双城市地下水资源评价及可持续利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双城市位于黑龙江省哈尔滨市西部,属于松嫩平原高平原腹地,地下水是双城市的主要供水水源,近年来需水量不断增加,需要开辟新的水源地以满足日趋严重的供需矛盾。本文对双城市地下水资源进行了评价,并对对其可持续开发利用情况进行了分析。在系统分析研究区地质和水文地质条件的基础上,本文首先应用GMS软件建立了双城市地质结构模型,明确了含水层的分布情况;然后运用开采系数法、平均布井法等方法计算了地下水可开采量,并结合开采现状分析了地下水资源可开采潜力;接着应用GMS软件建立了地下水流数值模型,预报了不同开采方案下研究区地下水位的变化情况,分析了地下水开发利用中可能出现的问题;最后应用Bossel评价指标体系,对双城市地下水资源可持续开发利用的发展态势进行了评价,提出了可持续开发利用的对策。双城市地下水资源可持续开发利用处于危险态势,应严格控制地下水的开采量。
Shuangcheng City is located in the west of Ha’erbin City, belonging to the hinterland of Songnen high plain. Groundwater is the main source for water supply in Shuangcheng City. There are 2 current water sources for mucnicipal water supply engineerings in Shuangcheng City, laying 8 pumping wells, with the exploitation quantity of 1.2×104m3/d. Current water supply capability of mucnicipal works can only meet the demands for residents in the old unban area. With continous development of national economy, the demands for water resources also increase. According to data statement, current exploitation quantity in study area has reached 4.62×104m3/d. Domestic and industrial demands for water in the new urban area can not be satisfied with current water supply capability of Tap Water Company in Shuangcheng City, and the contradiction between supply and demands is getting worse. Enterprises and institutions have to add self-contained wells, which makes the exploitation out of order.
     According to borehole data and other geologic and hydrogeologic datas in study area, the geologic structure model is established by GMS software, and the distribution of aquifers in study area is confirmed. The aquifers in study area are argillaceous silt, medium and fine sand, medium and coarse sand of upper and mid Pleistocene series, Quanternary, and alluvial deposits of lower Pleistocene series, Quanternary, bearing pore water in unconsolidated deposits. Weak confined pore water of Quanternary in unconsolidated deposits and confined pore water of Quanternary in unconlidated deposits are divided according to the properties of aquifers.
     The range of groundwater resources assessment is the urban area of Shuangcheng City and its cirmujacent area, with the area 363.13km2. The object of groundwater resources assessment is Quantenary pore water in unconsolidated deposits, including unconfined (weak confined) pore water and confined pore water, the depth of which are all less than 120m, belonging to shallow groundwater. The formulas of groundwater dynamics and water budget method are used to assess the groundwater resources in this thesis. Selecting data serie of precipitation from 1952~2006, use Pearson III curve to do frequency analysis, and the recharge quantity by precipitation of different guarantee rate P=50%, P=75%, P=95% and average annual situation is calculated. The quantity of available groundwater exploitation is calculated with the method of expoitation coefficient. The average annual available groundwater exploitation quantity in the area is 4.4759×104m3/d. The water quality of 27 groudwater samples in study area is analyzed, eliciting that the chemical type of confined pore groundwater in eastern and most of western study area is HCO3-CaMg; in most of northern study area, and from north to south in 2 strip areas of Jinxing County– Chengji County and Qingli County– Chengdong County, the chemical type of confined pore groundwater is HCO3-Ca; in Southern study area, the main chemical type of confined pore groundwater beween two strip areas is HCO3-CaNa or HCO3-NaCa. The quality of groundwater environment of the study area is assessed with the method of synthesis assessment. According to the calculated results, the groundwater in study area is mainly of class IV or V. The groundwater of class IV is distributed in Qingning County and Chengxiang County, while the others belong to class V, which is mainly caused by the exceeding of the ions of iron and manganese. The geologic strata in study area bearing abundant iron and manganese, water cycling slowly and continous lixiviation of rocks by groundwater makes the continous enrichment of iron and manganese in groundwater, which is caused by primary environment, not severe pollution. After treating groundwater, the water quality can totally meet the drinking standard. Assessing the quality of groundwater environment after deleting the ions of iron and manganese, the groundwater quality type in study area is mainly between class II~III.
     The variation of groundwater flow net in study area is predicted with GMS software. The numeric groundwater model is identified and validated firstly accoding to the dynamic data of groundwater level from May 2007 to January 2008. The groundwater level is fitted well, showing the generalization of the structure and boundary of aquifers and the selecting of hydrogeologic parameters are proper, which can truly reflect the characteristics of aquifers, then the model can be used to predict the water level. The variation of groundwater level in study area is predicted according to 6 different programs. The prediction result shows that the variation of groundwater level is mainly influenced by human exploitation. When the extend water source starts operating, the centre of the cone of depression moves from urban area to the extend water source. The central drawdown of confined aquifer falls down rapidly from 2008 to 2013, and the range of the cone of depression expand to a large area. Then the depression gradually slows down, and the cone of depression is becoming stable. Exploiting groundwater with designed quanity 3×104m3/d, the central drawndown of groundwater is less than 6m after 10 years, in the range of maximum available drawdown.
     Bossel indexes sytem is selected to assess the development situation of sustaianable utilization of groundwater resources in Shuangcheng City in the year 2007. The synthesis sustainable development index of sustainable development system of groundwater resources in Shuangcheng City in the year 2007 is 1.6963, belonging to the dangerous class. The development situation of sustainable development system of groundwater resources mainly depends on the subsystem of groundwater resources. Although the well social & economic developing level and environmental system have certain help for the whole system’s development situation, e.g. the improvement of technical level may reduce the consumption of water resources in production and living, which can positively influence the development situation of the whole system, but this kind of influence is limited. Keeping well develpoping situation of the system needs to solve some problems of the subsystem of groundwater resources at first, and strictly control the quantity of groundwater exploitation. Based on this, then use the well developing situation of society, economy and environment sufficiently, try to save water and improve the pumping technics, which can weaken the pressure on the sustainable utilization of groundwater in Shuangcheng City in a certain extent.
引文
[1] 刘昌明. 中国水资源现状评价和供需发展趋势分析[M].
    [2] 王大纯, 张人权, 史毅虹等. 水文地质学基础[M]. 北京, 地质出版社, 1995, 第一版.
    [3] 陈梦熊, 马凤山. 中国地下水资源与环境[M]. 北京, 地震出版社, 2002.
    [4] 房佩贤, 卫中鼎, 廖资生等. 专门水文地质学(修订版)[M]. 北京, 地质出版社, 1996.
    [5] 水利电力部水文局. 中国水资源评价[M]. 北京, 水利电力出版社, 1987.
    [6] 张秀芳. 我国地下水开发利用现状与可持续发展[J]. 北京地质, 2002, 14(3): 40-42.
    [7] 谈树成, 薛传东, 赵筱青等. 城市化进程中地下水资源的可持续利用分析[J]. 中国人口·资源与环境, 2001, 11(51): 8-9.
    [8] 林柞顶. 我国地下水开发利用状况及其分析[J]. 水文, 2004, 24(1): 18-21.
    [9] 盛海洋, 孟秋立, 朱殿华等. 我国地下水开发利用中的水环境问题及其对策[J]. 水土保持研究, 2006, 13(1): 51-53.
    [10] 地质部水文地质工程地质研究所. 地下水资源评价理论与方法的研究[M]. 北京, 地质出版社, 1982.
    [11] 张芹. 大汶河流域地下水资源评价及可持续利用[D]. 河海大学, 2006.
    [12] 王长申, 王金生, 滕彦国. 地下水可持续开采量的前沿问题[J]. 水文地质工程地质, 2007, (4): 44-49.
    [13] 王金生, 王长申, 滕彦国. 地下水可持续开采量评价方法综述[J]. 水利学报, 2006, 37(5): 525-533.
    [14] 孙晓明. 环渤海地区地下水资源可持续利用研究[D]. 中国地质大学, 2007.
    [15] 张人权. 地下水资源特性及其合理开发利用[J]. 水文地质工程地质, 2003, (6): 1-5.
    [16] Roseta-Palma, Catarina. Joint Quantity/Quality Management of Groundwater[J]. Environmental and Resource Economics, 2003, 26(1).
    [17] Pulido Bosch, etal. Quantity and quality of groundwater in the Campo de Dalias[J]. Water Science and Technology, 1991, 24(1).
    [18] 石中平. 水文地质求参实际问题探讨[J]. 西安理工大学学报, 2002, 18(1): 84-87.
    [19] 王在岭, 杨建民. 用水位恢复数据计算承压含水层水文地质参数[J]. 铁道勘察, 2006, 2: 38-40.
    [20] 肖长来. 吉林省西部地下水资源评价与水资源可持续开发利用研究[D]. 吉林大学, 2001.
    [21] 薛禹群. 地下水动力学[M]. 北京, 1997, 第二版.
    [22] 束龙仓, 朱元生. 地下水资源评价中的不确定性因素分析[J]. 水文地质工程地质, 2000, 6: 6-8.
    [23] 胡伏生, 陈连竹, 万力. 含水层参数不确定性与地下水可开采量可靠性评价[J]. 南京大学学报(自然科学), 1999, 35(6): 675-682.
    [24] 赵秀云, 刘琦, 刘铁银等. 相关分析在地下水资源评价中的应用[J]. 黑龙江水专学报, 2000, 27(1): 39-41.
    [25] 黄勇, 周志芳, 王锦国. 基于抽水试验的水文地质参数三维进化反演[J]. 河海大学学报(自然科学版), 2002, 30(6): 26-29.
    [26] 李炳森. 利用抽水试验降深比值求水文地质参数[J]. 煤炭技术, 2005, 24(8): 74-75.
    [27] 白连生. 利用抽水试验资料确定水文地质参数 K[J]. 地下水, 2001, 24(2): 90-92.
    [28] 刘振宇. 利用群孔抽水试验水位恢复资料计算水文地质参数的新方法[J]. 内蒙古煤炭经济, 2002, 2: 80-82.
    [29] 秦紫东, 彭卉, 张焕智. 利用钻孔抽水非稳定数据测定含水层水文地质参数[J]. 黑龙江水利科技, 2000, 4: 1-3.
    [30] 尹俊岭. 用抽水试验推求水文地质参数方法初探[J]. 河北水利科技, 2000, 21(2): 46-49.
    [31] Sophocleous M. From safe yield to sustainable development of water resources-the Kansas experience[J]. Journal of Hydrology, 2000, 235(1-2): 27-43.
    [32] Alley, W. E. Aguado and I.Remson. Aquifer Management Under Transient and Steady-state Conditions[J]. Water Resources Bulletin, 1976, 12(5): 963-973.
    [33] 张春志, 刘继朝, 孟庆伟. 浅议均衡法在地下水资源评价中的应用[J]. 西部探矿工程, 2005, 7: 78-79.
    [34] 董淑乾, 蒋海云, 许模. 应用泉水均衡法分析四川省兴文县新坝水库岩溶渗漏问题[J]. 地质灾害与环境保护, 2006, 17(1): 69-73.
    [35] 吴浩东, 胡建平, 莫莉萍. 水均衡法在水资源评价论证中的应用[J]. 广西师范学院学报(自然科学版), 2006, 23: 27-30.
    [36] 李俊亭. 地下水流数值模拟[M]. 北京: 地质出版社, 1992.
    [37] 薛禹群, 吴吉春. 地下水数值模拟在我国[J]. 水文地质工程地质, 1997, 4: 21-24.
    [38] 薛禹群, 吴吉春. 面临 21 世纪的中国地下水模拟问题[J]. 水文地质工程地质1999, 5: 1-3.
    [39] 薛禹群, 叶淑君, 谢春红等. 多尺度有限元法在地下水模拟中的应用[J]. 水利学报, 2004, 7: 7-13.
    [40] 杜绍敏, 宋冰. 水文地质数值模拟的立足点[J]. 东北林业大学学报, 2003, 31(3): 67-69.
    [41] Gorelick, S. M. A review of distributed parameter groundwater management modeling methods[J]. Water Resources Research, 1983, 19(22).
    [42] Wang,H. F&J. Peraric. Introduction to Groundwater Modeling[J]. Journal ofHydrology, 1985.
    [43] 谢轶, 苏小四, 高淑琴. 基于 GMS 支持下的大庆地下水库区水文地质结构可视化模型[J]. 吉林大学学报(地球科学版), 2006, 36: 51-54.
    [44] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质, 2003, 30(5).
    [45] 段青梅. 西辽河平原三维地质建模及地下水数值模拟研究[D]. 中国地质大学, 2006.
    [46] 丁继红, 周德亮, 马生忠. 国外地下水模拟软件的发展现状与趋势[J]. 勘察科学技术, 2002, 1: 37-42.
    [47] 丹尼斯·米都斯. 增长的极限[M]. 北京, 机械工业出版社, 2006.
    [48] 国家环境保护局译. 21 世纪议程[M]. 北京:中国环境科学出版社, 1993.
    [49] 吕永龙. 国外可持续发展研究概况[P]. 中国可持续发展研究——从概念到行动, 1995: 9-12.
    [50] 钟甫宁. 永恒的追求——可持续发展[M]. 南京, 江苏科技出版社, 1996.
    [51] Herman E. Daly. Beyond Growth: The Economics of Sustainable Development[M]. Boston, U.S., Beacon Press, 1996.
    [52] 宋松柏, 蔡焕杰. 区域水资源可持续利用指标体系及评价方法研究[M]. 陕西, 西北农林科技大学出版社, 2005.
    [53] Peter Hardi, Terrance zdan. Assessing sustainable development: principles in practice[R]. The International Institute for Sustainable. Winnipeg, Manitoba, Canada, 1997.
    [54] European Commission. Towards sustainable water resources management: A strategic approach[R]. Brussel, Belgium, 1998.
    [55] 申玉铭, 毛汉英. 区域可持续发展的若干理论问题研究[J]. 地球科学进展. 1999, 18(4): 287-295.
    [56] 刘求实, 沈红. 区域可持续发展评价指标体系与评价方法研究[J]. 中国人口、资源与环境, 1999, 7(4): 60-64.
    [57] Loucks, D.P. Sustainable water resources management[J]. Water International, 2000, 25(1): 3-10.
    [58] 王慧敏, 徐明, 方乐润. 都江堰灌区可持续发展评价体系[J]. 水利学报, 1999, (5): 13-18.
    [59] 门宝辉, 梁川, 刘庆华. 基于属性识别方法的区域水资源开发利用程度综合评价[J]. 西北农林科技大学学报(自然科学版), 2002, 30(6): 207-210.
    [60] 叶正波. 可持续发展评估理论及实践[M]. 北京: 中国环境科学出版社, 2002.
    [61] 金菊良, 丁晶, 魏一鸣等. 区域水资源可持续利用系统评价的插值模型[J]. 自然资源学报, 2002, 17(5): 611-615.
    [62] 宋春柏, 蔡焕杰, 徐良芳. 水资源可持续利用指标体系及评价方法研究[J]. 水科学进展, 2003, 14(5): 647-652.
    [63] Bossel H. Indicators of sustainable development: Theory, Method, Applications[R]. International Institute of Sustainable Development, Canadian Cataloguing in Publication Data, 1999.
    [64] Jay J Walmsley. Framework for measuring sustainable development in catchment systems[J]. Environmental Management, 2002, 29: 195-206.
    [65] 刘恒, 耿雷华, 陈晓燕. 区域水资源可持续利用评价指标体系的建立[J]. 水科学进展, 2004, 14(3): 265-270.
    [66] 冯宝平. 区域水资源可持续利用理论与应用研究[D]. 河海大学, 2004.
    [67] 卞建民, 杨建强. 水资源可持续利用评价的指标体系研究[J]. 水土保持通报, 2000, 20(4): 43-45.
    [68] 左东启, 戴树声, 袁汝华等. 水资源评价指标体系研究[J]. 水科学进展, 1996, 7(4): 368-373.
    [69] Environmental modeling research labrotory. Groundwater modeling system tutorials, volume I [M]. U.S., Brigham Young University, 2005.
    [70] Environmental modeling research labrotory. Groundwater modeling system tutorials, volume II [M]. U.S., Brigham Young University, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700