煤气化过程中微量元素的迁移转化及高温脱除的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤气化技术是一种高效、经济、清洁的煤炭利用技术。目前,微量元素的排放和控制主要集中于燃煤烟气中有害微量元素的排放及控制技术,而对气化过程中微量元素排放与控制的研究还相对较少。为有效预测和控制煤气化过程中有害微量元素向大气的直接排放,需要研究其迁移和转化规律及有效控制方法,进一步建立和完善污染防治的理论基础。本文对煤在高温高压条件下热解气化过程中微量元素的释放与富集、形态转化、脱除控制和反应机理等方面进行了较为详细和系统的研究。
     选用中国典型动力用煤和较为特殊的高微量元素含量煤,对煤中可检测微量元素在煤转化过程中的释放及富集规律进行了总体的考察,分析了外在热处理方式及其自身的物理化学性质和赋存形态对挥发性的影响。利用小型慢速、快速升温热解装置对中国典型动力用煤进行高温热解实验,研究了在950-1400℃的温度范围内微量元素释放与富集规律。通过选用四种中国典型动力用煤,利用ICP-MS、XRF、XRD检测方法,研究煤中四十余种可检测微量元素(包括氟、氯,稀土元素等)在不同反应器中随着反应温度、升温速率、停留时间等热处理条件的变化而产生的不同的挥发与富集行为,并根据大量实验数据对微量元素在高温热解过程中的挥发特性和富集规律进行比较和分类,得出表征微量元素排放特性数值。煤中多数易挥发性微量元素在高温焦中的富集率极低,而部分不易挥发的微量元素则更倾向于在高温焦中富集,其中稀土元素的富集现象尤为突出。
     采用高温高压气化装置,研究煤高温高压热解气化过程中,煤中微量元素砷、铬的迁移转化规律。选用两种中国典型动力用煤和两种高微量元素、高硫高灰煤(包括不同变质程度、煤岩组成、灰熔点和硫含量煤),探讨了高温高压条件下(800-1200℃,1-3 MPa),微量元素砷、铬的挥发性和形态分布规律;分析了在不同的气氛下,温度和压力等因素对元素砷、铬的迁移转化的影响;并结合其自身性质进一步分析煤中矿物质在高温气化过程中的分解和转化。高温高压热解气化过程中微量元素As和Cr的挥发性随着温度的升高而有不同程度的增加。低灰煤A中的As在800℃以前就开始挥发,而高灰煤A中的As在800℃以后才大部分挥发出来,挥发率在1200℃时达到最大值。而Cr的挥发率在考察的温度和压力范围内的变化并不大。
     将小型气化装置与安大略法气态汞采集装置相结合,研究了煤高温转化过程中易挥发性微量元素汞的迁移及形态转化规律。主要利用OHM, CVAFS等方法在热解/气化/燃烧/富氧燃烧条件下(N2, CO2, H2O, Air, O2/CO2)进行汞的形态转化的实验研究,分析了不同工况下汞的形态转化和分布规律,并结合化学热力学模型进行结果的对比分析,为高温煤热解气化条件下汞的排放控制提供实验数据和理论依据。气化过程中汞的释放率较高,元素汞是气相产物中汞的主要形态。温度是汞的释放和氧化的最重要的影响因素,并且随着热解温度的升高及加热时间的延长,气体产物中的二价汞的比例有不同程度的增加。空气气氛中汞的挥发率和二价汞占气态总汞的比例都同比高于氧气/二氧化碳气氛,元素汞仍然是主要的汞存在形式。
     在上述煤高温高压热解气化过程中微量元素排放特性研究的基础上,进一步研究吸附剂对微量元素汞的高温脱除效果与吸附机理。设计和搭建了高温吸附反应装置,选用新型工业非碳基矿物吸附剂,结合汞在线分析系统,进行了非碳基矿物吸附剂脱汞效率的实验与机理研究。利用TGA, INAA, CCSEM, CVAFS, CVAAS, XRD, FSEM-EDS等分析方法,分析了温度、接触时间、预处理等因素和吸附剂的矿物组成、矿物转化,以及水蒸气、碱金属和硅土添加剂等对汞的高温吸附效率的影响。吸附剂的吸附能力受到温度、预处理方式和时间的影响,硅土的添加有利于吸附剂对单质汞的高温长时吸附,碱金属化合物的添加则降低了吸附剂的吸附活性,而水蒸气对吸附剂的吸附效果影响不到。吸附剂需要在有氧环境中进行高温活化,而当温度高于1100℃时,长时间的加热反而会导致吸附剂表面发生熔融和孔闭合而失去活性。进一步分析了吸附反应过程,对实验现象和吸附机理进行综合理论阐述。
Coal is expected to keep its important position as a major world energy source for a long term because of the relative abundance of its reserves compared to those of natural gas and, in particular, petroleum. Coal plays a particularly vital role in power generation, currently accounting for about 40% of the world's electricity production; with this situation expected to continue at least by 2050. In addition to the major combustible components, coal contains many toxic elements in trace amounts (<1000 ppm), such as mercury, arsenic and chromium. Since large quantities of coal are consumed each year, the pollutant emissions from coal utilization may cause serious risks to ecosystem. As a result, there are an increasing number of international and national programmes and action plans concerned with reducing trace element emissions.
     Integrated gasification combined cycles (IGCC) may become the preferred way of using coal for power generation because of the promise of high efficiency and minimal environmental impact. The hot raw product gas leaving the gasifier in IGCC power plants carries a complement of toxic and/or corrosive trace elements. In order to improve thermal efficiency and reduce capital and operating costs, without adversely affecting environmental performance, it will be necessary to develop hot gas cleaning technology to purify the coal-derived gas streams at much higher temperatures. However, more volatile elements such as mercury and arsenic, may be present totally, or partially, in the vapour phase and more liable to pass to the turbine at higher temperatures during gasification. Therefore, there is a need to investigate the possibility of removing trace compounds from raw coal gas at elevated temperatures. Solid non-carbon based sorbents appears to offer a potential solution here.
     The aim of the present study was to investigate the emission and the control of trace elements during gasification. The first stage was mainly on the volatility and speciation of various trace elements as well as clorine, fluorine and rare elements, during high temperatures pyrolysis and gasification of four typical Chinese coals commonly used in gasification stations and two high toxic concent coals. The analysis methods in the study were various involving TGA, INAA, CVAAS, XRF, ICP-MS, CVAFS, XRD, CCSEM and FSEM-EDS. Experiments were conducted on bench-scale fixed bed, drop tube furnace or entrain flow reactor under atmospheric/high pressure at final temperatures from 400 to 1500℃, respectively. The gas-phase mercury was analyzed by an atomic fluorescence mercury analyzer according to the Ontario Hydro Method. It was observed that most of the volatile elements release from coals at high temperatures, such as mercury, arsenic, selenium and so on. However, some non-volatile elements still remained in the coal ash or captured on fine particles, such as chromium and rare elements. The volatility of volatile and some semi-volatile elements increased with temperature monotonically with temperature over 30 min. Pressure and holding time at ending temperatures had positive effects on volatility of trace elements in these two groups, however, the influence were not that obviously as temperature did. For gas-phase mercury, elemental mercury was the dominant species at most of the temperatures and holding times examined. It was also observed that high temperatures and long times enhanced mercury oxidation. The maximum value of the ratio of Hg2+/HgT was achieved during the high temperature steam gasification.
     Comparative studies on mercury emission under different conditions indicated that the volatility and speciation of mercury may correlate with the halogen concentration in the coals. However, no obvious correlation between Hg2+/HgT and basic oxides or acidic oxides in the ash was observed. Thermodynamic equilibrium calculations based on the principle of Gibbs free energy minimisation had been run, to predict speciation of mercury during high temperature pyrolysis and gasificaiton. The results were in coincidence with the experimental results.
     The second stage of the study focused on the removal of mercuy released during coal gasification, by contacting with suitable sorbents. A new high-temperature, mineral, non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600℃. The sorbent was consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600-1100℃and requires activation of the minerals contained within the sorbents. Mercury capture was dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1000℃and increases monotonically with temperature. The presence of oxygen was also required. Freshly activated sorbent was the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation was suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that were both contained within the sorbent. Deactivation occurs at temperatures higher than 1000℃, and this was due to melting of the substrate and pore closure. The situation in packed beds was complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO2 on poor Sorbent B was much larger than sorbent A. This study described results of a research program at the University of Utah that focuses on mercury sorption in packed beds. Companion work had focused on mercury sorption in disperse phase flow reactors.
引文
[1]中国煤田地质总局.全国煤炭资源预测与评价(第三次全国煤田预测)(研究报告)涿州:中国煤田地质总局.1997.
    [2]WCI. The global coal market. http://www.worldcoal. org/assetscm/files/PDF/globalcoalmarket.pdf (Accessed:13.11.07).2007.
    [3]EIA. International Energy Outlook.http://www. eia.doe.gov/oiaf/ieo/coal.html, (Accessed:13.11.07).
    [4]中国煤炭资源网.中国煤炭总参量和消耗量统计报告http://www.sxcoal.com/coal/1951445/articlenew.html.2011.
    [5]Longwell, J. P., Rubin, E. S., Wilson, J. Coal:Energy for the future. Progress in Energy and Combustion Science.1995,21(4):269-360.
    [6]Rand, D. A. J., Dell, R. M. Fuels-Hydrogen Production:Coal Gasification, in. Encyclopedia of Electrochemical Power Sources, Amsterdam:Elsevier; 2009.
    [7]Wagner, N. J., Coertzen, M., Matjie, R. H., van Dyk, J. C., et al. Coal Gasification. in. Applied Coal Petrology, Burlington:Elsevier; 2008.
    [8]Nriagu J O, P. J. M. Quantitative assessment of worldwide contamination of air, water and soil by trace elements. Nature.1988,333:134-139.
    [9]陈清,卢国埕.微量元素与健康.北京:北京大学出版社.1989.
    [10]Gluskoter Harold, J. Mineral Matter and Trace Elements in Coal. in. Trace Elements in Fuel, American Chemical Society; 1975.
    [11]USEPA. Mercury Study Report to Congress. Volume V:Health Effect of Mercury and Mercury Compounds. Washington DC:EPA 452/R-97-007; U.S. EPA Office of Air Quality Planning and Standards,1997.
    [12]Richaud, R., Lachas, H., Collot, A.-G., Mannerings, A. G., et al. Trace mercury concentrations in coals and coal-derived material determined by atomic absorption spectrophotometry. Fuel.1998,77(5):359-368.
    [13]Renner, R. Where is the mercury? Environmental Science & Technology.2004, 38(1):12A-12A.
    [14]Finkelman, R. B. Medical Geology:effects of geological environments on human health. International Journal of Coal Geology.2005,62(3):193-194.
    [15]Sloss, L. L. Trace emissions from coal combustion:Measurement and control. Energy & Fuels.1996,37(3):230-230.
    [16]USEPA., Clean Air Mercury Rule, Technical available from http://www.epa.gov/mercuryrule:March 2005.
    [17]Sloss, L. L., Smith, M. I. Trace Element Emissions. London:IEACCC/34; IEA Coal Research,2000.
    [18]Clarke, L. B. The fate of trace elements during coal combustion and gasification:an overview. Fuel.1993,72(6):731-736.
    [19]Swaine, D. J., Goodarzi, F. Enironmental Aspect of Trace Elements in Coal. Dordrecht:Kluwer Academic Publishers,1995.
    [20]Liu, G., Zheng, L., Zhang, Y., Qi, C., et al. Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation,Yanzhou Coalfield, China. International Journal of Coal Geology.2007,71(2-3):371-385.
    [21]Lindahl Peter, C., Finkelman Robert, B. Factors Influencing Major, Minor, and Trace Element Variations in U.S. Coals. in. Mineral Matter and Ash in Coal, American Chemical Society; 1986.
    [22]Finkelman, R. B. Coal:Classification, coalification, mineralogy, trace-element chemistry, and oil and gas potential. Earth-Science Reviews.1993,34(1):65-66.
    [23]Clarke, L. B., Sloss, L. L., Trace elements - emissions form coal combution and gasification., Technical IEA Coal Research:London,1992.
    [24]Dai, S., Li, D., Chou, C.-L., Zhao, L., et al. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology.2008, 74(3-4):185-202.
    [25]Helble, J. J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators. Fuel Processing Technology. 2000,63(2-3):125-147.
    [26]Meij, R., Winkel, t. B. H. Trace elements in world steam coal and their behaviour in Dutch coal-fired power stations:A review. International Journal of Coal Geology. 2009,77(3-4):289-293.
    [27]Nyberg, C. M., Thompson, J. S., Zhuang, Y, Pavlish, J. H., et al. Fate of trace element haps when applying mercury control technologies. Fuel Processing Technology.2009,90(11):1348-1353.
    [28]Vassilev, S. V., Eskenazy, G. M., Vassileva, C. G. Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology.2001,72(2):103-129.
    [29]Wang, J., Takaya, A., Tomita, A. Leaching of ashes and chars for examining transformations of trace elements during coal combustion and pyrolysis. Fuel.2004, 83(6):651-660.
    [30]Goodarzi, F. Mineralogy, elemental composition and modes of occurrence of elements in Canadian feed-coals. Fuel.2002,81(9):1199-1213.
    [31]周义平.老厂矿区无烟煤中砷的分布类型及赋存形态.煤田地质与勘探.1998,26(4):8~13.
    [32]郑楚光,徐明厚,张军营等.燃煤痕量元素的排放与控制.武汉:湖北科学技术出版社,2002.
    [33]郑宝山,王华东,王连方.地方性砷中毒与乌脚病.乌鲁木齐:新疆科技卫生出版社,1997.
    [34]任德贻,赵峰华,张军营等.煤中有害微量元素富集的成因类型初探.地学前缘1999,6(suppl.):17-21.
    [35]张军营,郑楚光,刘晶.燃煤过程中砷污染和抑制研究进展.煤炭转化.2002,25(2):22-28.
    [36]Zhang, J., Ren, D., Zheng, C., Zeng, R., et al. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. International Journal of Coal Geology.2002,53(1):55-64.
    [37]刘晶,郭欣,陆晓华,郑楚光等.煤中痕量砷和汞的形态分析.华中理工大学学报.2000,29(7):71-73.
    [38]Jepsen Anders, F. Measurements of Mercury Vapor in the Atmosphere. in. Trace Elements in the Environment, American Chemistry Society; 1973.
    [39]Benson S.A., Erickson T.A., Shadman E.N., Zygarlicke C.J., et al., Trace Element Emissions, presented at the Coal Fired Power Systems7994:Advances in IGCC and PFBC Contractors Review Meeting, Report DE-AC21-92MC28016, Technical Energy and Environmental Research Centre:University of North Dakota,1994; pp 592-606.
    [40]Kristiansen, A., Understanding Coal Gasification, Technical 1EA Coal Research: London,1996; p 69.
    [41]Diaz-Somoano, M., Martlnez-Tarazona, M. R. Trace element evaporation during coal gasification based on a thermodynamic equilibrium calculation approach. Fuel. 2003,82(2):137-145.
    [42]Helble, J. J., Mojtahedi, W., Lyyraen, J., Jokiniemi, J., et al. Trace element partitioning during coal gasification. Fuel.1996,75(8):931-939.
    [43]Richaud, R., Lachas, H., Healey, A. E., Reed, G. P., et al. Trace element analysis of gasification plant samples by i.c.p.-m.s.:validation by comparison of results from two laboratories. Fuel.2000,79(9):1077-1087.
    [44]Reed, G. P., Ergenler, A., Grace, J. R., Watkinson, A. P., et al. Control of gasifier mercury emissions in a hot gas filter:The effect of temperature. Fuel.2001,80(5): 623-634.
    [45]Mangena, S. J., Bunt, J. R., Waanders, F. B., Baker, G. Identification of reaction zones in a commercial Sasol-Lurgi fixed bed dry bottom gasifier operating on North Dakota lignite. Fuel.2010,90(1):167-173.
    [46]Zajusz-Zubek, E., Konieczynski, J. Dynamics of trace elements release in a coal pyrolysis process. Fuel.2003,82(10):1281-1290.
    [47]Wang, Y., Li Haibin, Huang, H. Distribution and transport of heavy metal elements during coal pyrolysis. Coal Conversion.2002,25(3):37-42.
    [48]Guo, R., Jianli, Y., Dongyan, L. Influence of Thermal Treatment Conditions on Transformation of Trace Elements in Datong Coal. Journal of Chemical Industry and Engineering.2003,54(11):1063-1067.
    [49]吕海亮,陈皓侃,李文,李保庆.流化床热解过程中煤中氟的挥发性研究.燃料 化学学报.2002,30(6):45-50.
    [50]Linak, W. P., Wendt, J. O. L. Trace metal transformation mechanisms during coal combustion. Fuel Processing Technology.1994,39(1-3):173-198.
    [51]Frandsen, F., Dam-Johansen, K., Rasmussen, P. Trace elements from combustion and gasification of coal--An equilibrium approach. Progress in Energy and Combustion Science.1994,20(2):115-138.
    [52]Gibb, W. H., Clarke, F., Mehta, A. K. The fate of coal mercury during combustion. Fuel Processing Technology.2000,65-66:365-377.
    [53]Lu, D. Y., Granatstein, D. L., Rose, D. J. Study of Mercury Speciation from Simulated Coal Gasification. Industrial & Engineering Chemistry Research.2004, 43(17):5400-5404.
    [54]Senior, C., Otten, B. V., Wendt, J. O. L., Sarofim, A. Modeling the behavior of selenium in Pulverized-Coal Combustion systems. Combustion and Flame.2010, 157(11):2095-2105.
    [55]Lyyranen, J., Jokiniemi, J., Mojtahedi, W., Koskinen, J. Equilibrium modelling of trace element behaviour in fluidized bed combustion and gasification of coal. Journal of Aerosol Science.1995,26(Supplement 1):S687-S688.
    [56]刘迎晖.煤燃烧过程中痕量元素的迁徙变化行为:华中科技大学博士论文,2002.
    [57]Wu, S., Ozaki, M., Uddin, M. A., Sasaoka, E. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas:Effect of hydrogen chloride. Fuel.2008, 87(4-5):467-474.
    [58]Bunt, J. R., Waanders, F. B. Trace element behaviour in the Sasol-Lurgi MK IV FBDB gasifier. Part 1-The volatile elements:Hg, As, Se, Cd and Pb. Fuel.2008, 87(12):2374-2387.
    [59]Galbreath, K. C., Zygarlicke, C. J. Mercury Speciation in Coal Combustion and Gasification Flue Gases. Environmental Science & Technology.1996,30(8): 2421-2426.
    [60]Guo, R., Yang, J., Liu, Z. Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor. Fuel.2004,83(6):639-643.
    [61]Luo, G., Yao, H., Xu, M., Gupta, R., et al. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis. Proceedings of the Combustion Institute.2011,33(2):2763-2769.
    [62]Guffey, F. D., Bland, A. E. Thermal pretreatment of low-ranked coal for control of mercury emissions. Fuel Processing Technology.2004,85(6-7):521-531.
    [63]Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H., et al. Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel.2004,83(6): 631-638.
    [64]Keener, T. C., Gieske, A. C., Khang, S. J., Pajares, J. A. Precombustion removal of mercury from coal by mild pyrolysis. Coal Science and Technology.1995, Volume 24:1605-1608.
    [65]Merdes, A. C., Keener, T. C., Khang, S.-J., Jenkins, R. G. Investigation into the fate of mercury in bituminous coal during mild pyrolysis. Fuel.1998,77(15): 1783-1792.
    [66]Merriam, N. W., Grimes, R. W., Tweed, R. E. Process for low coal. US Patent 5403,365. Laramie, WY:Western Research Institue,1995.
    [67]Sekine, Y, Sakajiri, K., Kikuchi, E., Matsukata, M. Release behavior of trace elements from coal during high-temperature processing. Powder Technology.2008, 180(1-2):210-215.
    [68]Wang, M., Keener, T. C., Khang, S.-J. The effect of coal volatility on mercury removal from bituminous coal during mild pyrolysis. Fuel Processing Technology. 2000,67(2):147-161.
    [69]Zhang, C., Chen, G., Gupta, R., Xu, Z. Emission Control of Mercury and Sulfur by Mild Thermal Upgrading of Coal. Energy & Fuels.2009,23(2):766-773.
    [70]Bunt, J. R., Waanders, F. B. Trace element behaviour in the Sasol-Lurgi MK IV FBDB gasifier. Part 2-The semi-volatile elements:Cu, Mo, Ni and Zn. Fuel.2009, 88(6):961-969.
    [71]Li, Y, Zhang, J. Y, He, B. H., Yu, C., et al. Volatility of trace elemets in Huainan and Guizhou coals during high temperature pyrolysis. in:Proceedings of the 6th International Symposium on Coal Combustion. Wuhan:Huazhong University Science & Technology Press,2007.926-931.
    [72]Ohki, A., Sagayama, K., Tanamachi, S., Iwashita, A., et al. Release behavior of mercury during mild pyrolysis of coals and nitric acid-treated coals. Powder Technology.2008,180(1-2):30-34.
    [73]Xu, M., Yao, H., Liu, X., Jiang, W., et al. Effects of Indigenous and Added Minerals on Transformation of Organic and Inorganic Sulfur in Density Separated Coal Fractions during CO2-Pyrolysis. Energy & Fuels.2009,24(1):123-130.
    [74]Pavlish, J. H., Holmes, M. J., Benson, S. A., Crocker, C. R., et al. Application of sorbents for mercury control for utilities burning lignite coal. Fuel Processing Technology.2004,85(6-7):563-576.
    [75]Lee, S. S., Lee, J. Y., Keener, T. C. The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases. Fuel.2009,88(10):2053-2056.
    [76]Chen, L., Duan, Y, Zhuo, Y., Yang, L., et al. Mercury transformation across particulate control devices in six power plants of China:The co-effect of chlorine and ash composition. Fuel.2007,86(4):8.
    [77]Qiao, S., Chen, J., Li, J., Qu, Z., et al. Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina. Industrial & Engineering Chemistry Research.2009,48(7):3317-3322.
    [78]Tang, T., Xu, J., Lu, R., Wo, J., et al. Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives. Fuel.2010,89(12): 3613-3617.
    [79]Daz-Somoano, M., Unterberger, S., Hein, K. R. G. Mercury emission control in coal-fired plants:The role of wet scrubbers. Fuel Processing Technology.2007, 88(3):259-263.
    [80]Wendt O. L. Jost, L. S. J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals:Mechanisms and applications. Fuel.2010,89(2010):10.
    [81]Balsamo, M., Di Natale, F., Erto, A., Lancia, A., et al. Cadmium adsorption by coal combustion ashes-based sorbents--Relationship between sorbent properties and adsorption capacity. Journal of Hazardous Materials.2011,187(1-3):371-378.
    [82]Senior, C., Bustard, C. J., Durham, M., Baldrey, K., et al. Characterization of fly ash from full-scale demonstration of sorbent injection for mercury control on coal-fired power plants. Fuel Processing Technology.2004,85(6-7):601-612.
    [83]Tan, Z., Qiu, J., Zeng, H., Liu, H., et al. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel.2010,90(4):1471-1475.
    [84]Lopez-Anton, M. A., Tascon, J. M. D., Martlnez-Tarazona, M. R. Retention of mercury in activated carbons in coal combustion and gasification flue gases. Fuel Processing Technology.2002,77-78:353-358.
    [85]Portzer, J. W., Albritton, J. R., Allen, C. C., Gupta, R. P. Development of novel sorbents for mercury control at elevated temperatures in coal-derived syngas:results of initial screening of candidate materials. Fuel Processing Technology.2004, 85(6-7):621-630.
    [86]Pavlish, J. H., Hamre, L. L., Zhuang, Y. Mercury control technologies for coal combustion and gasification systems. Fuel.2010,89(4):838-847.
    [87]Senior, C. L., Helble, J. J., Sarofim, A. F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technology. 2000,65-66:263-288.
    [88]Wang, Y., Duan, Y., Yang, L., Zhao, C., et al. Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology.2009,90(5):643-651.
    [89]Zeng, H., Jin, F., Guo, J. Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel.2004,83(1):143-146.
    [90]Bustard, J., Durham, M., Starns, T., Lindsey, C., et al. Full-scale evaluation of sorbent injection for mercury control on coal-fired power plants. Fuel Processing Technology.2004,85(6-7):549-562.
    [91]El-Hendawy, A.-N. A. The role of surface chemistry and solution pH on the removal of Pb2+ and Cd2+ ions via effective adsorbents from low-cost biomass. Journal of Hazardous Materials.2009,167(1-3):260-267.
    [92]Granite, E. J., Karash, A. Further Investigation of the Impact of Sulfur Oxides on Mercury Capture by Activated Carbon. Industrial & Engineering Chemistry Research.2007,46(24):8273-8276.
    [93]Lee, S. S., Lee, J. Y., Keener, T. C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Processing Technology. 2009,90(10):1314-1318.
    [94]Brown, T. D., Smith, D. N., O'Dowd, W. J. Control fo mercury emissions form coal-fired power plants:A preliminary coast assessment and the next steps for accdurately assessing control costs. Fuel Processing technology.2000,65-66: 311-341.
    [95]Player, R. L., Wouterlood, H. J. Removal and recovery of arsenous oxide from flue gases. A pilot study of the activated carbon process. Environmental Science & Technology.1982,16(11):808-814.
    [96]Font, O., Querol, X., Huggins, F. E., Chimenos, J. M., et al. Speciation of major and selected trace elements in IGCC fly ash. Fuel.2005,84(11):1364-1371.
    [97]Lopez-Antonia, M. A., Diaz-Somoano, M., Fierro, J. L. G, Martinez-Tarazona, M. R. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbons. Fuel Processing Technology.2007, 88(8):799-805.
    [98]Dunham, G. E., DeWall, R. A., Senior, C. L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology.2003, 82(2-3):197-213.
    [99]Hower, J. C., Suarez-Ruiz, I., Mastalerz, M. An Approach Toward a Combined Scheme for the Petrographic Classification of Fly Ash:Revision and Clarification. Energy & Fuels.2005,19(2):653-655.
    [100]Galbreath, K. C., Zygarlicke, C. J., Tibbetts, J. E., Schulz, R. L., et al. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HC1 on mercury transformations in a 7-kW coal combustion system. Fuel Processing Technology.2005,86(4):429-448.
    [101]Jurng, J., Lee, T. G., Lee, G. W., Lee, S.-J., et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere.2002,47(9):907-913.
    [102]Granite, E. J., Karash, A., Hargis, R. A., O'Dow, W. J., et al. A Kinetic Approach to the Catalytic Oxidation of Mercury in Flue Gas. Energy & Fuels.2006,20(5): 1941-1945.
    [103]Hower, J. C., Finkelman, R. B., Rathbone, R. F., Goodman, J. Intra- and Inter-unit Variation in Fly Ash Petrography and Mercury Adsorption:Examples from a Western Kentucky Power Station. Energy & Fuels.1999,14(1):212-216.
    [104]Serre, S. D., Silcox, G. D. Adsorption of elemental mercury on the residual carbon in coal fly ash. Industrial & Engineering Chemistry Fundamentals.2000,39(6): 1723-1730.
    [105]Lu, Z., Maroto-Valer, M. M., Schobert, H. H. Catalytic effects of inorganic compounds on the development of surface areas of fly ash carbon during steam activation. Fuel.2010,89(11):3436-3441.
    [106]Maroto-Valer, M. M., Taulbee, D. N., Hower, J. C. Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation. Fuel.2001,80(6):795-800.
    [107]Sterling, R. O., Helble, J. J. Reaction of arsenic vapor species with fly ash compounds:kinetics and speciation of the reaction with calcium silicates. Chemosphere.2003,51(10):1111-1119.
    [108]Ghosh-Dastidar, A., Mahuli, S., Agnihotri, R., Fan, L. S. Selenium Capture Using Sorbent Powders:Mechanism of Sorption by Hydrated Lime. Environmental Science & Technology.1996,30(2):447-452.
    [109]Mahuli, S., Agnihotri, R., Chauk, S., Ghosh-Dastidar, A., et al. Mechanism of Arsenic Sorption by Hydrated Lime. Environmental Science & Technology.1997, 31(11):3226-3231.
    [110]Kolker, A., Huggins, F. E., Palmer, C. A., Shah, N., et al. Mode of occurrence of arsenic in four US coals. Fuel Processing Technology.2000,63(2-3):167-178.
    [111]Yao, H., Naruse, I. Combustion Characteristics of Dried Sewage Sludge and Control of Trace-Metal Emission. Energy & Fuels.2005,19(6):2298-2303.
    [112]Scotto, M. V., Uberoi, M., Peterson, T. W., Shadman, F., et al. Metal capture by sorbents in combustion processes. Fuel Processing Technology.1994,39(1-3): 357-372.
    [113]Morency, J. Zeolite sorbent that effectively removes mercury from flue gases. Filtration & Separation.2002,39(7):24-26.
    [114]Kwon, T.-W., Kim, S. D., Fung, D. P. C. Reaction kinetics of char--CO2 gasification. Fuel.1988,67(4):530-535.
    [115]Yang, H., Xu, Z., Fan, M., Bland, A. E., et al. Adsorbents for capturing mercury in coal-fired boiler flue gas. Journal of Hazardous Materials.2007,146(1-2):1-11.
    [116]Kameshima, Y., Tamura, Y., Nakajima, A., Okada, K. Preparation and properties of TiO2/montmorillonite composites. Applied Clay Science.2009,45(1-2):20-23.
    [117]Li, Y., Murphy, P., Wu, C.-Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology.2008,89(6):567-573.
    [118]Ozaki, M., Uddin, M. A., Sasaoka, E., Wu, S. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas. Fuel.2008,87(17-18):3610-3615.
    [119]Li, H., Li, Y, Wu, C.-Y., Zhang, J. Oxidation and capture of elemental mercury over SiO2- TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering Journal.2011, In Press, Accepted Manuscript.
    [120]Lee, T. G., Biswas, P., Hedrick, E. Overall Kinetics of Heterogeneous Elemental Mercury Reactions on TiO2 Sorbent Particles with UV Irradiation. Industrial & Engineering Chemistry Research.2004,43(6):1411-1417.
    [121]Pitoniak, E., Wu, C.-Y., Mazyck, D. W., Powers, K. W., et al. Adsorption Enhancement Mechanisms of Silica-Titania Nanocomposites for Elemental Mercury Vapor Removal. Environmental Science & Technology.2005,39(5): 1269-1274.
    [122]Ahmed, M. A., Alonso, L., Palacios, J. M., Cilleruelo, C., et al. Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization. Solid State Ionics.2000,138(1-2):51-62.
    [123]Focht, G. D., Ranade, P. V., Harrison, D. P. High-temperature desulfurization using zinc ferrite:regeneration kinetics and multicycle testing. Chemical Engineering Science.1989,44(12):2919-2926.
    [124]Ikenaga, N., Ohgaito, Y., Matsushima, H., Suzuki, T. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning. Fuel.2004, 83(6):661-669.
    [125]Liang, M., Xu, H., Xie, K. Bench-Scale Testing of Zinc Ferrite Sorbent for Hot Gas Clean-up. Journal of Natural Gas Chemistry.2007,16(2):204-209.
    [126]Pineda, M., Fierro, J. G., Palacios, J., Cilleruelo, C., et al. Characterization of zinc oxide and zinc ferrite doped with Ti or Cu as sorbents for hot gas desulphurization. Applied Surface Science.1997,119(1-2):1-10.
    [127]Pineda, M., Palacios, J., Garcia, E., Cilleruelo, C., et al. Modelling of performance of zinc ferrites as high-temperature desulfurizing sorbents in a fixed-bed reactor. Fuel.1997,76(7):567-573.
    [128]Tomas-Alonso, F., Palacios Latasa, J. M. Synthesis and surface properties of zinc ferrite species in supported sorbents for coal gas desulphurisation. Fuel Processing Technology.2004,86(2):191-203.
    [129]Yang, S., Guo, Y., Yan, N., Qu, Z., et al. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/y-Fe2O3 at lower temperatures. Journal of Hazardous Materials.2010,186(1):508-515.
    [130]Eswaran, S., Stenger, H. G. Effect of halogens on mercury conversion in SCR catalysts. Fuel Processing Technology.2008,89(11):1153-1159.
    [131]Diaz-Somoano, M., Lopez-Anton, M. A., Martinez-Tarazona, M. R. Retention of Arsenic and Selenium during Hot Gas Desulfurization Using Metal Oxide Sorbents. Energy & Fuels.2004,18(5):1238-1242.
    [132]Kobayashi, M., Shirai, H., Nunokawa, M. High-Temperature Sulfidation Behavior of Reduced Zinc Ferrite in Simulated Coal Gas Revealed by in Situ X-ray Diffraction Analysis and Mossbauer Spectroscopy. Energy & Fuels.2002,16(3): 601-607.
    [133]Luo, G, Yao, H., Xu, M., Cui, X., et al. Carbon Nanotube-Silver Composite for Mercury Capture and Analysis. Energy & Fuels.2009,24(1):419-426.
    [134]Li, J., Yan, N., Qu, Z., Qiao, S., et al. Catalytic Oxidation of Elemental Mercury over the Modified Catalyst Mn/γ-Al2O3 at Lower Temperatures. Environmental Science & Technology.2009,44(1):426-431.
    [135]Li, Y, Wendt, J. O. L. High temperature sorbents for sorption of mercury in packed beds, in:AIChE Annual Meeting. Salt Lake City, UT, United states:American Institute of Chemical Engineers,2011.
    [136]Kamata, H., Ueno, S., Naito, T., Yamaguchi, A., et al. Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst. Catalysis Communications.2008, 9(14):2441-2444.
    [137]Yamaguchi, A., Akiho, H., Ito, S. Mercury oxidation by copper oxides in combustion flue gases. Powder Technology.2008,180(1-2):222-226.
    [138]Alptekin, G. O., Dubovik, M., Cesario, M., Gershanovich, Y. Non-carbon sorbents for mercury removal from flue gases. Powder Technology.2008,180(1-2):35-38.
    [139]Wu, S., Oya, N., Ozaki, M., Kawakami, J., et al. Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas:Sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal. Fuel.2007, 86(17-18):2857-2863.
    [140]AQSIQ, Determination of Chlorine in coal. GB/T 3558-1996, in, Editor^Editors. 1996. p.
    [141]AQSIQ. Determination of Fluorine in coal. GB/T 4633-1997.1997.
    [142]Meij, R. Trace element behavior in coal-fired power plants. Fuel Processing Technology.1994,39(1-3):199-217.
    [143]Chen, J. C., Castagnoli, C., Niksa, S. Coal devolatilization during rapid transient heating.2. Secondary pyrolysis. Energy & Fuels.1992,6(3):264-271.
    [144]Goodarzi, F., Huggins, F. E. Speciation of chromium in feed coals and ash byproducts from Canadian power plants burning subbituminous and bituminous coals. Energy & Fuels.2005,19(6):2500-2508.
    [145]Yan, R., Gauthier, D., Flamant, G. Volatility and chemistry of trace elements in a coal combustor. Fuel.2001,80(15):2217-2226.
    [146]Lu, H., Chen, H., Li, W., Li, B. Transformation of arsenic in Yima coal during fluidized-bed pyrolysis. Fuel.2004,83(6):645-650.
    [147]Lu, H., Chen, H., Li, W., Li, B. Occurrence and volatilization behavior of Pb, Cd, Cr in Yima coal during fluidized-bed pyrolysis. Fuel.2004,83(1):39-45.
    [148]K., H. Origin and Properties of Slag and Fly Ash Obtained in PRENFLO Process. in: International Energy Agency Expert Meeting:The Use of Coal Gasification Slag. Arnhem (Netherlands):1990, May 10-11.203-211.
    [149]AQSIQ, Determination of Mercury in coal. GB/T 16659-1996, in, Editor^Editors. 1996. p.
    [150]Yudovich, Y. E., Ketris, M. P. Mercury in coal:A review:Part 1. Geochemistry. International Journal of Coal Geology.2005,62(3):107-134.
    [151]Ren, D., Zhao, F., Wang, Y., Yang, S. Distributions of minor and trace elements in Chinese coals. International Journal of Coal Geology.1999,40(2-3):109-118.
    [152]Li, Y., Zhang, J. Y., He, B. H., Zhao, Y. C., et al. Mercury speciation and volatility during coal pyrolysis and gasification. Journal of Engineering Thermophysics.2008, 29(10):1775-1779.
    [153]Finkelman, R. B., Palmer, C. A., Krasnow, M. R., Aruscavage, P. J., et al. Combustion and leaching behavior of elements in the Argonne Premium Coal Samples. Energy & Fuels.1990,4(6):755-766.
    [154]Xu, Z., Lu, G., Chan, O. Y. Fundamental Study on Mercury Release Characteristics during Thermal Upgrading of an Alberta Sub-bituminous Coal. Energy Fuels.2004, 18(6):1855-1861.
    [155]Li, Y., Zhang, J., He, B., Zhao, Yongchun. Mercury speciation and volatility during coal pyrolysis and gasification. Journalof Engineering Thermophysics.2008,29(10): 1775-1779.
    [156]Bai, J., Li, W., Li, C., Bai, Z., et al. Influences of minerals transformation on the reactivity of high temperature char gasification. Fuel Processing Technology.2010, 91(4):404-409.
    [157]Lin, S. Y, Hirato, M., Horio, M. The characteristics of coal char gasification at around ash melting temperature. Energy Fuels.1994,8(3):598-606.
    [158]O'Dowd, W. J., Hargis, R. A., Granite, E. J., Pennline, H. W. Recent advances in mercury removal technology at the National Energy Technology Laboratory. Fuel Processing Technology.2004,85(6-7):533-548.
    [159]Christina G. Vassileva, S. V. V. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coal. Fuel Processing Technology. 2006,86:1095-1116.
    [160]Gale, T. K., Lani, B. W., Offen, G. R. Mechanisms governing the fate of mercury in coal-fired power systems. Fuel Processing Technology.2008,89(2):139-151.
    [161]Dai, S., Ren, D. Fluorine concentration of coals in China--An estimation considering coal reserves. Fuel.2006,85(7-8):929-935.
    [162]Suriyawong, A., Gamble, M., Lee, M.-H., Axelbaum, R., et al. Submicrometer Particle Formation and Mercury Speciation Under O2-CO2 Coal Combustion. Energy & Fuels.2006,20(6):2357-2363.
    [163]Niksa, S., Helble, J. J., Fujiwara, N. Kinetic Modeling of Homogeneous Mercury Oxidation:The Importance of NO and H2O in Predicting Oxidation in Coal-Derived Systems. Environmental Science & Technology.2001,35(18):3701-3706.
    [164]Toole-O'Neil, B., Tewalt, S. J., Finkelman, R. B., Akers, D. J. Mercury concentration in coal--unraveling the puzzle. Fuel.1999,78(1):47-54.
    [165]Niksa, S., Padak, B., Krishnakumar, B., Naik, C. V. Process Chemistry of Br Addition to Utility Flue Gas for Hg Emissions Control. Energy & Fuels.2009,24(2): 1020-1029.
    [166]Naik, C. V., Krishnakumar, B., Niksa, S. Predicting Hg emissions rates from utility gas cleaning systems. Fuel.2010,89(4):859-867.
    [167]Niksa, S., Freeman Sibley, A. Predicting the Multipollutant Performance of Utility SCR Systems. Industrial & Engineering Chemistry Research.2010,49(14): 6332-6341.
    [168]Traore, K., Kabre, T. S., Blanchart, P. Gehlenite and anorthite crystallisation from kaolinite and calcite mix. Ceramics International.2003,29(4):377-383.
    [169]Okada, K., Watanabe, N., Jha, K. V., Kameshima, Y., et al. Effects of grinding and firing conditions on CaAl2Si2O8 phase formation by solid-state reaction of kaolinite with CaCO3. Applied Clay Science.2003,23(5-6):329-336.
    [170]Okada, K., Yoshizaki, H., Kameshima, Y., Nakajima, A. Effect of the crystallinity of kaolinite precursors on the properties of mesoporous silicas. Applied Clay Science. 2008,41(1-2):10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700