高速铁路采空区路基变形数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩板结构是随着铁路的建设而出现的一种新型轨下基础结构形式,桩板结构在郑西客专湿陷性黄土路基、武广客专软土路基处理中有着很好的效果,但把桩板结构应用于高速铁路采空区的路基处理尚属较新颖的研究课题,对于这种处理方法,尚无规范可循而且关于这方面的文献也十分少。对于此类工程,目前通常只是依靠经验来指导施工。
     本文基于合福铁路五府山车站试验段断面一DK499+920、断面二DK499+940,通过岩土有限差分软件FLAC3D进行三维数值建模,分析研究了,断面一、断面二在路堤填筑荷载作用下的沉降变形规律;桩板结构的荷载传递机理等。主要研究内容和成果如下:
     (1)对开采沉陷理论、采空区路(地)基变形、采空区稳定性及采空区治理技术的国内外研究现状进行了系统的总结,同时分析总结了采空区变形及稳定性的数值模拟方法。
     (2)对断面一、断面二实际工况的数值分析表明,桩板结构可以有效地将上部荷载传递到桩周土层中去,减小了桩间土体所承担的荷载,也就有效地减小了地层的压缩量以及地基的总沉降量,同时有效减小了采空区的变形,证明桩板结构对于采空区路基具有良好的加固效果。
     (3)对断面一、断面二沉降变形规律进行研究,分析发现:在相同填筑荷载作用下,桩身长的沉降量要小于桩身短的沉降量;穿过采空巷道的桩和没有穿过采空巷道的桩两者沉降量相差不大;四桩中心与两桩中心桩间土的沉降量在相同填筑荷载作用下基本相同;路肩处桩顶的沉降量要小于路基中心处桩顶的沉降量;桩土相对位移随着路堤填土高度的增加而增大。
     (4)对断面一、断面二荷载传递机理进行研究,分析表明:在路堤填筑荷载作用下,轴力沿桩身总体呈上大下小,在采空巷道范围内,轴力保持不变;桩身侧摩阻力沿桩身分布总体呈先增大后减小,在采空巷道处侧摩阻力为0;桩土应力比以及桩土荷载分担比都随着路堤填筑高度的增加而逐渐增大并最终趋于一稳定值。
Pile-plank structure is a kind of new-type form of basic structure under the rail with the appearance of the construction of railway, the pile-plank structure has a good effect on dealing with the collapsible loess subgrade of Zhengzhou-Xian passenger dedicated line and the soft soil subgrade of Wuhan-Guangzhou passenger dedicated lines, but it is a new research topic that the pile-plank structure is applied to the treatment of subgrade above mined-out area in high-speed railway. For this kind of processing method, there are no norms to be followed and the literature in this area is also very little. For this kind of project, usually just rely on the experience to guide the construction at present,
     In this dissertation, based on the embankment section of DK499+920and DK499+940in Wufushan railway station, the three-dimensional numerical modeling is built by geotechnical finite difference software FLAC3D, it is analyzed and studied that the settlement and deformation rules of section one and section two under the embankment load and the load transfer mechanism of the pile-plank structure and so on. The main contents and results are as follows:
     (1) Summarize systematically the present situation of the research on the theory of mining subsidence, the deformation of subgrade above mined-out area, the stability of mined-out area, the disposal technology for mined-out area at home and abroad. At the same time, the numerical simulation methods for subgrade deformation and stability above mined-out area are analyzed.
     (2) Analyze the numerical value of the two sections, which shows that the pile-plank structure can transmit effectively the upper load to the soil around piles, reduces significantly the pressure on the soil among piles, reduces effectively the amount of compression of the stratum and the total settlement of the ground, and reduces effectively the deformation of subgrade above mined-out area. All above prove that pile-plank structure has good reinforcement effect on subgrade above mined-out area.
     (3) Study on the settlement and deformation rules of the embankment of the two embankment sections which suggest that settlement of the long pile should be less than the settlement of the short pile in the same embankment load; the settlement of piles through the mined-out area and the other piles which are not through the mined-out area has little difference; the central soil settlement of four piles and two piles is essentially the same under the same embankment load; the settlement of pile top on the shoulder is smaller than that in the centre of the subgrade; the relative displacement between the pile and the soil increase with the increment of the height of embankment fill.
     (4) Study on the load transfer mechanism of the embankment of the two embankment sections which suggests that the axial force along the pile body is large small distribution under the embankment load, the axial force remains constant in the mined-out area; the distribution of the skin frictional resistance of the pile increases first and then decreases along the pile, the skin frictional resistance of the pile is zero in the mined-out area; both the Pile-soil stress ratio and the pile-soil load share ratio increase gradually with the increment of the height of the embankment fill, and eventually tend to a stable value.
引文
[1]Jonce C J,Spencer W J. The implication of mining subsidence for modern highway structure [C]. Large Ground Movements and Structures Proceedings. University of Wales Cardiff,1977,515-526
    [2]陈则连.煤矿采空区地表岩移对高速铁路的影响研究[J].铁道工程学报,2009,(4):5-8
    [3]陈晓斌,张家生,安关峰等.高速公路采空区地面变形计算方法[J].岩土工程学报,2007,29(2):191—197
    [4]张向东,张淑坤、高速公路与下伏采空区相互作用分析[J].科学技术与工程,2008,8(2):436-440
    [5]时环生.田德铁路小龙煤矿采空区的地质选线[J].铁道工程学报,2007,(9):14-17
    [6]刘玉祥,张群喜.玲珑金况巷道塌陷治理[J].有色金属,2006,58(4):86-88
    [7]C. P. Liao. Fuzzy influence function method for calculating mine subsidence in a horizontal seam [J]. Geotechnical and Geological Engineering,1993(4):235-270
    [8]O'connor K.M,Mtlrphy E.W.TDR Monitoring as a component of subsidence risk assessment [J]. International Journal of Rock Mechanics and Mining Sciences, v34, n 3-4, Apr-Jun,1997,619-630
    [9]Kewal K.Kohli. Investigation of subsidence event over multiple seam mining area, Proceedings of the llth International Conference on Ground Control in Mining,Jul 7-10,1992, Wollongong,462-465
    [10]Sheorey PR, Singh KB. Ground subsidence observations and a modified influence function method for complete subsidence prediction [J]. International Journal of Rock Mechanics and Mining Sciences,2000(5):801-818
    [11]Palchik,V. Prediction of hollows in abandoned underground workings at shallow depth [J]. Geotechnical and Geological Engineering, v18, n 1,2000,39-51
    [12]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京,中国工业出版,1965,45-86
    [13]何国清,马伟民,王金庄.威布尔分布形函数在地表移动计算中的应用一用碎块体理论研究岩移基本规律的探讨[J].中国矿业学院学报,1982,15-20
    [14]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983,6(2):18-28
    [15]李增琪.使用富氏积分变换计算开挖引起的地表移动之二—水平煤层空间问题[J].煤炭学报,1985,3(1):5-19
    [16]杨伦,于广明.煤矿覆岩采动离层位置的计算[J].煤炭学报,1996,12(6):576-581
    [17]郝庆旺.采二动岩体空隙扩散模型及其在开采沉陷研究中的应用[J].中国矿业学院学报,1988
    [18]郭增长.极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究[D].博士论文.北京:中国矿业大学北京研究生部,2000
    [19]张玉卓、仲惟林、姚建国等.岩层移动的错位理论解与边界元计算[J].煤炭学报,1987,6(2):21-31
    [20]张玉卓,仲惟林,姚建国等.断层影响下地表移动的统计和数值模拟研究[J].煤炭学报,1989,3(1):23-31
    [21]谢和平、陈至达.非线性大变形有限元分析及在岩层移动中的应用[J].中国矿业大学学报,1988,(2):94-98
    [22]王泳嘉.关于岩石力学有限元程序发展的若干思考[J].岩石力学与工程地质,1998,17:940-947
    [23]邓喀中.开采沉陷中的岩体结构效应研究[D].博士论文.中国矿业大学,1993
    [24]麻凤海、范学理、王泳嘉.岩层移动动态过程的离散单元法分析[J].煤炭学报,1996,8(4):388-392
    [25]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,2(1):50-56
    [26]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):213
    [27]Tang C.A.,Numerical simulation of progressive rock failureand associated seismicity.Int. J.Rock mech.min.sci,1997,34 (2):249-261
    [28]吴侃.急倾斜厚煤层条带开采三维有限元模拟分析[J].矿山测量,1994,3:39-43
    [29]张俊英.大倾角多煤层条带开采三维有限元模拟[J].煤炭学报,1999,6(3):242-246
    [30]C.J.F.P. Jones nad W.J.Spencer. The Implication of Mining subsidence for Modern Highway structure, Large Greunel Movements and structures Proceedings, University of Wales Cardiff,1977,515-526
    [31]M.C.Wang.Settlement Behvaior of Footing Above a Void,PCGGE, New Orleans,1982,168-183
    [32]Shand M.Sergenat.Highway Damage, Due to Subsidence, MIS,1988(2):18-32
    [33]C.J.F.PJones and T.D.Rourke. Mining subsidence Effects on Transportation Facilities, MIS,1988 (7):107-126
    [34]Eric.c. Drum. Mechanism of Subsidence Induced Damage and Technique for Analysis, Mis. 1985(10):168-190
    [35]许延春,耿德庸.采空区待建工程地基稳定性分析评价[J].勘察科学技术,1996:9-12
    [36]腾永海,张俊英.老采空区地基稳定性评价[J].煤炭学报,1997,22(5):504-508
    [37]王传焕,李守礼.铁路通过煤矿采空区稳定性评价[J].东北煤炭技术,1998,6:15-18
    [38]蒋卫东,李夕兵,胡柳青等.基于灰色定权聚类的采空区上部地表稳定性分析矿冶工程[J].2002,4(22):15-17
    [39]郭广礼,何国清,崔曙光等.部分开采老采空区曲雁稳定性分析[J].矿山压力与顶板管理,2003,3:70-74
    [40]张俊英.采空区地表建筑地基稳定性模糊综合评价方法[J].北京科技大学学报,2009,31(11):1368-1372
    [41]Wood.Lamaeh Drum constitutive Modeling and Finite Element Analysis of Ground Subsidence due to Mining, University of Oklahoma,1990
    [42]Sirivardane and Amanda. Displacement Based Approach for Prediction of Subsidence Caused by Long wall Mining Numerical Method, Proc, Th, int, conf on computer. Method,1991
    [43]X.L.Yao and D.J.Reddish. Nonlinear Finite Element Analysis of Surface Subsidence Arising From Indined Sean Entraction, INT.l.RODK, Mech.&.mining SCI,1993(4)
    [44]K. M. O'Connor, Ch. H. Dowding. Dstinct Element Modeling and Analysis of Mining-induced Subsidence [J]. Rock Mechanics and Rock Engineering,1992(25):1-24
    [45]M. E. Diaz-Femandez. M. I. Alvarez-Fernandez. A. E. Alvarez-Vigil. Computation of influence functions for automatic mining subsidence prediction[J].Computational Geosciences,2010(1):83-103
    [46]Vyazmensky. Alexander, Elmo.Davide, Stead.Douglas. Role of Rock Mass Fabric and Faulting in the Development of Block Caving Induced Surface Subsidence [J]. Rock Mechanics and Rock Engineering,2010(5):533-556
    [47]常江.老采空区上方建筑物地基稳定性的研究[J].西安矿业学院学报,1999,15-19
    [48]袁灯平,马金荣.利用ANSYS进行开采沉陷模拟分析分析[J].济南大学学报(自然科学板),2001,15(4):336-339
    [49]李春雷,谢谟文,李晓璐.基于GIS和概率积分法的北莓河铁矿开采沉陷预测及应用[J].岩石力学与工程学报,2007,6:1243-1249
    [50]汪吉林,丁陈建,张云,吴圣林.老采空区地基变形对地面建筑影响的数值分析[J].采矿与安全工程学报,2008,25(4):476-480
    [51]罗周全,刘晓明,吴亚斌等.基于Surpac和Phase2耦合的采空区稳定性模拟分析[J].2008,27(4):485-488
    [52]寇向宇,贾明涛,王李管等.基于CMS及DMINE-FLAC3D耦合技术的采空区稳定性分析与评价[J].矿业工程研究,2010,25(1):31-35
    [53]童立元,刘松玉,邱钰等.高速公路下伏采空区问题国内外研究现状及进展[J].岩石力学与工程学报,2004,(07)
    [54]彭振斌等.注浆工程设计计算与施工[M].中国地质大学出版社,1997
    [55]交通部第二公路设计院主编.公路路基设计设计规范(JDTJD013-95) [M].北京:人民交通出版社,2001
    [56]刘波,韩彦辉(美).FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [57]胡伟.软土地层地铁车站深基坑开挖围护结构稳定性数值模拟分析[D].成都:西南交通大学硕士学位论文,2005.9:13-14
    [58]吴洪词.长江三峡水利枢纽船闸陡高边稳定性的拉格朗日元分析[J].贵州工业大学学报,1998,27(1):32-38
    [59]杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报(自然科学版),1996,17(4):39-44
    [60]龚晓南.复合地基理论及工程应用(第二版)[M].北京:中国建筑工业出版社,2007
    [61]徐正中.桩承式路堤固结性状的试验与理论研究[D].博士学位论文,杭州:浙江大学,2009
    [62]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008
    [63]孙占法.老采空区埋深对其上方建筑地基稳定性影响的数值模拟研究[D].硕士学位论文,太原:太原理工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700