玻璃体内注射地塞米松-PLGA纳米粒对实验性大鼠脉络膜新生血管的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:脉络膜新生血管(choroidal neovascularization, CNV)生成是许多致盲性眼底病晚期共有的病理改变。目前临床上治疗CNV的方法主要有激光光凝术、PDT、TTT、手术切除新生血管膜或黄斑转位及放射治疗等,但上述方法均有不足之处。随着人们对CNV生成机制认识的深入,新生血管抑制剂已成为近年来治疗CNV相关疾病的研究热点。糖皮质激素(如地塞米松和曲安奈德)为外源性新生血管抑制剂,已用于CNV相关疾病的治疗。然而,由于眼球壁的阻挡和血-视网膜屏障等因素的存在,糖皮质激素经大剂量系统给药后方能达到治疗效果,但极易引起全身性毒副作用;局部滴眼效果差,且很难到达眼后节。同时,由于药物在玻璃体内的半衰期较短、代谢速度过快、以及患者个体差异较大等原因,玻璃体内注射需多次给药后方可维持有效治疗浓度,且易引起青光眼、白内障、玻璃体出血、视网膜脱离及眼内炎等并发症,因而限制了它在眼后节疾病方面的应用。因此,研制一种既有利于治疗而毒副作用降至最低限度的糖皮质激素给药体系是最为理想的方法之一。
     理想的控释制剂应该是以一种持续的方式释药,并超越所需要的时间期限。目前,以聚乳酸-羟基乙酸共聚物[poly(D,L-lactide-co-glycolide), PLGA]为材料制成的控释给药系统如植入体、微球及纳米粒等已获得广泛应用。采用具有生物降解性PLGA合成的纳米给药系统可控制药物的释放速率和机体靶向性给药,从而最佳优化药物的治疗效果、减少毒副反应以及消除重复注射所致的并发症。PLGA具有良好的生物相容性,更重要的是其降解速率和药物的释放可通过聚合体的物理化学性质如分子量、亲水性和丙交酯与乙醇酸的比值来控制等。与较大的聚合物相比,它的优势在于不仅可以免除植入和取出时所需的手术操作,而且其降解作用的时间范围可从数月至数年。
     目的:探讨玻璃体内注射醋酸地塞米松(dexamethasone acetate, DA)-PLGA纳米粒对实验性脉络膜新生血管(choroidal neovascularization, CNV)的抑制效果,并评价其在不同眼组织内的释药模式
     方法:采用改良的乳化/溶剂蒸发法制备载药量为50%的DA-PLGA纳米粒。雄性BN大鼠180只,每只动物选取一只眼作为实验眼,采用激光光凝法建立CNV模型,对侧眼未处理。随机将实验眼分7组,即50μg、100μg、200μg和400μg DA-PLGA纳米粒组(各30只)、100μg DA组(30只)、空白PLGA纳米粒组(15只)和生理盐水对照组(15只)。各组分别给予玻璃体内注射的剂量为10μL。光凝后各个时间点行临床检查及眼底照相以观察药物在玻璃体内的消退时间。于光凝后1、3、7、14、21、28和56d,采用反相高效液相色谱法(reversed-phase high-performance liquid chromatography, RP-HPLC)检测各组大鼠眼角膜、虹膜、玻璃体和脉络膜视网膜组织内DA的药物浓度。各组于激光前和光凝后第7、14、21、28和56d行闪光视网膜电图检查(flash-electroretinography, F-ERG)评估视网膜功能。光凝后14d和56d,通过荧光素眼底血管造影(fluorescein fundus angiography, FFA)观察CNV的生成率;之后处死动物,摘除眼球制作标本,进行光学显微镜和透射电子显微镜观察。
     结果:光凝后1d,临床检查发现DA-PLGA纳米粒、空白PLGA纳米粒和DA玻璃体内注射后均可引起明显的玻璃体混浊,之后药物逐渐吸收并沉积在玻璃体腔下方。DA组消退较迅速,至光凝后14d时药物基本完全吸收,玻璃体间质变清;PLGA纳米粒组消退非常缓慢,至光凝后56d时在玻璃体腔偏下方仍可见少量残留的药物团块。DA-PLGA纳米粒在实验眼玻璃体和脉络膜视网膜组织中的释药模式呈“3相”,即初始突释、稳态释药和再次突释,持续释药时间至少56d。DA原药的释药模式呈“单相”,释药时间为14d左右。在实验全过程中,角膜组织内始终未检测到DA,而虹膜组织仅在给药后第1d测得较低浓度的DA。F-ERG检查显示各组在激光前和激光后不同时间点a波和b波的振幅值和峰时值无明显差异(P>0.05)。
     光凝后14d和56d,50μg、100μg、200μg和400μg DA-PLGA纳米粒组、DA组、空白PLGA纳米粒组和生理盐水对照组CNV的生成率分别为47.4%/46.2%、28.2%/25.0%、15.8%/15.0%、7.9%/7.7%、31.6%/35%、65.8%/64.1%和65.8%/65.0%。所有DA-PLGA纳米粒组和DA组CNV的生成率较空白PLGA纳米粒组和生理盐水对照组明显降低(P<0.01,χ~2分割法),但各治疗组内无明显差异(P>0.05)。其中,400μgDA-PLGA纳米粒组CNV的生成率明显低于50μg和100μgDA-PLGA纳米粒组(P<0.05)。光凝后56d,DA组中部分原来无荧光素渗漏的光凝斑又重新出现荧光素渗漏。
     光凝后56d,光凝区纤维血管组织增生(fibrovascular proliferation, FVP)的平均厚度在50μg、100μg、200μg和400μg DA-PLGA纳米粒组、DA组、空白PLGA纳米粒组和生理盐水对照组中分别为84.77±9.79μm、69.52±10.52μm、53.17±13.83μm、38.39±7.87μm、70.49±12.39μm、103.86±16.36μm和105.11±13.70μm。所有DA-PLGA纳米粒组和DA组FVP的平均厚度较空白PLGA纳米粒组和生理盐水对照组显著变薄(P<0.01,SNK-q检验)。不同剂量DA-PLGA纳米粒组组间两两比较均有显著性差异(P<0.05)。透射电子显微镜检查发现,光凝后14d,400μgDA-PLGA纳米粒组和DA组的RPE层紊乱、外节膜盘结构模糊,视网膜节细胞层和神经纤维层的线粒体明显空泡化,内质网肿胀,高尔基复合体排列紊乱,微管肿胀及微丝排列紊乱。至光凝后56d,400μgDA-PLGA纳米粒组RPE层、外节膜盘、视网膜节细胞层和神经纤维层的超微结构基本恢复正常,而DA组未见明显改变。50μg、100μg、200μgDA-PLGA纳米粒组的RPE层、外节膜盘、内外核层及内外丛状层的超微结构均无明显异常。
     结论:玻璃体内注射DA-PLGA纳米粒可呈剂量依赖性地抑制实验性CNV的生长。与DA原药相比,DA-PLGA纳米粒具有毒性低、缓释及药效持久等特性,有可能成为治疗CNV相关疾病的理想手段之一。
Background: Choroidal neovascularization (CNV) is a common pathological endpoint in a host of blind oculopathies. Several therapies in clinical status are available to treat CNV including laser photocoagulation, photodynamic therapy (PDT), transpupillary thermotherapy (TTT), macular translocation or surgical removal and radiation therapy. However, above-mentioned treatments on CNV have some insufficient aspects. As the pathogenesis of CNV is better understood, the anti-neovasular agents for CNV-related diseases has been developed the researched hot point for the past few years. Glucocorticoid, for example dexamethasone and triamcinolone, as an exogenous neovascular inhibitors, has been applied to treat the CNV-related diseases. However, it is difficult to deliver effectively doses of drugs to the posterior part of the eyes. Systemic administration necessitates large doses of the drug, resulting in general side effects. Topical eye drops penetrate poorly into the posterior part of the eye, because of lacrimation and the length of the diffusion path. Intravitreal injection must be administered multiple to maintain drug concentrations within a therapeutic range for a long period of time and sometimes causes a series of complications, such as glaucoma, cataract, vitreous hemorrhage, retinal detachment or endophthalmitis. The development of drug delivery systems to facilitate therapeutic efficacy and to minimize side effects may be the ideal method.
     Controlled delivery of drugs via poly(D,L-lactide-co-glycolide) (PLGA) polymers as implants, microspheres, and nanoparticles has gained wide acceptance. An ideal controlled release formulation should release the entrapped drugs in a continuous manner over desired time periods. Biodegradable nanoparticles formulated from PLGA and polyvinyl alcohol (PVA) polymers are being extensively investigated for various drug delivery applications. They are used to control drug release rates and to target drugs to specific sites in the body, thereby optimizing their therapeutic response, decreasing toxic side effects, and eliminating the inconvenience of repeated injections. PLGA is biocompatible, and more importantly, the degradation rates of PLGA and the accompanying release of encapsulated drugs can be controlled by the polymer’s physicochemical properties such as molecular weight, hydrophilicity, and the ratio of lactide to glycolide. Its advantages is not only no surgical procedures for implantation in contrast to large polymer implants and removal but also their degradation rate ranges from months to years.
     Purpose: To investigate the inhibitory efficacy of intravitreal dexamethasone actate (DA)-loaded by Poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles on choroidal neovascularization (CNV) in a laser-induced rat model,and to assess its release mode.
     Methods: DA-loaded with PLGA nanoparticles containing 50% DA was prepared using an emulsification/solvent evaporation method with slight modifications. CNV was unilaterally induced by laser photocoagulation in male Brown Norway rats. One hundred and eighty rats were randomly divided into seven groups and the 10μL volume of intravitreal drug suspension was performed the same day after photocoagulation. Different dosages of sterilised DA-loaded PLGA nanoparticles suspension were evaluated: i.e. 50μg (n=30), 100μg (n=30), 200μg (n=30), 400μg (n=30). The others groups as control were 100μg DA (n=30), blank PLGA nanoparticles (n=15) and normal saline (n=15). For each animal studied, the experimental eye received one of aforementioned suspensions. The animals were sacrificed on days 1, 3, 7, 14, 21, 28 and 56 after intravitreal injection, then the eyes were enucleated and frozen in -80℃. The cornea, iris, vitreous and choroid-retina of eyes were retrieved and DA levels were determined using a reversed phase high-performance liquid chromatography (RP-HPLC) method. Flash electroretinography (F-ERG) recordings and transmission electron microscope (TEM) were performed to assess retinal toxicity. Fluorescein fundus angiography (FFA) was performed to evaluate the incidence of CNV on days 14 and 56. The animals were sacrificed at 14 and 56 days, then eyecups were processed for histological analysis.
     Results: At 1 day after photocoagulation, intravitreal DA-loaded PLGA nanoparticles, blank PLGA nanoparticles and DA suspensions caused immediately the obvious vitreous opacitas in clinical examination. While the time extended, the drug suspension was gradually absorbed and deposited in the beneath of vitreous cavity. DA was fast resolved and almost complete absorbtion at 14 days after photocoagulation. However, PLGA nanoparticles suspension was very slowly absorbed so that small amounts of remanent drug clumping could be observed in the beneath of vitreous at 56 days. By RP-HPLC method, the pharmacokinetics of DA-loaded PLGA nanoparticles in vitreous and choroid-retina of the experimental eyes showed a triphasic pattern: i.e. an initial burst, a lag phase with relatively permanent release rate and another burst, and controlled release at least 56 days. In the cornea, DA was below the detection limit during the observed period. Although DA was slightly detected on day 1 after photocoagulation, it hasn’t been determined after 3 days in the iris. During the examination of F-ERG, the results showed no different significant comparing with the a- and b-wave’s amplitude and implicit time between pro and after laser photocoagulation in various groups.
     On day 14 and 56 after photocoagulation, the incidence of CNV was 47.4% or 46.2% for 50μg, 28.2% or 25.0% for 100μg, 15.8% or 15.0% for 200μg and 7.9% or 7.7% for 400μg DA-loaded PLGA nanoparticles, 31.6% or 35.0% for DA, 65.8% or 64.1% for blank PLGA nanoparticles and 65.8% or 65.0% for normal saline group, respectively. These results demonstrated that the treated groups (including DA-loaded PLGA nanoparticles and DA groups) compared with the blank PLGA nanoparticles and normal saline groups (as control) showed a statistically significant decrease in the formation of CNV (P<0.05). On day 56, the mean thickness of FVP in the recovered lesions was 84.77±9.79μm (n=10), 69.52±10.52μm (n=9), 53.17±13.83μm (n=8), 38.39±7.87μm (n=7), 70.49±12.39μm (n=9), 103.86±16.36μm (n=10) and 105.11±13.70μm (n=11), respectively, in the 50μg, 100μg, 200μg, 400μg DA-loaded PLGA nanoparticles, DA, blank PLGA nanoparticles and normal saline group. All treated groups inhibited FVP relative to controls in a statistically significant fashion (P<0.01). The inhibition of DA-loaded PLGA nanoparticles on experimental CNV showed a dose-dependent effect (P<0.05).
     On day 14, TEM revealed the disorder of RPE, indefinite of outer segment membrane disc apparente vacuolization of mitochondria, swelling of endoplasmic reticulum, disorded arrangement of Golg’s complex, derangement of microtubule and microfilament in 400μg-treated PLGA nanoparticles and DA groups. The changes of ultrastructure were almost recovered in RPE, outer segment membrane disc, retinal ganglionic and nerve fiber layer in the 400μg DA-loaded PLGA nanoparticles group on day 56, but there were an invisible changes in the DA group. No signs of ultrastructure destruction in the RPE, outer segment membrane disc, inner and outer nuclear layer, and inner and outer plexiform layer were detected in 50μg, 100μg and 200μg DA-loaded PLGA nanoparticles groups.
     Conclusions: These results suggest that DA-loaded PLGA nanoparticles can dose-dependently inhibit the development of experimental CNV. Compared with DA, DA-loaded PLGA nanoparticles may be a promising drug delivery system (DDS), which possessed the characteristics of low drug toxicity, controlled release and prolonged action and may have potential as a treatment modality for CNV. .
引文
1 D’Amore PA. Mechanisms of retinal and choroidal neovascularization [J]. Invest Ophthalmol Vis Sci. 1994; 35(12):3974-3979.
    2 Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group [J]. Surv Ophthalmol, 1995; 39(5):367-374.
    3 O’Shea JG. Age-related macular degeneration: a leading cause of blindness [J]. Med J Aust, 1996; 165(10):561-564.
    4 Cohen SY, Laroche A, Leguen Y, et al. Etiology of choroidal neovascularization in young patients [J]. Ophthalmology, 1996; 103(8): 1241-1244.
    5 Sickenberg M, Schmidt-Erfurth U, Miller JW, et al. A preliminary study of photodynamic therapy using verteporfin for choroidal neovascularization in pathologic myopia, ocular histoplasmosis syndrome, angioid streaks, and idiopathic causes [J]. Arch Ophthalmol, 2000; 118(3):327-336.
    6 Ambati J, Ambati BK, Yoo SH, et al. Age-related macular degeneration etiology, pathogenesis, and therapeutic strategies [J]. Surv Ophthalmol, 2003, 48(3):257-293.
    7 吴乐正, 陈又昭, 曹心媛, 等. 藏族和汉族的老年黄斑变性流行病学调查 [J]. 眼科学报, 1987; 3(3):179-181.
    8 武正清, 曹金娥, 姚秀衡, 等. 老年性黄斑变性的流行病学调查 [J].中华眼科杂志, 1992; 28(3):246-249.
    9 关国华, 詹宇坚, 黄仲委, 等. 老年性黄斑变性流行病学调查(附1091例调查结果分析)[J]. 眼底病, 1989; 5(4):208-212.
    10 何明光, 许京京, 吴开力, 等. 广东省斗门县老年性黄斑变性流行病学调查 [J]. 中华眼底病杂志, 1998; 14(2):122-126.
    11 Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions of age related macular degeneration: Updated findings from two clinical trials [J]. Arch Ophthalmol, 1993; 111(9):1200-1209.
    12 Grossinklaus HE, Gass JD. Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes [J]. Am J Ophthalmol, 1998; 126(1):59-69.
    13 Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin:one-year results of 2 randomized clinical trials-TAP report [J]. Arch Ophthalmol, 1999; 117(10):1329-1345.
    14 Stokkermans TJ. Treatment of age related macular degeneration [J]. Clin Eye Vis Care, 2000; 12(1-2):15-35.
    15 Martidis A, Miller DG, Ciulla TA, et al. Corticosteroids as antiangiogenic agent for histoplasmosis-related subfoveal choroidal neovascularization [J]. J Ocul Pharmacol Ther, 1999; 15(5):425-428.
    16 Danis RP, Ciulla TA, Pratt LM, et al. Intravitreal triamcinolone acetonide in exudative age-related macular degeneration [J]. Retina, 2000; 20(3): 244-250.
    17 Gillies MC, Simpson JM, Luo W, et al. A randomized clinical of a single dose of intravitreal triamcinolone for neovascular age-related macular degeneration: one-year results [J]. Arch Ophthalmol, 2003; 121(5):667-673.
    18 Hickey T, Kreutzer D, Burgess DJ, et al. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices [J]. Biomaterials, 2002; 23(7):1649-1656.
    19 Shive MS, Aderson JM. Biodegradation and biocompatibility of PLA and PLGA microsphere [J]. Adv Drug Deliv Rev, 1997; 28(1):5-24.
    20 Panyam J, Dali MM, Sahoo SK, etal. Polymer degradation and in vitro release of a model protein from poly (D, L-lactide –co-glycolide) nano- and microparticles [J]. J Control Release, 2003; 92(2):173-187.
    21 Battegay EJ. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects [J]. J Mol Med, 1995; 73(7):333-346.
    22 Folkman J. Angiogenesis and angiogenesis inhibition: an overview[J]. EXS, 1997; 79:1-8.
    23 Pepper MS. Transforming growth factor-β: vasculogenesis, angiogenesis, and vessel wall integrity[J]. Cytokine Growth Factor Rev, 1997; 8(1):21-43.
    24 Schmidt-Erfurth U, Miller JM, Sickenberg M, et al. Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study [J]. Arch Ophthalmol, 1999; 117(9):1177-1187.
    25 Bressler NM, Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study group. Photodynamic therapy of subfoveal choroidal neovascularization in age-relerated macular degeneration with verteporfin, 2 year results of 2 randomized clinical trails-tap report 2 [J]. Arch Ophthalmol, 2001; 119(2):198-207.
    26 Treatment of Age-related Macular Degeneration With Photodynamic Therapy (TAP) Study Group. Verteporfin therapy of subfoveal choroidalneovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classical choroidal neovascularization verteporfin in photodynamic therapy report 2 [J]. Am J Ophthalmology, 2001; 131(5):541-560
    27 赵晶晶, 张金华, 郑曰忠. 光动力疗法的眼科应用新进展 [J].中国实用眼科杂志, 2004; 22(11):851-854.
    28 张凡, 张承芬. 经瞳孔温热疗法治疗眼底病 [J]. 国外医学眼科学分册, 2001; 25 (4):248-250.
    29 Reichel E, Berrocal AM, Ip M, et al. Transpupillary thermotherapy of occult subfoveal choroidal neovascularization in patients with age-related macular degeneration [J]. Ophthalmology, 1999; 106(10):1908-1914.
    30 胡丹, 惠延年, 张鹏, 等. 经瞳孔温热疗法治疗中心性渗出性脉络膜视网膜炎 [J].中华眼底病杂志, 2002; 18(3):184-186.
    31 Abdel-Meguid A, Lappas A, Hartmann K, et al. One year follow up of macular translocation with 360 degree retinotomy in patients with age related macular degeneration [J]. Br J Ophthalmol, 2003; 87(5):615-621.
    32 Pieramici DJ, De Juan E Jr, Fujii GY, et a1. Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration [J]. Am J Ophthalmol, 2000; 130(4):419-428.
    33 戴虹, 王铮, 张克贞. 黄斑部视网膜转位手术 [J]. 国外医学眼科学分册, 2000; 24(5):276-281.
    34 秦要武, 徐格致, 张勇进. 年龄相关性黄斑变性的治疗进展 [J].中国眼耳鼻喉科杂志, 2003; 3(2):127-128.
    35 Arlett CF, Harcourt SA. Survey of radiosensitivity in a variety of human cell strains [J]. Cancer Res, 1980; 40(3):926-932.
    36 Verheij M, Koomen GC, van Mourik JA, et a1. Radiation reduced cyclooxygenase activity in cultured human endothelial cells at low doses [J]. Prostaglandins, 1994; 48 (6):351-366.
    37 Chakravarthy U, Houston RF, Archer DB. Treatment of age-related subfoveal neovascular membranes by teletherapy: a pilot study [J]. Br J Ophthalmol, 1993; 77(5):265-273.
    38 Kobayashi H, Kobayashi K. Age-related macular degeneration:long-term results of radiotherapy for subfoveal neovascular membranes [J]. Am J Ophthalmol, 2000; 130(5):627-635.
    39 Valmaggia C, Ries G, Ballinari P. Radiotherapy for subfoveal choroidal neovascularization in age-related macular degeneration: a randomized clinical trial [J]. Am J Ophthalmo1, 2002; 133(4):521-529.
    40 杨秀梅, 王雨生, 惠延年. 外源性脉络膜新生血管生血管抑制剂的研究进展 [J]. 眼科新进展, 2005; 25(1):75-78.
    41 杨秀梅, 王雨生. 内源性脉络膜新生血管抑制因子的研究进展 [J]. 国际眼科杂志, 2004; 4(2):307-311
    42 Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for .neovascular age-related macular degeneration [J]. N Engl J Med, 2006; 355:1432-1444.
    43 张军军,刘谊. 曲安奈德玻璃体腔内注射疗法的研究现状 [J]. 中华眼底病杂志, 2005; 21(4):203-204.
    44 金有豫主编. 药理学 [M]. 第5版, 北京: 人民卫生出版社, 2001:285-292.
    45 Sherif Z, Pleyer U. Corticosteroids in Ophthalmology: Past-Present- Future [J]. Ophthalmologia, 2002; 216(5):305-315.
    46 Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: Molecular mechanisms [J]. Trends Pharmacol Sci, 1993; 14(12):436-441.
    47 Luttrell LM. Transmembrane signaling by G protein-coupled receptors [J]. Methods Mol Biol, 2006; 332:3-49.
    48 Rogatsky I, Ivashkiv LB. Glucocorticoid modulation of cytokine signaling [J]. Tissue Antigens, 2006; 68(1):1-12.
    49 Pal S, Datta K, Khosravi-Far R, et al. Role of protein kinase Czeta in Ras-mediated transcriptional activation of vascular permeability factor/vascular endothelial growth factor expression [J]. J Biol Chem, 2001; 276(4):2395-2403.
    50 Furuyama T, Kitayama K, Yamashita H, et al. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation[J]. J Biochem, 2003;375(Pt 2):365-371.
    51 Imae M, Fu Z, Yoshida A, et al. Nutritional and hormonal factors control the gene expression of FoxOs, the mammalian homologues of DAF-16 [J]. J Mol Endocrinol, 2003; 30(2):253-262.
    52 Brikenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? [J]. J Immunol, 2003; 171(4): 1623-1629.
    53 Suzuma K, Takahara N, Suzuma I, et al. Characterization of protein kinase C beta isofrm′s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization [J]. Proc Natl Acad Sci USA, 2002; 99(2):721-726.
    54 Hulley PA, Gordon F, Hough FA. Inhibition of mitogen-activated protein kinase activity and proliferation of an early osteoblast cell line (MBA 15.4) by dexamethasone: role of protein phosphatases [J]. Endocrinology, 1998; 139 (5):2423-2431.
    55 Croxtall JD, Choudhury Q, Flower RJ. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism [J]. Br J pharmacol, 2000; 130(2):289-298.
    56 Short AD, Bian J, Ghosh TK, et al. Intracellular Ca2+ pool content is linked to control of cell growth [J]. Proc Natl Acad Sci USA, 1993; 90(11):4986-4990.
    57 卢文莆. 阿尔茨海默病与钙-钙调素(综述)[J]. 国外老年医学分册, 1995; 16:193-195.
    58 Steinhors U, Chen EP, Maehmner R,et al. N-dlmethyladfiatayeinfor treatment of experimental vitreoretinopathy: efficacy and toxicity on the rabbit retina [J]. Exp Eye Res, l993; 56(4):489-495.
    59 Stolba U, Binder S, Velikay M,et al. Use of perfluorocarbon liquids in proliferative vitreoretinopathy: results and complications [J]. Br J Ophthalmol, 1995; 79(12):1106-1110.
    60 Tano Y, Chandler D, Machemer R. Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide [J]. Am J Ophthalmol, 1980; 90(6):810-816.
    61 Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms [J]. Clin Sci (Colch), 1998; 94(6):557-572.
    62 Son GH, Geum D, Jung H, et al. Glucocorticoid inhibits growth factor-induced differentiation of hippocampal progenitor HiB5 cells [J]. J Neurochem, 2001; 79(5):1013-1021.
    63 Edelman JL, Castro MR, Wen Y. Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea [J]. Invest Ophthalmol Vis Sic, 1999; 40(6):1112-1123.
    64 徐旭, 霍平, 聂庆珠, 等. 地塞米松抑制碱烧伤后角膜新生血管的实验研究 [J]. 中国实用眼科杂志, 2000; 18(7):422-424.
    65 Harkness KA, Adamson P, Sussman JD, et al. Dexamethasone regulation of matrix metalloproteinase expression in CNS vascular endothelium [J]. Brain, 2000; 123 (pt4):698-709.
    66 刘诚军, 许峰, 匡凤梧, 等. 地塞米松对高氧肺损伤大鼠肺组织基质金属蛋白酶及其组织抑制剂表达的影响 [J]. 中国危重病急救医学, 2004; 16(10):618-620.
    67 Kumagai K, Ohno I, Imai K, et al. The involvement of matrix metallopreoteinase in basement injury in a murine model of acute allergic airway inflammation [J]. Clin Exp Allergy, 2002; 32(10):1527-1534.
    68 Ryan SJ. The development of an experimental model of subretinal neovascularization in disciform macular degeneration [J]. Trans AmOphthalmol Soc, 1979; 77:707-745.
    69 Dobi ET, Puliafito CA, Destro M. A new model of experimental choroidal neovascularization in the rat [J]. Arch Ophthalmol, 1989; 107(2):264-269.
    70 刘谊, 严密. 曲安奈德玻璃体腔注射的临床应用[J]. 中华眼底病杂志, 2003; 19(4):263-265.
    71 Danis RP, Bingaman DP, Yang Y, et al. Inhibition of preretinal and optic nerve head neovascularization in pigs by intravitreal triamcinolone acetonide [J]. Ophthalmology, 1996; 103(12):2099-2104.
    72 Ciulla TA, Criswell MH, Danis RP, et al. Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in laser-related rat model [J]. Arch Ophthalmol, 2001; 119(2):399-404.
    73 Penfold PL, Wong JG, Gyory J, et al. Effects of triamcinolone acetonide on microgla morphology and quantitative expression of MHC-II in exudative age-related macular degeneration [J]. Clin Experiment Ophthalmol, 2001; 29(3):188-192.
    74 Wang YS, Friedrichs U, Eichler W, et al. Inhibitory effects of triamcinolone acetonide on bFGF-indued migration and tube formation in choroidal microvascular endothelial cells [J]. Graefé’s Arch Clin & Exp Ophthalmol, 2002; 240(1):42-48.
    75 Wilson CA, Treatment with intravitreal steroid reduces blood-retinal barrier break-down due to retinal photocoagulation [J]. Arch Ophthalmol, 1992; 110(8):1155-1159.
    76 Antoszyk-Andrew N, Gorrlieb-Justin L, Machemer R, et al. The effects of intravitreal triamcinolone acetonide on experimental pre-retinal neovascularization [J]. Graefé’s Arch Clin &Exp Ophthalmol, 1993; 231(1):34-40.
    77 Castro MR, Lutz D, Edelman JL. Effect of COX inhibitors on VEGF-induced retinal vascular leakage and experimental corneal and choroidal neovescularization [J]. Exp Eye Res, 2004; 79(2):275-285.
    78 Edelman JL, Castro MR. Quantitative image analysis of laser induced choroidal neovascularization in rat [J]. Exp Eye Res, 2000; 71(5):523-533.
    79 Ni M, Holland M, Jarstadmarken H, et al. Time-course of experimental choroidal neovascularization in Dutch-Belted rabbit: clinical and histological evaluation [J]. Exp Eye Res, 2005; 81(3):286-297.
    80 Murata T, He S, Hangai M, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization [J]. Invest Ophthalmol Vis Sic, 2000; 41 (8):2309-2311.
    81 Hirvela H, Luukinen H, Laara E, et al. Risk factors of age-relatedmaculopathy in a population 70 years of age or older [J]. Ophthalmology, 1996; 103(6):871-877.
    82 Ranson NT, Danis RP, Ciulla TA, et al. Intravitreal triamciolone in subfoveal recurrence of choroidal neovascularization after laser treatment in macular degeneration [J]. Br J Ophthalmol, 2002; 86(5):527-529.
    83 Jonas JB, Kreissig I, Hugger P, et al. Intravitreal triamcinolone acetonide for exudative age-related macular degeneration [J]. Br J Ophthalmol, 2003; 87(4):462-468.
    84 Penfold PL, Wen L, Madigan MC, et al. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1(ICAM-1) expression of the ECV304 cell line: implications for macular degeneration [J]. Clin Exp Immunol, 2000; 121(3):458-465.
    85 Spaide RF, Sorenson J, Maranan L. Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovasculariztion [J]. Ophthalmology, 2003; 110(8):15717-15725.
    86 Flaxel CJ, Owens SL, Mulholland B, et al. The use of corticosteroids for choroidal neovascularization in young patients [J]. Eye, 1998; 12(pt2):766- 772.
    87 Wingate RJB, Beaumont PE. Intravitreal triamcinolone and elevated intraocular pressure[J]. Aust N Z J Ophthalmol, 1999; 27:431-432.
    88 Singh IP, Ahmad SI, Yeh D, et a1. Early rapid rise in intraocular pressure after intravitreal triamcinolone acetonide injection [J]. Am J Ophthalmol, 2004; 138(2):286-287.
    89 Chan CK, Fan DS, Chan WM , et al. Ocular-hypertensive response and corneal endothelial changes after intravitreal triamcinolone injections in Chinese subjects: a 6-month follow-up study [J]. Eye, 2005; 19(6):625-630.
    90 Smithen LM, Ober MD, Maranan L, et a1. Intravitreal triamcinolone acetonide and intraocular pressure [J]. Am J Ophthalmol, 2004; 138(5):740- 743.
    91 Jonas JB, Akkoyun I, Budde WM, et al. Intravitreal reinjection of triamcinolone for exudative age-related macular degeneration [J]. Arch Ophthalmol, 2004; 122(2):218-222.
    92 Kaushik S, Gupta V, Gupta A, et a1. Intractable glaucoma following intravitreal triamcinolone in central retinal vein occlusion [J]. Am J Ophthalmol, 2004; 137(4):758-760.
    93 Moshfeghi DM, Kaiser PK, Scott IU, et al. Acute endophthalmitis following intravitreal triamcinolone acetonide iniection [J]. Am J Ophthalmol, 2003; 136(5):791-797.
    94 Nelson ML, Tennant MT, Sivalingam A, et a1. Infectious and presumed noninfectious endophthalmitis after intravitreal triamcinolone acetonide iniection [J]. Retina, 2003; 23(5):686-691.
    95 Engstrom RE Jr, Holland GN. Local therapy for cytomegalovirus retinopathy [J]. Am J Ophthalmol, 1995; 120(3):376-385
    96 刘武, 王景昭. 玻璃体内注射曲安奈德的问题与并发症 [J]. 中华眼底病杂志, 2005; 21(4):267-270
    97 Roth DB, Chieh J, Spirn MJ, et a1. Noninfectious endophthalmitis associated with intravitreal triamcinolone injection [J]. Arch Ophthalmol, 2003; 121(9):1279-1282.
    98 Sutter FK, Gillies MC. Pseudo-endophthalmitis after intravitreal injection of triamcinolone [J]. Br J Ophthalmol, 2003; 87(8):972-974.
    99 Moshfeghi AA, Scott IU, Flynn HW Jr, et a1. Pseudohypopyon after intravitreal triamcinolone acetonide injection for cystoid macular edema [J]. Am J Ophthalmol, 2004; 138(3):489-492.
    100 Hida T, Chand1er D, Arena JE, et a1. Experimental and clinical observations of the intraocular toxicity of commercial corticosteroid preparations [J]. Am J Ophthalmol, 1986; 101(2):190-195.
    101 Penn JS, Rajaratnam VS, Collier RJ, et al. The effect of an angiostatic steroid on neovascularization in rat model of retinopathy of prematurity [J]. Invest Ophthalmol Vis Sic, 2001; 42(1):283-290.
    102 MeNatt LG, Weimer L, Yanni J, et al. Angiostatic activity of steroids in the chick embryo CAM and cornea models of neovascularization [J]. J Ocul Pharmacol Ther, 1999; 15(5):413-423.
    103 D'Amico DJ, Goldberg MF, Hudson H, et al. Anecortave acetate as monotherapy for the treatment of subfoveal lesions in patients with exudative age-related macular degeneration (ARMD): interim (month6) analysis of clinical safety and efficacy [J]. Retina, 2003; 23(1):14-22.
    104 Ciulla TA, Criswell MH, Danis RP, et al. Choroidal veovascular membrane inhibition in a laser treated rat model with intraocular sustained release triamcinolone acetonide microimplants [J]. Br J Ophthalmol, 2003; 87(8): 1032-1037.
    105 Arevalo JF, Mendoza AJ, Fernandez CF, et al. Indocyanine green- mediated photothrombosis with and without intravitreal triamcinolone acetonide for subfoveal choroidal neovascularization in age-related macular degeneration:a pilot study [J]. Retina, 2005; 25(6):719-726.
    106 王新春, 张志荣, 袁勇, 等. 乳酸-羟基乙酸共聚物在控释制剂研究中的应用与进展 [J]. 华西药学杂志, 2003; 18(1):42-44.
    107 Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microsphere [J]. Adv Drug Del Ren, 1997; 28(1):5-24.
    108 平其能. 现代药剂学 [M]. 北京: 中国医药科技出版社, 1998:793.
    109 李越, 王雨生, 惠延年. 纳米给药系统在眼科的应用 [J]. 国际眼科杂志, 2003; 3(4):72-75.
    110 Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: effect of drug type and polymer composition [J]. J Control Release, 2005; 102(2):333-344.
    111 Bourges JL, Gautier FF, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles [J]. Invest Ophthalmol Vis Sci, 2003; 44(8):3562-3569.
    112 赵锋, 陈小平. 溶剂对无表面活性剂法制备诺氟沙星 PLGA 毫微粒及其对释药的影响[J]. 国外医学药学分册, 2001;28(2):126-129.
    113 Yang R, Chen TN, Chen HL, et a1. Microfabrication of biodegradable (PLGA) honeycomb-structures and potential application in implantable drug delivery [J]. Sens Actuators B, 2005; 106(2):506-511.
    114 Shively ML, Coonts BA, Renner WD, et a1. Physicochemical characterization of a polymeric injectable implant delivery system [J]. J Control Release, 1995; 33:237-248.
    115 Jain RA, Rhodes CT, Railkar AM, el al. Comparision of various protein-loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices: in-situ-formed versus in-situ-formed microspheres versus isolated microspheres [J]. Pharm Dev Technol, 2000; 5(2):201-207.
    116 Krzystolik MG, Afshari MA, Adamis AP, et a1. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment [J]. Arch Ophthalmol, 2002; 120(3):338-346.
    117 李越, 王雨生, 惠延年. 纳米给药在眼科学中的应用 [J]. 国际眼科杂志, 2003; 3(1):72-75.
    118 李越, 王雨生, 宋存先, 等. 地塞米松-PLGA 纳米粒兔眼玻璃体内注射的药物代谢动力学 [J]. 眼科新进展, 2005; 25(3):229-231.
    119 Jianfeng Xu, Yusheng Wang, Xiumei Yang, et al. Correlation of CD105 and vascular endothelial growth factor in laser-induced choroidal neovascularization in rats [J]. EYE SCIENCE, 2006; 22(3):166-174,183.
    120 Ayalasomayajula SP, Kompella UB. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration [J]. Pharmaco Res, 2004; 21(3):1797-1803.
    121 Zhang Z, Gu Y, Li L, et a1. A potential spontaneous rat model of X-1inkedcongenital stationary night blindness [J]. Doc Ophthalmol, 2003; 107(1):53-57.
    122 石力, 张作明, 李莉, 等. 不同通频带和刺激光强对小鼠视网膜电图Ops 波的影响 [J]. 眼科研究, 2004; 22(3):229-232.
    123 El Bradey M, Cheng L, Bartsch DU, et al. Preventive versus treatment effect of Ag3340, a potent matrix metalloproteinase inhibitor in a rat model of choroidal neovascularization [J]. J Ocur Pharmacol Ther, 2004; 20(3):217-236.
    124 史雪辉, 何守志. PCNA 和 FⅧ R :Ag在氪激光诱导大鼠脉络膜新生血管中的表达及意义 [J]. 中国激光医学杂志, 2004; 13(1):1-5.
    125 杨秀梅, 王雨生. 脉络膜新生血管的动物模型 [J]. 国际眼科纵览, 2006; 30(3):166-170
    126 杨秀梅, 王雨生, 徐建锋, 等. 激光诱导有色大鼠脉络膜新生血管的形态学观察 [J]. 眼科新进展, 2006; 26(3):161-166
    127 张晳, 张喜梅, 蔡文泉, 等. 地塞米松缓释微粒在增生性玻璃体视网膜病变的应用 [J]. 临床眼科杂志, 2003; 11(1):3-5.
    128 Beer PM, Bakri SJ, Singh RJ, et al. Intraocular concentration and pharmacokinetics of triamcinolone acetonide after a single intravitreal injection [J]. Ophthalmology, 2003; 110(4):681-686.
    129 郭希让. 现代视网膜玻璃体手术学 [M]. 深圳: 海天出版社, 1997: 158-160.
    130 Martidis A, Duker JS, Greenberg PB, et al.Intravitreal trtamctnolone for refractory diabetic macular edema [J]. Ophthalmology, 2002: 109(5):920- 927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700