深海采矿系统的运动响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会科学技术的不断发展,全世界对各种金属矿产的需求量日益增大,其中锰、钴等矿产的需求量更是快速增长。然而,陆地矿产资源的储量十分有限,仅能满足人类在未来几十年的有限时间内的需求,且矿产开采成本随着密度下降而升高,因此寻求新的矿产来源是迫在眉睫的。在人类尚未进行开发的大洋深处,却蕴藏着丰富的金属矿产资源,其中锰结核与钴结壳是非常引人瞩目的,这两种资源中富含锰、钴、铜、镍等各种金属元素,其成分百分比与总储量都比陆地要大几个数量级。深海矿产可以在相当长的时期内满足人类的需求,因此,深海采矿成为多国的重点研究方向。
     本文从深海采矿的发展入手,介绍了国际上以提升方式划分的几种开采方案,并选取集矿车和水力提升相结合的采矿系统为研究对象,从采集、提升、水面母船三个子系统进行了较为详细的功能分析与研究。对采集系统做了主要功能的分析,对提升系统的尺寸、布置、连接方式以及材料做了较详细的设计,并根据对水面母船的功能分析,提出了采矿船的总布置方案。以此为基础,根据势波理论与六自由度的动力学平衡方程,利用挪威船级社的HydroD软件,在频域内对工作母船在波浪上的运动性能进行了预报,其中的升沉响应传递函数可为升沉补偿系统的设计提供参考。
     鉴于深海采矿提升管下端为悬垂状态,这与普通海洋平台立管有很大不同,因此其运动响应情况应予以关注,文章后续内容便锁定在对提升系统的运动响应分析上。本文选用通用有限元软件Abaqus,根据莫里森方程与五阶斯托克斯波理论,以及提升管的动力方程,对提升系统作了有限元建模计算与分析,主要从以下两方面入手:
     1.采矿作业中的不同工况
     提升管在水中受到海流、海浪的作用而发生形变,现实中主要关注管末中间仓的水平偏移、以及管道强度相关的弯矩、最大轴向应力等情况。本文对提升管在定点作业状态下、不同速度的母船移位状态下以及布放时的响应做了建模计算,得到了在这些情况下上述主要响应变量的值,并总结了由环境载荷的变化和约束方式不同所带来的响应变化规律,整理了一些结论,并综合以上计算的结果,对提升管材料进行校核,提出了最优方案。
     2.提升系统设计参数的影响
     在这一部分内容中,假设提升管的尺寸不变,以中间仓的重量、浮体所提供的浮力以及球铰接的应用为变量,模拟了提升系统在以上变量影响下的响应情况,总结了各因素的影响规律,并提出了球铰接的针对性设置方法。该部分工作中所得结论对于提升系的参数设计是具有一定的参考意义的。
     总体说来,本文较综合、系统地对水力提升式深海采矿系统进行了设计、模拟与分析,主要研究内容可以为深海采矿系统的设计、升沉补偿系统的研究以及实际的深海采矿作业提供有益参考。
As the development of human’s science& technology, the world’s demand of various kinds of metals, especially manganese and cobalt , are increasing day by day. However, the mineral reserve in the land is very limited, which is only able to meet human’s requirement within a few decades now. And what’s more, the cost for mining is increasing with the decline of the mineral’s density. To sum up, it is urgent to look for new mineral resources. Deep in the bottom of the ocean, where we human haven’t developed yet, there are enormous scale of minerals, including manganese nodule and cobalt crust, which attract the attention from all around the world. The two kinds of minerals have a plentiful store of manganese, cobalt, copper, nickel and other kinds of metallic elements, both the percentage and total storage of which are both several orders of magnitude of that in the land. The minerals deep in the ocean are able to meet human requirement in a quite long period. Therefore, deep-sea mining becomes a focal point of study for many countries in the world.
     This thesis begins with the development of deep-sea mining, a few mining programs classified by hoisting styles are introduced, then a mining system of combined mining vehicle and hydraulic hoisting is chosen and introduced in detail as well as studied from three sub-systems, which are collecting system, hoisting system and mother ship system. Function analysis is made for the collecting system. A relatively detailed design regarding size, arrangement, joint method and material is made for the hoisting system. Based on function analysis of the mother ship, the RAOs of the ship are calculated according to potential wave theory and dynamic equilibrium equation of six degree of freedom through HydroD software from Det Norske Veritas, and frequency-domain motion performance of the ship is therefore predicted briefly, of which the heave RAO provides reference for heave compensation system design.
     The significant difference of deep-sea mining hoisting pipe from common ocean platform pipes is that the lower end is free, which makes its motion response notable. So the rest part of the thesis focuses on the motion response of the hoisting system. Based on Morison equation, 5-order Stokes wave theory and dynamic equation of the hoisting pipe, a general-purpose finite element software Abaqus is chosen to simulate the system. This part is divided into mainly two aspects as follow.
     1. Different Working Condition During Mining Operation
     As the impact of ocean current and waves, the riser is deformed. The most important parameters we care about are the horizontal offset of the mid-bin, maximum moment and axial stress, etc. The riser in different conditions such as working in a fixed position, mother ship shifting and installation progress are simulated, the parameters mentioned above are gained, as well as some conclusions regarding parameters’variation due to the change of environmental loads and restrains. And the material of the riser is checked through the calculations mentioned, thereby an optimal choice is made .
     2. Impact of The Design Parameters of The Hoisting System
     In this part, the size of the hoisting pipe is assumed to be fixed. The variables are chosen to be the weight of the mid-bin, the installation of buoyancy bodies and the appliance of spherical joints. The influence of which to the response parameters of the hoisting pipe is simulated, the influence disciplines of the variables are summarized, and a method of using ball joint properly is proposed. The conclusions of this part is of reference value to the hoisting system design.
     To sum up, a relatively comprehensive study of the deep-sea mining system is made in this paper, including design, simulation and analysis. The main research contents can provide useful reference for the design of deep-sea mining system, the study of heave compensation system and actual deep-sea mining operations.
引文
[1]辛仁臣,刘豪.海洋资源[M].北京:中国石化出版社, 2008:81-82.
    [2]李明生.特色产业西部富裕之路:来自湘鄂渝黔边区的报告[M].哈尔滨:黑龙江人民出版社, 2007:149-150.
    [3]阳宁,陈光国.深海矿产资源开采技术的现状与发展趋势,凿岩机械气动工具, vol. 2010(1):12-18.
    [4]吕炳全.海洋地质学概论[M],上海:同济大学出版社, 2008.
    [5]金翔龙.海洋金属矿产资源开发与利用,金属矿山, 2005(8): 15.
    [6]严旺生,高海亮.世界锰矿资源及锰矿业发展,中国锰业, 2009:vol. 27(3), 6-11.
    [7]莫杰.海洋地学前缘[M],海洋出版社, 2004.11.
    [8]吴宇平等.锂离子电池-应用与实践[M],化学工业出版社, 2004.
    [9]何清华,李爱强,邹湘伏.大洋富钴结壳调查进展及开采技术,金属矿山,2005.5.
    [10]杨慧宁,陈忠,颜文,古森昌.南海海域固体矿产资源与分布,我国专属经济区和大陆架勘测研究论文集.
    [11]邹伟生,黄家桢.大洋锰结核深海开采扬矿技术,矿业工程, 2006.6.
    [12] B. K. K. Jacobsen, K.. DEEP SEA MINING MODEL TESTS, presented at the Proceedings of the Annual Offshore Technology Conference.
    [13] P. A. A.R. Bath. Deep Sea Mining Technology: Recent Developments and Future Projects, presented at the Offshore Technology Conference.
    [14] G. GP. Deep seabed mining: Past failures and future prospects, MARINE GEORESOURCES & GEOTECHNOLOGY, APR-JUN 2002: P161-176.
    [15] H. B. Amann, Helmut. Environmental Impact of Deep Sea Mining, presented at the Proceedings of the 25th Annual Offshore Technology Conference, May 3, 1993 - May 6, 1993.
    [16] E. DV, A review of some environmental issues affecting marine mining,MARINE GEORESOURCES & GEOTECHNOLOGY, JAN-MAR 2001: 51-63.
    [17]谢龙水.深海采矿船设计的研究,有色金属:矿山部分, 1995.3: 1-6.
    [18]郜焕秋,益其乐.深海采矿中试系统水面支持船方案设计简介,第八届全国海洋工程学术会议,成都, 2000.10.
    [19]黄金锋.1000米采矿船动力定位的推力系统研究,武汉理工大学硕士学位论文, 2004.
    [20]卢笑庆.1000米采矿船动力定位系统模糊控制器研究,武汉理工大学硕士学位论文, 2004.
    [21]周余明.基于惯性技术的采矿船运动检测系统研究,广东工业大学硕士学位论文, 2010.
    [22]秦军.采矿船位移超声波检测技术与模拟实验研究,广东工业大学硕士学位论文, 2008.
    [23]丁六怀,高宇清.深海采矿集矿机的研究与开发,矿业研究与开发, 2006,26(z1):52-56.
    [24]周良,李力,李小飞.海底采矿车多自由度铰接机构设计与优化,现代制造工程, 2009(9), 120-123.
    [25]沈潇.海底采矿车车架的设计计算,煤矿机械, 2009,vol. 30(5):10-12.
    [26]朱洪前,桂卫华,唐斌,王随平.深海采矿机器人行走系统模糊控制研究,矿业研究与开发, 2008,vol. 28(3):38-45.
    [27]郭淑娟,涂书柏.海底采矿车转向半径分析及速度同步控制,计算机仿真, 2008,vol.25(3):179-223.
    [28]王和平,吴鸿云.海底采矿集矿机智能控制系统的研究,矿业研究与开发, 2006, vol. 26(z1).
    [29]王随平,熊光辉,陈勇.深海集矿机模型车避障系统设计,计算机测量与控制, 2008.vol. 16(5):640-642.
    [30]李力,赵辉,李炳华.铰接履带式海底采矿车越障性能仿真研究,计算机仿真, vol.25(12), pp. 195-199, 2008.12.
    [31]邹吉炎,刘少军,黄中华,朱浩.悬臂式采矿车越障性能研究,矿冶工程, 2007,vol.27(2): 9-13.
    [32]廖平,傅杰.基于遗传算法的深海集矿车避障路径规划方法,机电工程技术, 2006,vol. 35(3):40-59.
    [33]倪佳.深海采矿被动升沉补偿系统参数设计与仿真研究,"中南大学硕士学位论文, 2009.5.15.
    [34]武伟.深海采矿船升沉模拟平台运动控制研究,中南大学硕士学位论文, 2009.
    [35]吴百海,肖体兵,龙建军,毛宁.深海采矿装置的自动升沉补偿系统的模拟研究,机械工程学报,2003, vol. 39(7):128-133.
    [36]刘国军,肖体兵,吴百海.深海采矿系统多维运动补偿器的运动学设计,液压与气动, vol. 2009(3): 11-13.
    [37]徐海良,何清华.海洋采矿输送管道运动阻力分析,矿冶工程, 2004, vol.24(5): 9-15.
    [38]徐海良.单泵与储料罐组合的深海采矿软管输送系统研究,中南大学博士学位论文, 2004.
    [39]徐海良,何清华.深海采矿系统研究,中国矿业, 2004,vol. 13(7):43-46.
    [40]徐海良,何清华.深海采矿输送管道内流体对管道的作用力分析,矿业研究与开发,2004, vol. 24(6): 46-49.
    [41]徐海良,龙国键.在海水阻力作用下的深海采矿系统力学参数分析,机械科学与技术, 2006,vol. 25(8): 917-921.
    [42]徐海良,何清华.深海采矿矿石输送设备理论与实验研究,有色金属,2005,vol.57(2): 41-45.
    [43]徐海良,何清华.海浪和海流作用下的深海采矿输送系统参数分析,湖南科技大学学报(自然科学版),2006, vol. 21(2):68-72.
    [44]徐海良,尹平伟,徐大鹏.深海采矿浮体材料理论研究,中国矿业,2007, vol.16(12): 90-93.
    [45]申焱华,李浩然,张云仙,张文明.扬矿管在海水中的整体运动分析,有色金属, 2002,vol. 54(1): 78-83.
    [46]盛庆武.深海采矿系统扬矿管流体动力系数试验研究及应用,中国船舶科学研究中心硕士学位论文, 2001.
    [47]冯雅丽,徐妍,冯福璋,张文明.1km铰接式扬矿子系统横向运动仿真与实验研究,中国矿业大学学报,2007, vol.36(2):246-250.
    [48]王刚,刘少军,李力.深海采矿扬矿系统水下构形与动力学特性数值仿真,计算机仿真, 2005,vol. 22(10):295-298.
    [49]陈新明.中国深海采矿技术的发展,矿业研究与开发, 2006,vol. 26(10): 40-48.
    [50] G. S. YOON, Collecting and lifting methods of manganese and mining device, KR Patent, 2005.01.15.
    [51] C. M. J. Masuda Y, Mero J L, Continuous bucket line dredging at 1200 ft, presented at theOffshore Technology Conference, Housten, Texas, 1971.
    [52] G. Trotman, Analysis of Exploration and Mining Technology for Manganese Nodules: Published in co-operation with the United Nations, 1984.
    [53]葛彤,朱继懋,姚宝恒.分散式深海局部试采矿系统,中国专利, 2006.01.26.
    [54]阳宁,夏建新.国际海底资源开发技术及其发展趋势,矿业工程,2000,vol. 20(1):1-4.
    [55]唐达生,邹伟生.深海扬矿硬管系统设备可行性分析,矿冶工程, 2004,vol.24(5): 16-19.
    [56] J. D. N. G. P. RELEASE. (2006.10). Jan De Nul builds Specialized Mining Ship Under a Contract to Mine for Nautilus Minerals Inc. Available: http://www.jandenul.com
    [57] S. Karlsen, Barge transportation of heavy objects,Master, Marine Technology, Norwegian University of Science and Technology, Trondheim, 2010.6.
    [58]邓合霞.海洋立管在非线性波浪载荷下的极值响应研究,哈尔滨工程大学硕士学位论文, 2005.12.
    [59]竺艳蓉.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [60] Abaqus Analysis User's Mannual. Available: http://docs.abaqus.com:8000/aoss-hdocs/v6.11/books/usb/default.htm
    [61]徐妍,张文明,冯雅丽.多段铰接式扬矿硬管系统建模与动力学分析,中南大学学报(自然科学版), 2008,vol. 39(3).
    [62]王丹丹.水下立管载荷与运动计算分析[D].大连理工大学硕士学位论文,2006.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700