.Matthies,Y.Xiong,R.Hogg,D.Zhu,A.Rankin,B.Kennedy,M.Hebert,R. Maclachlan,C.Won,T.Frost,G.Sukhatme,M.McHenry,S.Goldberg A portable, autonomous urban reconnaissance robot.Robotics and Autonomous Systems,2002,Vol.40:163~172
    [7] M. Haddad,T.Chettibi,S.Hanchi,H.E.Lehtihet.A random-profile approach for trajectory planning of wheeled mobile robots,European Journal of Mechanics A/Solids. 2007,Vol.26:519~540
    [8] JOHN G.BLITCH,Artificial Intelligence Technologies for Robot Assisted UrbanSearch and Rescue,Expert Systems With Applications.1996Vol11,No.2:109~124
    [9]王艾丽.我国首台生命探测井下救援机器人研制成功. http://news.sohu.com/20091215/n268962223.shtml
    [10]董春蕾.山东研制成功井下救援机器人.铜陵晨报,2009年12月2日
    [11]樊炳辉,逢振旭,苏学成等.煤矿井下机器人结构设计.中国机械工程,1995,6 (5): 13~14
    [12]李贻斌,范永,苏学成等. PJR-2喷浆机器人的设计与实现.高技术通讯,1997,(4): 33~36
    [13]孙毅刚,王树国,潘沛霖等.煤矿安全钻孔机器人系统的设计与研究.高技术通讯,1997,(3): 44~47
    [14]王勇,朱华,王永胜等.煤矿救灾机器人研究现状及需要重点解决的技术问题.煤矿机械,2007,Vol.28,No.4:107~109
    [15] Ma Hongwei,Tian Hao,Li Xiaopeng.Research on motion control system of mine rescuerobot[C].ICAL 2009 IEEE International Conference on Automation and Logistics:1892-1895
    [16] Wei Juan,Ma Hongwei.Study on Mine Rescue Robot System. Intelligent Robotics and Applications-Second Internation Conference,2009,Vol.52489 (8):1661~1665
    [17]曹志强.未知环境下多机器人协调与控制的队形问题研究[D].沈阳:中国科学院自动化研究所,2002
    [18] Parker L E.Task-oriented multi-robot learning in behavior-based systems[C].Proc. of the IEEE.1996(3):1478~1487
    [19]苏治宝,陆际联.多移动机器人队形控制的研究方法[J].机器人,2003,Vol.25,(1):88~92
    [20]梅凤翔.非完整动力学研究.北京:北京工业学院出版社,1987
    [21]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.北京:高等教育出版社,1989
    [22]刘延柱.高等动力学.北京:高等教育出版社,2001
    [23]殷学纲.建立离散系统动力学方程的矩阵方法.重庆大学学报,1989(1):86~97
    [24]张越今,宋健,张云清,任卫群.多体系统动力学分析的两大软件-ADAMS和DADS.机械工业出版社,1996
    [24]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2007(7):123~126
    [25]卢韶芳,刘大维.自主式移动机器人导航研究现状及其相关技术.农业机械学报, 2003(3):154~162
    [26]赵翊捷,陈卫东.基于地图的移动机器人定位技术新进展.上海交通大学学报,2002(1):56~59
    [27] Jun Miura,Yoshiro Negishi,Yoshiaki Shirai. Adaptive Robot Speed Control by Considering Map and Motion Uncertainty.Robotics and Autonomous Systems,2006,Vol.54 (2):110~117
    [28]马明山,朱绍文,何克忠,李相伟.室外移动机器人定位技术研究.电工技术学报, 1998,Vol.13 (4):96~98
    [29]潘良晨,陈卫东.室内移动机器人的视觉定位方法研究.机器人,2006,Vol.32 (5):158~162
    [30] Christopher,M.Clark. Probabilistic Road Map Sampling Strategies for Multi-robot Motion Planning. Robotics and Autonomous Systems. 2005,Vol.53 (12):244~264
    [31]李瑞峰,李伟招.基于多传感器信息融合的移动机器人路径规划.机电一体化,2002(4):56~59
    [32] Khatib. Real-time Obstacle for manipulators and mobile robot.The International Journalof Robotic Research.1986,(5):90~98
    [33] Freire,Eduardo,B. Filho,Teodiano,S. Filho,Mario,Carelli,Ricardo. A New Mobile Robot Control Approach via Fusion of Control Signals.IEEE Transactions on Systems,Man,and Cybernetics.2004,Vol.34,(2):419~429
    [34]张捍东,郑睿,岑豫皖.移动机器人路径规划技术的现状与展望.系统仿真学报, 2005(2):132~139
    [35] DU Xin,LI Hong-dong,GU Wei-kang. A Simple Rectification Method for Linear Multi-baseline Stereo Vision System. Journal of Zhejiang University Science,2004(5):567~571
    [36]李勇,魏春岭.卫星自主导航技术发展综述[J].航天控制,2002,20 (2):70~74
    [37]魏娟,贾广利,马宏伟.煤矿救援机器人虚拟样机仿真分析.机械科学与技术,2008,Vol.27(11)
    [38]贾广利.煤矿救援探测机器人肢体研究.西安:西安科技大学硕士学位论文,2008.6
    [39]张军红.煤矿救援探测机器人躯体研究.西安:西安科技大学硕士学位论文,2008.6
    [40]翟婉明.车辆-轨道耦合动力学(第三版).北京:科学出版社,2007.2
    [41] Prud’homme A,Jqnin G. The stability of tracks laid with long welded rails,part I and II,Bulletin of the International Railway Congress Association,1969,88:460~480
    [42]池茂儒.耦合轮对车辆动力学性能的研究.成都:西南交通大学博士学位论文,2004
    [43]李树森.矿井轨道运输.徐州:中国矿业大学出版社,1986.5
    [44]成大先,王德夫,蒋勇等.机械设计手册.第1卷,第1册.化学工业出版社,1999
    [45] Carter F C. On the action of a locomotive wheel[M]. London:Proc Roy Soc,1926(A112):151~157
    [46] Vermeulen PJ , Johnson KL.Contactofnon-sphericalelastic bodiestransmitting tangentialforces. Jof Applied Mechanics,1964,86:338~340
    [47] Kalker J. J.The tangential force transmitted by two elastic bodies rolling over each other with pure cree page. Wear,1968 (11):421~430
    [48] Kalker J. J. A fast algorithm forth simplified the oryofrolling contact. Vehicle System Dynamics,1982.2:1~13
    [49] KalkerJ.J.Mathematical models forcontact problem sin elasticity. Wear ,1986(113):61~77
    [50] Kalker J.J.Wheel-rail wear calculations with the program CONTACT. Delft:Dep of Math and Inf,TU,1987
    [51] Shen Z.Y,Hedrick J. K,Elkins J A.A comparison of alternative creep-force models for rail-vehicle dynamic analysis.Vehicle System Dynamics,1983(12):79~82
    [52] Pascal J. P. About multicontac the rtzian hypo thesis and equivalent conicity in the case of S1002 and UIC 60 analytical wheel
    [53]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999.7
    [54]胡继云.建立多刚体系统动力学方程的坐标变换法及其应用.重庆:重庆大学博士学位论文,2004
    [55]刘宏友.来自俄罗斯的优秀通用机械仿真软件——UM.铁道车辆,2008.Vol.46(9):38
    [56]齐朝晖.多体动系统力学.北京:科学出版社,2008.7
    [57]熊启家.基于空间算子代数理论的链式多体系统递推动力学研究.南京:南京航空航天大学,2003
    [58]柳江.基于虚拟样机技术悬架系统性能分析和优化设计.上海:上海交通大学博士学位论文,2007
    [59]林台平,黄问盈.列车牵引计算中若干问题的探讨.中国铁道科学,1998,Vol.18,(4):1~13
    [60]尚建忠.空间探测机器人移动机构及系统研究.武汉:华中科技大学博士学位论文,2006
    [61] Masanori Sato,Atushi Kanda,Kazuo Ishii. Performance evaluation of a neural network controller system for a wheel type mobile robot. International Congress Series,2007:160~163
    [62]彭禹.基于虚拟样机技术的发动机子系统设计方法研究.浙江:浙江大学博士学位论文,2007
    [63] J.L. Guzm′an,M.Berenguel,F.Rodr?guez,S.Dormido. INTERACTIVE TOOL FOR MOBILE ROBOT MOTION PLANNING. Robotics and Autonomous Systems,2007(9):1~23
    [64]秦东晨.面向运动型多功能车操纵安全性的建模、仿真与优化.武汉:华中科技大学博士学位论文,2007
    [65] Rajibul Huq,George K.I.Mann,Raymond G.Gosine. Mobile robot navigation using motor schema and fuzzy context dependent behavior modulation. Available online at www.sciencedirect.com,2007,(3):422~436
    [66]翟婉明.车辆—轨道耦合动力学.北京:科学出版社,2007.2
    [67]厦禾,张楠.车辆与结构动力相互作用.北京:科学出版社,2005.8
    [68] Yeap W K,Jefferies M E.Computing a representation of the local environment. Artificial Intelligence,1999,Vol.107 (2):265~301
    [69]张洁.轨道不平顺非均匀采样信号谱分析.成都:西南交通大学博士学位论文,2004
    [70]陈宪麦.轨道不平顺时频域分析及预测方法研究.北京:铁道部研究院博士学文论文,2006
    [70] Shang JianZhong,Luo Zirong,Li Shengyi. Research on the Mobility Evaluation and Innovation of Wheeled Space Rover. Chinese Journal of Mechanical Engineering,2006,19(2):193~196
    [71] Thrun S.Learning metric-topological maps for indoor mobile robot navigation. Artificial intelligence,1998,99(1):21~27
    [72]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响.北京:铁道部研究院博士学文论文,2001
    [73] Alex Ellery,Environment–robot interaction—the basis for mobility in planetary micro-rovers,Robotics and Autonomous Systems.2005,Vol.51:29~39
    [74] Qing-Jiu Huang a,Kenzo Nonami,Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control Mechatronics.2003,Vol.13:773~790
    [75] Roland Siegwart,Pierre Lamon,Thomas Estier,Michel Lauria,Ralph Piguet,Innovative design for wheeled locomotion in rough terrain.Robotics and Autonomous Systems,2002,Vol.40:151~162
    [76] J.L.Guzm′an,M.Berenguel,F.Rodr′?guez,S.Dormido,Interactive tool for mobile robot motion planning,Robotics and Autonomous Systems.2007,Vol.10:1016~1021
    [77] Rajibul Huq,George K.I.Mann,Raymond G.Gosine,Mobile robot navigation using motor schema and fuzzy context dependent behavior modulation.Applied Soft Computing,2008,Vol.8:422~436
    [78] Masanori Sato,Atushi Kanda,Kazuo Ishii,erformance evaluation of a neural network controller system for a wheel type mobile robot.International Congress Series,2007,Vol.1301:160–163
    [79] Gary Chartrand,Ping Zhang. Introduction to Graph Theory.Posts &Telecom Press,2007.9
    [80]闫浩文,褚衍东,杨树文等.计算机地图制图原理与算法基础.北京:科学出版社,2007.1
    [81]吴凡,宋鹰.AutoCAD支持下地图数据的拓扑组织.测绘通报,1998(2):17~22
    [82]马荣华,黄杏元,贾建华等.矿山地理信息系统中巷道模型的研究.测绘学报,2000,Vol.29(4)
    [83]杨文静,侯恩科,郝珠成等.基于Surpac的三维巷道模型构建方法.金属矿山,2007 (8):272~275
    [84]李水旺,田智慧.基于GIS的公路自然灾害的预警预报系统研究.测绘科学,2009,Vol.34(3):155~158
    [85]徐俊明.图论及其应用.合肥:中国科学技术大学出版社,2004
    [86]吴立新,史中文.地理信息系统原理与算法.北京:科学出版社,2003.10
    [87]桑玲玲.适合煤矿救援机器人的矿山地理信息系统研究.西安:西安科技大学,2008.6
    [88]赵国宁.基于GIS煤矿井下电子地图系统的研究.西安:西安科技大学,2009.6
    [89]贾建华,桑玲玲.GIS系统在矿井救援机器人中的设计与应用.西安科技大学学报,2009.6
    [90] Suman Chakravorty,John L.Junkins.Motion planning in uncertain environments with vision-like sensors. Automatica,2007,Vol.22(4):1~8
    [91]郭红梅,黄丁发,陈维锋等.基于GIS的城市地震现场搜救指挥辅助决策系统.国际地震动态,2008,(2):19~25
    [92]王飞,李虹,韩志勇等.基于GIS的煤矿地理信息系统的研究与开发.微计算机信息,2008,Vol.24 (8):230~231
    [93]吴雪峰,刘厚泉,王莉等.基于GIS的矿区救灾导航系统的应用研究.微计算机信息,2008,Vol.25(5):194~196
    [94]王海梅.基于GIS的最优路径算法研究与实现.南京:南京理工大学博士学位论文,2008
    [95]张小艳,周筱媛,魏娟.煤矿救援机器人全局路径规划.西安科技大学学报,2008,Vol.28. (2):321~326
    [96]黄席樾.现代智能算法理论及应用.北京:科学出版社,2005
    [97]刘利强,戴运桃,王丽华等.基于蚁群算法的水下潜器全局路径规划技术研究.系统仿真学报,2007,Vol.19(18):4174~4173
    [98] Wei Juan,Ma Hongwei.Parametric Optimization Design on Mine Carrier Robot. 2010 International Conference on Computer-aided Manufacturing and Design,2010.11
    [99] Wei Juan,Ma Hongwei.Kinetic Characterisitcs Analysis and Simulation Research on Carrier Robot. 2010 International Conference on Computer-aided Manufacturing and Design,2010.11
    [100]孙培山,樊治平,陈曦,康峰.评价知识库构建效果的框图与流程.东北大学学报(自然科学版),2010,Vol.31(9):1361~1364
    [101]杨玉中,吴立云,高永才.煤与瓦斯突出危险性评价的可拓方法.煤炭学报,2010,Vol.35(8):100~104
    [102]荆国强,陈德伟.一种基于代数图论的有限元模型节点排序方法.同济大学学报(自然科学版),2010,Vol.28(6):929~934

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700