不同日粮组成对山羊可吸收氨基酸的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用4只(35±2.5kg)装有永久性瘤胃瘘管和十二指肠T型瘘管的徐淮白山羊,饲喂给由苜蓿、羊草及配合饲料组成的四种(A、B、C、D)不同日粮结构性碳水化合物(SC)/日粮粗蛋白(CP)(SC/CP分别为3.62、2.95、2.29、1.65)比例的日粮,以二氨基庚二酸(DAPA)和卵磷脂(PC)分别作为瘤胃细菌和纤毛虫的内标物来测定进入到十二指肠的细菌、纤毛虫及过瘤胃饲料蛋白质的各种氨基酸的流量与组成,以研究不同日粮组成对山羊可吸收氨基酸的影响。同时研究了在这四种日粮组成下,瘤胃和十二指肠内环境参数的昼夜动态变化。结果表明:
     1.进入小肠内的细菌氨基酸总量以B组的显著高于其它各组为1.57g/d,瘤胃细菌菌体的净可吸收AA以B组的显著高于其它各组为1.54g/d。瘤胃细菌对肠道可吸收AA的贡献率同样是B组显著高为38%。液体结合细菌和固体结合细菌间的17种氨基酸的相对百分含量有很大的差异。除了苏氨酸、蛋氨酸、亮氨酸、赖氨酸之间的相对百分含量没有很大的差异外,其它各氨基酸之间存在差异。
     2.进入十二指肠内的纤毛虫AA总量以A组的显著高于其它各组为1.25g/d,D组的AA总量显著低于其它各组为0.42g/d。不同日粮组成对纤毛虫体中的谷氨酸、精氨酸、酪氨酸、脯氨酸、丙氨酸有显著影响,其它均差异不显著。
     3.进入十二指肠内的总AA以B组的显著高于其它各组,而过瘤胃日粮AA的总量以C组显著高于其它各组为2.03g/d。但是就各组的贡献率而言,却是B组最低,仅为42%,C组的贡献率最高为62%。进入十二指肠内的各种氨基酸基本上都是在采食后6小时达到最高峰。进入十二指肠内的17种氨基酸中有11种在各组之间有显著的差异性
     4.瘤胃pH值随日粮中SC/CP的降低而降低。pH平均值由A组的6.37降至D组的5.86,其中A组极显著高于B、C和D组(P<0.01),B、C和D组组间差异不显著(P>0.05)。A、B、C、D四组十二指肠内pH平均值分别为3.40、3.52、3.23
    
    和3.58,C组显著低于D组(P<0.05)。
     5.瘤胃氨态氮平均浓度随日粮SC/CP降低而升高。氨氮浓度的平均值分别由A
    组的8.37 mg 10onil一,升至D组的13.7lmg·l。叼一,,其中A组极显著低于B、c
    和D组(P<0.01),B、C和D组组间差异不显著(P>.05)。B组显著低于其他各
    组,A、C、D组差异不显著。十二指肠中B组NH3一的浓度显著低于其它各组.
Four xuhuai white goats fitted with permanently rumen fistulae and proximal duodenum fistulae were used in a 4 X 4 latin square design to determine the effects of different diets composition to the absorbable amino acids of goat with different SC (structure carbohydrate) /CP(crude protein)(SC/CP were 3.62, 2.95, 2.29 and 1.65 respectively), and use DAPA and PC respectively as internal marker of rumen bacteria and protozoa to measure the production of bacteria and protozoa of entering the duodenum and flux and composition of all kinds of amino acids of digested diet bypass-protein-N from rumen. And at the same time, the dynamic changing rules of ruminal and duodenum internal enviroment parameters were sturdied. The results showed that:
    1. The hightest output of total bacteria amino acid observed in the B group was 1.57g/d. The net absorbable amino acid of bacteria was 1.54g/d in B group, much higher than in the others. And the contribution proportion of bacteria amino acid to the total absorbable amino acid in duodenum in B group was higher than in the others significantly. There have no significant differentce among 17 amino acids between LAB and PAB except Thr, Met, Leu and Lys.
    2. The protozoa amino acid to duodenum in A group was 1.25g/d, much higher than in the others. And the output of protozoa amino acid in D group much lower than in the others. Different diet structure showed significant effect on Glu, Arg, Tyr, Pro and Ala of rumen protozoa.
    3. The total amino acid in B group was much higher than in the others. The by-passed rumen diet amino acid in C group was 2.03g/d, much higher in than others. As contribution proportion is concerned, the proportion of B group was 42%, lower than
    
    
    in the others. The proportion of C group was 62%, much higher than the others. Almost of all AA output increases to the highest point after eating 6 hours. There were significant difference among 11 amino acid out of 17 amino acid.
    4.With the SC/CP decreasing, nominal pH decreased significantly. pH decreased from 6.37 in A group to 5.86 in D group. pH in A group was higher than in the B, C, D group significantly(P<0.01). pH in duodenum were 3.40,3.52,3.23 and 3.58 in A, B, C, D group respectively. pH in C group was lower than in D group significantly.
    5. Lower SC/CP increased ammonia-N (NHs-N) concentration increased from 8.37 in A group to 13.71 mg/100ml in D group. B, C, D groups increased NH3-N concentration to a large extent compared with A group(P<0.01). NHa-N concentration in B group was lower than in the others significantly in duodenum.
引文
1. Ludden PA, et al. Amino acid and energy interrelationship in growing beef steers:the effect of level of feed intake on ruminal characteristics and intestinal amino acid flows. J Anita Sci. 1997,75:2550-2560
    2. Richardson CR et al. The limiting amino acids in growing cattle. J Anima Sci.1978,46:740
    3. Crocker BA, Clark JH et al. Effects of ruminal exposure on the amino acid profile of heated and formaldehyde-treated soybean meal. J. Dairy Sci.1986.69:2648-2657.
    4. Egil PrestlΦkken. Ruminal degradability and intestinal digestibility of protein and amino acid in barley and oats expander-treated at various intensities. Animal feed science and technology. 1999,82:157-175.
    5. Kung L JR, LM Rode. Amino acid metabolism in ruminants. Animal feed science and technology. 1996,59:167-172.
    6. Burroughs W et al. Evaluation protein nutrition by metabolizable protein and urea fermentation potential. J Dairy Sci. 1975,58:611-619.
    7. NRC. Nutrition requirements of beef cattle.(6th Ed) National Press,Washington D.C,1985
    8.冯仰廉,奶牛饲养标准的新蛋白质体系的建议.中国畜牧杂志.1985,2:2-6
    9. Den Braver EJ. Determination of metabolizable energy in straw for ruminants by in vivo methods. J.agvic Res, 1976,4:53
    10. Czerkawsiki JW and Breckenridge G. Desigen and development of long-term stimulation technique. Brith J Nutri 1977.38:371
    11. Meng QX et al. The requirement of rumiual degradable protein for non-structural carbohydrate fermenting microbes and its reaction with dilution rate in continuous culture.Asian-Am. J.Anim.Sci.2000.13 (10): 1399-1406.
    12.赵国琦等.In sacco和in vivo法测定绵羊瘤胃饲料RNA降解率及微生物合成量的效果研究.江苏农业研究.1999,20(4):47-52
    13. Evan C, et al. Evaluation of soybean meal, corn gluten meal ,blood meal and fish meal as source of nitrogen and amino acids disappearing from the small intestine of steers. J Anim.Sci. 1989,67:262-275.
    14. Kirkpatrich BK and JJ Kennelly. Prediction of digestibility in cattle using a modified nylon bag technique. Can.J.Anim.Sci. 1984(64): 1104
    15. Φrskov ER et al. Protein nutrition in ruminants. 2halEd.Academic press .New York.1992.
    16. Pion R, et al. Assessment of protein degradability in concentrates using an enzymatic method. Protein hetabolism and nubvition. 1983,5-9,Sept,Ed.INRA Publ.
    17. Richardson CR et al. The limiting amido acid in growing cattle.J.Anim.sci. 1978,46:740
    18. King KJ et al. An assessment of absorbable lysine requirements in lactationing cows.
    
    J Anim.Sci. 1991,Aug:74(8):2530-2539.
    19. Sterm MD. Effect of lignosulfonate on rumen microbial degradation of soybean meal protein in continuous culture. J.Anim.Sci. 1984, 64(Suppl. 1):27
    20. Tigemeyer EC, Merchen NR. Evlation of soybean meal, corn gluten meal,blood meal and fish meal as sources of nitrogen and amino acid disappearing from the small intestine of steers.J.Anim.Sci. 1689.67:262
    21. Ludden PA.et al. Amino acid and energy interrelationship in growing beef steers:the effect of level of feed intake on ruminal characteristics and intestinal amino acid flows. J Anita Sci. 1997,75:2550-2560
    22. Ceeava MJ and Parker JE. Intestinal supply of amino acids in steers fed ruminally degradable and undegradable crude protein sources alone and in combination.J. Anim. Sci. 1993,71:1596-1605
    23. Ludden PA et al. Supplemental protein sources for steers fed corn-based diets:1.ruminal characteristics and intestinal amino acid flows.J Anita. Sei. 1995, 73:1466-1475
    24.Mark Branine著,张庆才摘译.瘤胃生态系统的特点及日粮对其影响.国外畜牧科技.1998,25:12-15.
    25. Matin C, Williams AG and Michalet-Doreau B. Isolation and characteristics of the protozoal and bacterial fractions from bovine ruminal contents. J. Animal. Sci. 1994, 72:2962
    26. Hillman K, Williams AG, Lloyd D. Postprandial variations in endogenous metabolic activities of ovine rumen ciliate protozoa J.Animal.Feed.Seience and Technology. 1995, 52:237-247.
    27. Beige A, Bakir B et al. A technique of duodenal cannulation in sheep. Small ruminant research. 2002,44:167-169
    28. Horigane A, Arak TI. Technical Note:development of a duodenal eannula for sheep.J.Anim.Sci. 1992,70:1216-1219
    29. Corley Ⅲ, Muphy RN et al. Technical note:a device for obtaining time-integrated samples of ruminal fluid.J.Anim.Sci. 1999,77:2540-2544
    30. Harmon DL, Richards CJ. Considerations for gastrointestinal canulations in ruminants.J.Anim.Sci. 1997,75:2248-2255
    31. Ivan M, Johnston DW. Reentrant eannulation of the small intestine in sheep:cannula and surgical method.J.Anim.Sci. 1981,52(4):849-856
    32. Steeter MN, Barron SJ et al. Teclmieal note: a double L intestinal eannula for cattle.J.Anim.Sei. 1991,69:2601-2607
    33. Aliyev AA. New methods for re-entrant cannulation of the duodenum and ileoeaeeum. Res.Vet.Sci. 1982,32:265
    34. Czerjawashi JW. Chemical composition of microbial matter in rumen. J.Sci.Food Agric. 1976,27:621
    35. Ludden PA and Kerley MS. Amino acid and energy interrelationships in growing
    
    beef steers:I.The effect if level of feed intake on ruminal characteristics and intestinal amino acid flows.J.Anim.Sci. 1997,75:2550-2560.
    36.杨胜.饲料分析及饲料质量检测技术 1993
    37. Luis, Arubio. Determination of diaminopimelic acid in rat feces by highperformance liquid chromatography using the Pieo Tag method. [J]Journal of chromatography B. 2003,784:125-129.
    38 刘敏雄反刍动物消化生理学.1991
    39. Hume ID. Synthesis of microbial protein in the rumen.The effect of dietary protein escaping degradation in the sheep.Br:J.Nutr. 1980,43:427.
    40. Cotta MA, Hespell RB. Protein and amino acid metabolism of rumen bacteria. In: "Control of digestion and metabolism in ruminants.", Prentice-Hall, Englewood, 1986,P,122.
    41. Hoover WH, Stokes SR. Balancing carbohydrates and protein for optimum rumen microbial yield.J.Dairy Sci. 1991,74:3630-3644.
    42. Clark JH, Klusmeyer TH, Cameron MR. Microbial protein synthesis and flows of nitrogen fraction to the duodenum of dairy cows J.Dairy Sei. 1992,75:2034-2023.
    43. Smith RH. Nitrogen metabolism in the rumen and the compounds entering the duodenum.N: Digestion and Metabolism in the rumen (Ed. I. WcDonald, A. C. I. Warner). University of New England Publishing Unit, Armidale, Australia, 1975:399-415.
    44. Richardson CR et al. The limiting amido acid in growing cattle. J.Anim.sei. 1978.46:740
    45.Ferreira AV等著,陈勇摘译,生长绵羊的理想氨基酸模式.国外畜牧科技2000,4:10-12.
    46.甄玉国,卢德勋,马宁.反刍动物营养研究进展.饲料工业.2001,22(7):16-22.
    47. Martin C, Bernard L, Michalet-doreau B. Influence of sampling time and dier in amino acid composition of protozoal and bacterial fractions from bovine ruminal contents.J.Anim.Sei. 1996,74(5): 1157-1163.
    48. Chiquette, Benchaar C. Prediction if methane production from dairy cows using existing mechanistic models and regression equation.J.Anim.Sei. 1998,78:115-120
    49 Beever DE, Harrison DC, Thomson D J et al.A method for estimation of dietary and microbial protein in duodenal digesta of ruminants. British Journal of Nutrition. 1974,32:99-112.
    50 Hume I D. Proportion of dietary protein escaping degradation in the rumen of sheep fed in various protein concentrates. Australian Journal of Agriculaturai Research. 1974,25:155-166.
    51. Smith RH, Lewis PE, Mcallan AB. Estimation if microbial nitrogen compounds entering the ruminant duodenum using different reference components including a 32p label. Proceedings of the Nutrition Society. 1976,36:6A
    52. Julian W, Czerkawski. Methods for determining 2-6-diaminopimelie acid and
    
    2-Aminoethylphonic acid in gut contents. J.Sci. Fd.Agric. 1974,25:45-55.
    53. Hutton K, Bailey FJ, Annison EF. Measurment of the bacterial nitrogen entering the duodenum of the ruminant using diaminopimelic acid as a marker. British Journal of Nutrition. 1970,25:165-173.
    54. Smith RH, Mcallan AB, Patricia E. Estimation of amounts of microbical and dietary nitrogen compounds entering the duodenum of cattle.J.Agric.Sci. 1978,90:557-568.
    55. Whitelaw FG, Margaret Eadie, Bruce L A. Microbial protein synthesis in cattle given roughage-concentrate and all-concentrate diets: the use of 2,6-diaminopimelic acid, 2-aminoethylphosphonic acid and ~(35)S as markers. British Journal of Nutrition.1984,52:249-260.
    56. Hogan JP, Weston HM. Qualitative aspects of microbial protein synthesis in the rumen. In physiology of digestion ans metabolism in the ruminant (ed.AT. Phillipson). 1970, p.474.Newcastle upon Tyne:Oriel Press.
    57. Gabriel Borruat, Claude-Alain Henri Roten, Robin Marchant. Chromatographic method for diaminopimelic acid detection in calcareous rocks presence of a bacterial biomarker in stromatolites. Journal of chromatography A.2001,922:219-224.
    58. Chenetal XB.Evaluation of the use of the purine derivative: creatinie ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants: studies in sheep. Journal of Agricultural Science. Cambridge. 1995;125,137~143
    59. Puchalaetal R. Estimation of microbial protein flow from the rumen of sheep using microbial nucleic acid and urinary excretion of purine derivatives.Can.J.Anim.Sei, 72:821~830 (Dec. 1992)
    60. John R, Ling. Chiral high-performance liquid chromatographic separation of the three stereoisomer of 2,6-diaminopimelic acid without derivatisation. Journal of chromatography A.1993,653:336-340.
    61. Mntifering RB. Monesin and nitrogen utilization by steers fed concentrate diets.Ph.D. Dissertation Univ of Arizona.Tucson. 1980.
    62. Spicer L.Ruminal and post ruminal utilization of protein from feed grains by steers.Ph.D.Dissertation Univ of Arizona.Tucson. 1983.
    63. Willians AG and Coleman. 1991.Effect of ciliate protozoa on the productivity of the host ruminant.In:The rumen protozoa.Springer-Verlage. 1991,P:348.
    64. Dirksen TR, Marinetti GV. Lipid metabolism in bone and bone cells. Ⅱ. The in vitro incorporation of [~(32)p] orthophosphate and [~(14)C] serine into lipids of bone and bone cell cultures.Biochim Biophys Acta. 1970 Feb 10;202(1):80-90.
    65 Whitelaw FG, Eadie JM et al. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br J Nutr. 1984 Sep, 52(2):261-275.
    66. Coleman GS. The cellulolytic activity of thirteen species of rumen entodimomorphid protozoa. J.Protozool. 1983,30:36
    67. Orpin G. The role of ciliate protozoa and fungi in the rumen digestion of plant cell
    
    walls.Anim. Feed Sci.Technol. 1983,10:121-143.
    68. Ushida K, Ohta K, Yano F et al. HPLC determination of phosphatidyl choline and its application for rstimating protozoal protein at duodenum.[J].Jpn J Zootech sci. 1987,58:285-287
    69. Ushida K, Jouany JP, Thivend P. Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets [J].Br J Nutr. 1986,56(2):407-419
    70.藤野安彦.脂质分析法入门.1986,93-94.
    71. Abe M, Iriki T, Tobe N, Shibui H. Sequestration of holotrich protozoa in the reticulo-rumen of cattle. Appl.Environ.Microbiol. 1981,41:758-765.
    72. Leng BA, Nolan JV. Nitrogen metabolish in the rumen.J. Dairy. Sci. 1984,67:1072.
    73. Ando Sada, Nishida T, Ishida M. Effect of peppermint feeding on the digestibility, ruminal fermentation and protozoa, livestock Production Science.2003,82:245-248.
    74. Korhonen M, Ahvenjarvi S, Vanhatanen P. Supplementing barley or rapeseed meal to dairy cows feed grass-red clover silage:Ⅱ. Amino acid profile of microbial fractions. J.Anim.Sci.2002,80:2188-2196.
    75.赵国琦,孙龙生,刘大林.不同精粗比日粮对绵羊小肠中瘤胃微生物蛋白质利用的影响.江苏农业研究.1999,20:48-52.
    76. Ling JR, Butterey PJ. The fraction of microbial nitrogen entering the duodenum of sheep. Proceeding of the Nutrition Society. 1976,36:39-40.
    77. Dawson RMC, Norma Hemington, Davenport. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses.J.Biol.Chem. 1962,84:497-501.
    78. Pantoja J, Firkins JL, Eastridge ML. Effects of fat saturation and source of fiber on site of nutrient digestion and milk production by lactating dairy cows. J Dairy Sci. 1994,77(8):2341-56.
    79. Orskov ER, McDonald I. The estimation of protein degradability in the rumen frome incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979,92:499-503
    80.高民.瘤胃纤毛虫在反刍动物营养和代谢中作用的研究.内蒙古畜牧科学.1997,增刊 338-341
    81. Holden LA, Muller LD, Varga GA. Ruminal digestion and duodenal nutrient flows in dairy cows consuming grass as pasture, hay, or silage. J Dairy Sci. 1994 Oct;77(10):3034-42.
    82. Cecava MJ et al. Intestinal supply of amino acid in sheep fed alkaline hydrogen peroxidetreated eheat straw based diets supplemented with soybean meal and blood meal. J.Anim. Sci. 1990,88:467.
    83. Clark JH, Klusmeyer TH, Cameron MR. Symposium:Nitogen metabolism and amino acid nutrition in daity cattle. J. Dairy. Sci. 1992,75:2304-2323.
    84.晏向华,王加启,瞿明仁.生长阉牛可吸收氨基酸营养研究进展.国外畜牧科技.2001,28(2):2-4.
    
    
    85.王洪荣,卢德勋,张海英等.氨基酸在绵羊小肠内消化率的研究.内蒙古畜牧科技.1998,2:18-21.
    86. Owens E, Ochoa C. Energy and protein supplementation of grace stilage for Friesian steer:effect on performance from 4 to 7 months of age and on subsequent compensatory growth.Anim. Prod. 1982,34:387.
    87.上海市医学化验所主编.临床生化分析.1979.
    88.嘎尔迪,齐智利等.玉米的不同加工处理对绵羊瘤胃内pH值、NH_3-N和VFA浓度的影响.黑龙江畜牧兽医,2002,9:18-20.
    89. Reddy NM et al. Effect of fodder based complete diets on the rumen fermentation pattern in crossbred bulls. India J. Anim.Sci. 1993,10:7.
    90. Reddy PS et al. Utilization of sunflower straw and subabul-meal in complete diets for crossbred bulls. India J. Anim.Sci. 1987,59:80.
    91. Kennelly JJ, Robinson B, Khorasani GR. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yied, and milk composition in early-lactation Holstein cows. J. Dairy. Sci. 1999,82(11):2486-2496.
    92. Satter LD, Slyter L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br.J. Nutr. 1974,32:199-208.
    93. Preston TR, Leng KA. Matching ruminant production system with avaiable resources in the tropics and sub-tropics. Penambul Books. Armidal. 1987.
    94.周韶,李树聪.不同精料水平对肉牛瘤胃和小肠pH值的影响.饲料工业.2003,24(5):27-28.
    95. Erasmus LJ, Botha PM, Cruywagen CW. Amino acid progile and intestinal digestibility in dairy cows of rumen-undegradable protein from various feedstuffs.J.Dairy Sci. 1994,77(2):541-551.
    96.季成龙.养殖水化学.2000,p92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700