耦合作用下线材结构力电性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在纳米器件、纳机电系统以及热核聚变实验反应堆超导磁体系统等中,涉及大量线材结构力学性能尺度效应、力电耦合作用问题,其直接关系到实际装置的性能指标和可靠运行。为此,本文针对金属纳米线材力学性能,金属纳米线材、zn0纳米线材应用中的电场效应,以及复合超导线材临界电流密度的应变效应开展了理论研究工作。
     首先,从原子结合能出发,对有广泛用途的fcc金属纳米线材,建立了基于原子间相互作用规律并便于实际应用的表征其弹性的杨氏模量解析模型。通过考察表面原子弛豫导致的原子键强度的变化,得到了与fcc金属纳米线材杨氏模量尺寸效应相关的尺度函数,给出了估算fcc金属纳米线材杨氏模量的简单公式,该式表明了表面原子弛豫导致的键强化在金属纳米线材杨氏模量尺寸效应中的主导作用,理论模型与实验结果定性吻合;与基于连续介质的建模方法相比,本文分析简化了描述低维材料力学性能尺寸效应所需的材料参数个数。
     其次,结合经典的分子动力学模拟和连续介质电动力学,定量给出了外加侧向电场对金属纳米线材力学性质的影响,模拟结果表明:表面电场负压的存在会导致纳米线材杨氏模量的减小和泊松比的增大。同时,这种电场效应随着表面电势的增大而增大、随着纳米线材直径及其与基面距离的增大而减小。
     再次,在连续介质力学框架内,通过求解表面应力作用下基底上纳米线材的自平衡应变场,澄清了已有文献关于表面应力对于微纳米梁结构等效刚度的影响机理认识的不足之处,讨论了不同变形模式下纳米线材的力学行为,着重分析了采用机械共振方法测量低维材料力学性能参数时,静电力作用下纳米线材的动力响应行为,给出了表面应力,残余应变,电场对于纳米线材振动频率的影响关系,在此基础上实现了对已有实验中ZnO纳米线材杨氏模量尺寸效应的定量以及定性差异的统一解释。
     最后,从应变对Nb3Sn超导材料费米面上态密度的影响出发,给出了描述临界电流密度三维应变效应的标度关系,该标度关系在退化情形下可以很好地描述一维超导线材和二维超导带材临界性能应变作用规律的实验结果;并且本文给出的理论模型在退化情形下与已有的一维经验关系具有形式上的一致性。以拉伸模式下Nb3Sn超导线材临界电流密度的测量为例,初步讨论了线材中超导丝区域应变分布的结构效应。
     总之,通过本文的工作,进一步理解了纳米线材杨氏模量的尺寸效应,以及纳米线材力学性能测量中的力电效应,为相关纳米器件的研制以及纳米测量技术完善奠定了一定的基础;同时,对超导线材临界电流密度应变效应的认识,为其在实际工程中的应用提供了一定的理论指导。
Wire structures have wide application prospects in varied fields, including nanodevices, nanoelectromechanical systems (NEMS), and thermonuclear experimental reactor magnet system. The size dependent mechanical properties, and electro-mechanical coupling effects of which are involved in the applications due to gaining relevance in the operation performance criteria and controlling functionality of the actual device. Therefore, theoretical studies on the mechanical properties of metal nanowires, the electric field effects in the metal nanowire/ZnO nanowire based NEMS, and the strain effects in the critical current density of composite superconducting wires are carried on in this thesis.
     Firstly, from the viewpoint of the atom binding energy, a Young's modulus model is proposed for the widely used fee metal nanowires, which allows for an analytical study on the elastic behavior from the perspective of atomic interactions and easy application in engineering practice. By examining the bond-strength enhancing arising from the spontaneous bond relaxation, a scale function is obtained and a simple formula characterizing the Young's modulus of the fee metal nanowires is given, which indicate the key role the bond-strength enhancing plays in the size-dependent elastic properties. There is good qualitative agreement between theoretical predictions and experimental observations. The number of material parameters needed for the low dimensional material Young's modulus modeling in this paper is reduced by comparing with the continuum modeling approach.
     Secondly, elastic properties of metal nanowires in a transverse electric field are investigated using molecular dynamics simulations and classical electrostatics theory. The negative pressure on the surfaces stemmed from the transverse electric field modifies the Young's modulus and Poisson's ratio of nanowires significantly. The simulation results reveal the decrease in Young's modulus and the increase in Poisson's ratio as a result of the negative pressure. With the increase of the applied voltage and decreasing the distance between the nanowire and the ground plane, the electromechanical coupling effect on elastic properties of nanowires becomes more remarkable.
     Thirdly, within the framework of continuum mechanics, the self-equilibrium strain field of nanowire-structure on substrate under the surface stress is derived. An inadequate understanding of the physics responsible for the observed stiffness change of micro/nano cantilevers originating from surface stress in the previous literatures is demonstrated. The mechanical behavior of nanowire under different loading modes is studied; the elastic modulus measurement systems of nanowires using an electric-field-induced resonance flexure method are carefully analyzed. The resonance frequency dependence on the surface stress, the residual strain, as well as the electric field is obtained. On the basis of the analysis, the agreement of the theoretical predictions and experimental observations of different trends of the Young's modulus of ZnO nanowires varying with the diameter is achieved, a unified explanation is made.
     Finally, a scaling law for the three-dimensional strain dependence of the critical current of Nb3Sn conductors is established, which considers the strain effects on the electron density of state at the Fermi level. The scaling law, in the degenerate form, describes well experimental data, such as critical properties measurements of one-dimensional superconducting wires and two-dimensional superconducting tapes under applied strain. And there is consistency in the form between the degenerate formula and the one-dimensional empirical relation for the variation of critical current density with the axial strain. Taking the critical current measurements of Nb3Sn wires under tensile loading mode as example, a preliminary study is conducted to investigate the structure effects on the strain field distribution in the superconducting filaments.
     In conclusion, through this paper, we can get further understanding of the size dependent Young's modulus of nanowire and the electromechanical effects in the nanowire-based systems. It lays the foundation for the realization of NEMS systems and the improvement of the nanomechanical test systems. At the same time, studying the effects of strain on the critical current density of Nb3Sn composite wires would provide theoretical guidance to engineering application of superconductors.
引文
[1]白春礼.纳米科技及其发展前景.科学通报.2001,46(2):89-92.
    [2]Husain, A., Hone. J., Postma, H. W. C., X., Huang. X. M. H., Drake, T., Barbic, M., Scherer, A., and Roukes, M. L. Nanowire-based very-high-frequency electromechanical resonator. Applied Physics Letters.2003,83:1240-3.
    [3]Ziegler, K., J., Lyons, D. M., Holmes, J. D., Erts. D., Polyakov, B., Olin, H., Svensson, E. Olsson, E. Bistable nanoelectromechanical devices. Applied Physics Letters.2004, 84:4074-3.
    [4]Fan, D. L., Zhu, F. Q., Cammarata, R. C. and Chien, C. L. Controllable high-speed rotation of nanowires. Physics Review Letters.2005,94:247208-4.
    [5]王中林.微纳系统中的可持续白供型电源:能源研究中的新兴领域.科学通报.2010,55(25):2472-2475.
    [6]Onnes, H. K. The liquefaction of helium. Communications from the Physical Laboratory at the University of Leiden.1908,108:18.
    [7]Onnes, H. K. On the sudden change in the rate at which the resistance of mercury disappears. Communications from the Physical Laboratory at the University of Leiden. 1911,120b:122b.
    [8]Onnes, H. K. Report on the researches made in the Leiden cryogenics Laboratory between the second and third International Congress of Refrigeration.1913,133-144: 37-70.
    [9]王秋良.高磁场超导科学.北京:科学出版社.2006.
    [10]李战升,蒋华伟,武松涛.管内电缆导体应变对稳定性影响模拟研究.低温与超导.2010,38(9): 27-30.
    [11]:蒋华伟,武松涛CICC超导体数字模拟设计.低温与超导,2005,33(3):34-42.
    [12]候炳林,朱学武.超导在受控制核聚变能磁体工程研究中的应用概述.科学技术与工程.2005,5(6):357-363.
    [13]Ekinci, K. L., Roukes, M. L. Nanoelectromechanical systems. Review of Scientific Instruments.2005,76:061101-12.
    [14]Ke, C., Espinosa, H. D. Chapter 121:nanoelectromechanical systems and modeling. American Scientific Publishers.2005.
    [15]Llic, B., Craighead, H. G. Attogram detection using nanoelectromechanical oscillators. Journal of Applied Physics.2004,95(7):3694-10.
    [16]Davis, Z. J., Abadal, G., Kuhn, O., Hansen, O., Grey, F. and Boisen, A. Fabrication and characterization of nanoresonating devices for mass detection. Journal of Vacuum Science & Technology B.2000,18:612-617.
    [17]Paillet, M., Poncharal, P., Zahab, A. Electrostatics of individual single-walled carbon nanotubes investigated by electrostatic force microscopy. Physical Review Letters.2005, 94:186801-4.
    [18]Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. Exceptionally high Young's modulus observed for individual nanotubes. Nature.1996,381:678-680.
    [19]Falvo, M. R., Clary, G. J., Taylor, R. M., Chi, V., Brooks, F. P. Washburn J. S. and Superfine, R., Bending and buckling of carbon nanotubes under large strain. Nature. 1997,389(6551):582-584.
    [20]Wong, E. W., Sheehan, P. E., Lieber, C. M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes. Science.1997,277(5334):1971-1975.
    [21]Salvetat, J. P., Kulik, A. J., Bonard, J. M., Briggs, G. A. D., Stockli, T., Metenier, K., Bonamy, S. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials.1999,11(2):161-165.
    [22]Wu, B., Heidelberg, A., Boland J. J. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials.2005,4:525-529.
    [23]Wen, B., Sader, J. E. and Boland, J. J. Mechanical properties of ZnO nanowires. Physical Review Letters.2008,101:175502-4.
    [24]Song, J., Wang, X., Riedo, E. and Wang, Z. L. Elastic property of vertically aligned nanowires. Nano Letters.2005,5(10):1954-1958.
    [25]Jing. G. Y., Duan, H. L., Sun, X. M., Zhang, Z. S., Xu, J., Li, Y. D., Wang, J. X. and Yu, D. P. Surface effects on elastic properties of silver nanowires:contact atomic-force microscopy. Physcial Review B.2006,73:235409-6.
    [26]Cuenot, S., Fretigny, C., Demoustier-Chamoagne, S., Nysten, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B.2004,69:165410-5.
    [27]Yu, M. F., Yakobson, B. I., Ruoff, R. S. Controlled siliding and pullout of nested shells in individual multiwalled carbon nanotubes. The Journal of Physical Chemistry B.2000, 104(37):8764-8767.
    [28]Yu, M. F., Files, B. S.. Arepalli, S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters.2000,84(24): 5552-5555.
    [29]Yu. M. F., Lourie. O, Dyer, M. J., Mononi, K., Kelly, T. F., Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nantubes under tensile load. Science.2000, 287(5453):637-640.
    [30]Hoffmann, S., ostlund, F., Michler, J., Fan, H. J., Zacharias, M., Christiansen, S. H., Ballif, C. Fracture strength and Young's modulus of ZnO nanowires. Nanotechnology.2007,18:2055-5.
    [31]Qian, J., Wagner, G. J., Liu, K. W., Yu, M. F., Ruoff, R. S. Mechanics of carbon nanotubes. Applied Mechanics Reviews.2002,55(6):495-532.
    [32]Chen, Y., Dorgan, Jr. B. L., Mcllroy, D. N., Aston, D. E. On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Journal of Applied Physics.2006,100:104301-7.
    [33]Agrawal, R., Peng, B., Gdoutos, E. E. and Espinosa, H. D. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Letters.2008,8(11): 3668-3674.
    [34]Poncharal, P., Wang, Z. L., Ugarte, D., de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science.1999,283:1513-1516.
    [35]Wang, Z. L., Dai, Z. R., Gao, R., Gole, J. L. Measuring the Young's modulus of solid nanowires by in situ TEM. Journal of Electron Microscopy.2002,51:S79-S85.
    [36]Huang, Y. H., Bai, X. D., Zhang, Y. In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles. Journal of Physics:Condensed Matter.2006,18:L179-L184.
    [37]Zhou, J., Lao, C. S., Gao, P., Mai, W., Hughes, W. L., Deng, S. Z., Xu, N. S., Wang, Z. L. Nanowire as pico-gram balance at workplace atmosphere. Solid State Communications. 2006,139:222-226.
    [38]Chen, C. Q., Shi,Y., Zhang, Y. S., Zhu, J. and Yan, Y. J. Size dependence of Young's modulus in ZnO nanowires. Physical Review Letters.2006,96:075505-4.
    [39]Perisanu, S., Gouttenoire, V., Vincent, P., Ayari, A., Choueib, M., Bechelany, M., Cornu, D., and Purcell. S. T. Mechanical properties of SiC nanowires determined by scanning electron and field emission microscopies. Physical Review B,2008,77:165434-12.
    [40]Feng, Q., Nix, W. D., Yoon, Y. and Lee, C. J. A study of the mechanical properties of nanowires using nanoindentation. Journal of Applied Physics.2006,99:074304-10
    [41]Stan, G.., Ciobanu, C. V., Parthangal, P. M., Cook, R. F. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Letters.2007,7:3691-3697.
    [42]Ji, L. W., Young, S., Fang, T., Liu, C. Buckling characterization of vertical ZnO nanowires using nanoindentation. Applied Physics Letters.2007,90:033109-3.
    [43]Cammarata. R. C., Sieradzki, K. Effects of surface stress on the elastic moduli of thin films and superlattices. Physical Review Letters.1989,62:2005-2008.
    [14]Miller, R. E. and Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology.2000,11:139-147.
    [45]Dingrevillea, R., Qu, J., Cherkaoui, M. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids.2005.53:1827-1854.
    [46]Wang, J., Duan, H. L., Huang, Z. P., Karihaloo, B. L. A scaling law for properties of nano-structured materials. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science.2006,462:1355-1363.
    [47]Wang, J., Karihaloo, B. L., Duan, H. L., Nano-mechanics or how to extend continuum mechanics to nano-scale. Bulletin of the polish academy of sciences technical sciences. 2007,55(2):133-140.
    [48]He, J., Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters,2008,8(7):1798-1802.
    [49]Diao, J., Gall, K., Dunn, M. L. Surface-stress-induced phase transformation in metal nanowires. Nature Materials.2003,2:656-660.
    [50]Diao, J., Gall, K., Dunn, M. L. Atomistic simulation of the structure and elastic properties of gold nanowires. Journal of the Mechanics and Physics of Solids.2004, 52:1935-1962.
    [51]Li, C., Guo, W. L., Kong, Y., Gao, H. J. First-principles study of the dependence of the ground-state structural properties on the dimensionality and size of ZnO nanostructures. Physical Review B.2007,76:035322-8.
    [52]Zhou, L. G., Huang, H. Are surfaces elastically softer or stiffer? Applied Physics Letters. 2004,84(11):1940-3.
    [53]Shim, H. W., Zhou, L. G., Huang, H, Scale, T. S., Nanoplate elasticity under surface reconstruction. Applied Physics Letters.2005.86:151912-3.
    [54]Cao, G., Chen, X. Size dependence and orientation dependence of elastic properties of ZnO nanofilms. International Journal of Solids and Structures.2008,45:1730-1753.
    [55]Zhang, T. Y., Luo, M. and Chan, W. K. Size-dependent surface stress, surface stiffness, and Young's modulus of hexagonal prism [111]β-SiC nanowires. Journal of Applied Physics.2008,103:104308-9.
    [56]Shenoy, V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces Physical Review B,2005,71:094104-11.
    [57]Wang, G. and Li, X. Predicting Young's modulus of nanowires from first-principles calculations on their surface and bulk materials. Journal of Applied Physics.2008, 104:113517-8.
    [58]Wang, G. and Li, X. Size dependency of the elastic modulus of ZnO nanowires:surface stress effect. Applied Physics Letters.2007,91:231912-3.
    [59]Liang, H. Y., Wang, X. X., Wu, H. A. and Wang, Y. Molecular dynamics simulation of length scale effects on tension nanocrystalline copper wire. Acta Mechanica Sinica. 2002,34:208-215.
    [60]Liang, H. Y., Upmanyu, M., Huang, H. Size-dependent elasticity of nanowires: nonlinear effects. Physical Review B.2005,71:241403-4.
    [61]Shankar, M. R., King, A. H. How surface stresses lead to size-dependent mechanics of tensile deformation in nanowires? Applied Physics Letters.2007,90:141907-3.
    [62]Guo, J., Zhao, Y. The size-dependent elastic properties of nanofilms with surface effects. Journal of Applied Physics.2005,98:074306-11.
    [63]Guo, J.. Zhao, Y. The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology.2007,18:295701-6.
    [64]Sun. C. Q., Chen, T. P., Tay, B. K., Li, S., Zhang, Y. B., Huang, H., Pan, L. K., Lau, S. P.,Sun, X. W. An extended 'quantum confinement' theory:surface-coordination imperfection modifies the entire band structure of a nanosolid. Journal of Physics D: Applied Physics.2001,34(24):3470-3479.
    [65]Sun, C. Q. Size dependency of nanostructures:impact of bond order deficiency. Progress in Solid State Chemistry.2007,35:1-159.
    [66]Zhou, L. G. and Huang, H. Elastic softening and stiffening of metals surfaces. International Journal for Multiscale Computational Engineering.2006,4(1):19-28.
    [67]Chiang, K., Chou, C., Wu, C. and C-A Yuan, C. Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method. Applied Physics Letters. 2006,88:171904-3.
    [68]Zeng, D. J., Zheng, Q. S. Resonant frequency-based method for measuring the Young's moduli of nanowires. Physical Review B.2007,76:075417-7.
    [69]McDowell, M. T., Leach, A. M. and Gall, K. On the elastic modulus of metallic nanowires, Nano Letters.2008,3(11):3613-3618.
    [70]Sapmaz, S., Blanter, Y. M., Gurevich, L., van der Zant, H. S. J. Carbon nanotubes as nanoelectromechanical systems. Physical Review B.2003,67(23):235414-7.
    [71]Ke, C., Espinosa, H. D. Numerical analysis of nanotube-based NEMS devices-Part I: electrostatic charge distribution on multiwalled nanotubes. Journal of Applied Mechanics.2005,72:721-725.
    [72]Ke, C., Espinosa, H. D., Pugno, N. Numerical analysis of nanotube-based NEMS devices-Part Ⅱ:role of finite kinematics, stretching and charge concentrations. Journal of Applied Mechanics.2005,72:726-731
    [73]Ke, C., Espinosa, H. D. In situ electron microscopy electromechanical characterization of a bistable NEMS device. Small.2006,2 (12):1484-1489.
    [74]Xu, Y., Aluru, N. R. Combined semiclassical and effective-mass Schrodinger approach for multiscale analysis of semiconductor nanostructures. Physical Review B.2007, 76(7):075304-11.
    [75]Xu, Y., Aluru, N. R. Multiscale electrostatic analysis of silicon nanoelectromechanical systems (NEMS) via heterogeneous quantum models. Physical Review B.2008,77(7): 075313-13.
    [76]Tang, Z., Xu, Y., Li. G., Aluru, N. R. Physical models for coupled electromechanical analysis of silicon nanoelectromechanical systems. Journal of Applied Physics.2005, 97(11):114304-13.
    [77]Guo, W. L., Guo, Y. F. Giant axial electrostrictive deformation in carbon nanotubes. Physics Review Letters.2003,91 (11):115501-115504.
    [78]Wang, Z., Devel, M., Langlet, R., Dulmet, B. Electrostatic deflections of cantilevered semiconducting single-walled carbon nanotubes. Physical Review B.2007, 75(20):205414-6.
    [79]Wang, Z., Devel. M. Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model. Physical Review B.2007,76(19):195434-5
    [80]Desai. A. V., Haque, M. A. Influence of electromechanical boundary conditions on elasticity of zinc oxide nanowires. Applied Physics Letters.2007,91:183106-3.
    [81]Gao, Y., Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire:the fundamental theory of nanogenerator and nanopiezotronics. Nano Letters. 2007,7(8):2499-2505
    [82]Cheng, S.-W., Cheung, H.-F. Role of electric field on formation of silicon nanowires. Journal of Applied Physics.2003,94(2):1190-5.
    [83]Cheng, S.-W., Cheung, H.-F. Temperature profile and pressure effect on the growth of silicon nanowires. Applied Physic Letters.2004,85(23):5709-3.
    [84]Zheng, X. J. and Zhu, L. L. Theoretical analysis of electric field effect on Young's modulus of nanowires. Applied Physics Letters.2006,89:153110-3.
    [85]Li, Q., Koo, S., Edelstein, M. D., Suehle, J. S., Richter, C. A. Silicon nanowire electromechanical switches for logic device application. Nanotechnology,18 (2007): 315202-5.
    [86]Manoharan, M. P., Desai, A. V., Neely, G., Haque, M. A. Synthesis and elastic characterization of zinc oxide nanowires. Journal of Nanomaterials.2008,8(2): 849745-7.
    [87]Bernal, R. A., Agrawal, R.,Peng, B., Bertness, K. A.,Sanford, N. A., Davydov, A. V., Espinosa, H. D. Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation. Nano Letters. 2011,11(2):548-555.
    [88]Sun, C. Q. Thermo-mechanical behavior of low-dimensional systems:The local bond average approach. Progress in Materials Science.2009,54:179-307.
    [89]Zhu, L. L., Zheng, X. J. Transverse surface mechanical behavior and modified elastic modulus of charged nanostructures. Europhysics Letters.2008,83:66007-6.
    [90]Purcell, S. T., Vincent, P., Journet, C., and Binh, V. T. Tuning of nanotube mechanical resonances by electric field pulling. Physical Review Letters.2002,89:276103-4.
    [91]Muller, C. B. and Saur, E. J. Influence of mechanical constraints on the superconducting transition of Nb3Sn-coated niobium wires and ribbons. Advances in Cryogenic Engineering.1962,8:574.
    [92]Buehler, E. and Levinstein, H. J. Effect of tensile stress on the transition temperature of current-carrying capacity of Nb3Sn. Journal of Applied Physics.1965,36:3856-3860.
    [93]Ekin, J.W. Strain scaling law for flux pinning in practical superconductors. Part 1:Basic relationship and application to Nb3Sn conductors. Cryogenics.1980,20(11):611-624.
    [94]Ekin J. W. Effect of transverse compressive stress on the critical current and upper critical field of Nb3Sn. Journal of Applied Physics.1987,62:4829-6.
    [95]Ekin J. W. Transverse stress effect on multifilamentary Nb3Sn superconductor. Advances in Cryogenic Engineering.1988,34:547-552.
    [96]Ekin J. W. and Bray S. L. Critical current degradation in Nb3Sn composite wires due to locally concentrated transverse stress. Advances in Cryogenic Engineering.1992,38.
    [97]Nijhuis, A., Ilyin, Y., Abbas, W., Wessel, W. A. J., Krooshoop, H. J. G., Feng, L. Miyoshi, Y. Summary of ITER TF Nb3Sn strand testing under axial strain, spatial periodic bending and contact stress. IEEE Transactions on Applied Superconductivity. 2009,19(3):1516-1520.
    [98]Bottura, L., Bordini, B.Jc(B,T,ε)parameterization for the ITER Nb3Sn production. IEEE Transactions on Applied Superconductivity.2009,19(3):1521-1524.
    [99]Godeke, A., ten Haken, B., ten Kate, H. H. J., Larbalestier, D. C. A general scaling relation for the critical current density in Nb3Sn. Superconductor Science and Technology.2006,19:R100-R116.
    [100]Keys, S. A., Hampshire, D. P. A scaling law for the critical current density of weakly-and strongly-coupled superconductors, used to parameterize data from a technological Nb3Sn strand. Superconductor Science and Technology.2003,16:1097-1108.
    [101]M J Taylor, D., Hampshire, D. P. The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires. Supercondutor Science and Technology.2005,18:S241-S252.
    [102]Watanabe, K., Noto K., Muto, Y. Upper critical field and critical current densities on bronze processed commercial multifilamentary Nb3Sn wires. IEEE Transactions on Magnetics.1991,27(2):1759-1762.
    [103]ten Haken, B., Godeke, A and ten Kate, H. H. J. The influence of compressive and tensile axial strain on the critical properties of Nb3Sn conductors. IEEE Transactions on Applied Superconductivity.1995,5(2):1909-1912.
    [104]Lu, X. F. and Hampshire, D. P. The field, temperature and strain dependence of the critical current density of a powder-in-tube Nb3Sn superconducting strand. Supercondutor Science and Technology.2010,23:025002-6.
    [105]Nijhuis, A., Wessel, W. A. J., Ilyin, Y., den Ouden, A., and ten Kate, H. H. J. Critical current measurement with spatial periodic bending imposed by electromagnetic force on a standard test barrel with slots. Review of Scientific Instruments.2006,77:054701-7.
    [106]Nijhuis, A., Ilyin, Y. and Wessel, W. A. J. Spatial periodic contact stress and critical current of a Nb3Sn strand measured in TARSIS. Superconductor Science and Technology.2006,19:1089-1096.
    [107]Seeber, B., Ferreira, A., Abacherli, V. and Flukiger, R. Critical current of a Nb3Sn bronze route conductor under uniaxial tensile and transverse compressive stress. Superconductor Science and Technology.2007,20:S184-S188.
    [108]Ekin, J. W., Bray, S. L., and Bahn, W. L. Effect of transverse stress on the critical current of bronze-process and internal-tin Nb3Sn. Journal of Applied Physics.1991, 69(8):4436-4438.
    [109]Fukumoto, M., Okada, T., Nishijima, S., Yoshida, H., Kodaka, H., Yasohama, K., Nagata, M., and Horiuchi, T. Strain effects in irradiated "in situ" Nb3Sn superconductors. Journal of Nuclear Materials.1985,133-134:826-829.
    [110]Ilyin, Y., Nijhuis, A., Krooshoop, E. Scaling law for the strain dependence of the critical current in an advanced ITER Nb3Sn strand. Superconductor Science and Technolology. 2007,20:186-191.
    [111]ten Kaken, B., Godeke A., and ten Kate, H. H. J. The strain dependence of the critical properties of Nb3Sn conductors. Journal of Applied Physics.1999,85(6):3247-7.
    [112]Chiesa, L. Mechanical and electromagnetic transverse load effects on superconducting niobium-tin performance [Master's Thesis]. Cambridge MA:Massachusetts Institute of Technology.2009
    [113]Ekin. J. W. Current transfer in multifilamentary superconductors I:Theory. Journal of Applied Physics.1978,49:3406-3409. Ekin, J. W., Clark, A. F. Current transfer in multifilamentary superconductors Ⅱ: Experimental results. Journal of Applied Physics.1978,49:3410-3412.
    [114]Takayasu, M., Chiesa, L., Schultz, J. H., Minervini, J. V. Bending strain test results of ITER Nb3Sn wires and preliminary model analysis[ITER Task Report]. Cambridge MA: Plasma Science and Fusion Center, Massachusetts Institute of Technology.2008.
    [115]Nijhuis, A., Ilyin, Y., Wessel, W. A. J. and Abbas, W., Critical current and strand stiffness of three types of Nb3Sn strand subjected to spatial periodic bending. Superconductor Science and Technology.2006,19:1136-1145.
    [116]Nishijima, G., Watanabe, K., Araya, T., Katagiri, K., Kasaba, K., Mivoshi, K., Effect of transverse compressive stress on internal reinforced Nb3Sn superconducting wires and coils. Cryogenics.2005,42:653-658.
    [117]Kuroda, T., Yuyama, M., Wada, H. Effect of transverse compressive stress on the critical temperature of Nb3Sn wires. Journal of Materials Science and Letters.1989, 8:1378-1379.
    [118]Nijhuis, A., Ilyin, Y., Abbas, W. Axial and transverse stress-strain characterization of the EU dipole high current density Nb3Sn strand. Superconductor Science and Technology. 2008,21:065001-10.
    [119]Chiesa, L., Takayasu, M., Minervini, J. V., Gung, C., Michael, P. C., Fishman, V., and Titus, P. H. Experimental studies of transverse stress effects on the critical current of a sub-sized Nb3Sn superconducting cable. IEEE Transections on Applied Superconductivity.2007,17(2):1386-1389.
    [120]Katagiri, K., Kuroda, T., Wada, H., Shin, H. S., Watanabe, K.. Noto, K., Shoji, Y. and Seto, H. Tensile strain/transverse compressive stress effects in bronze processed Nb-matrix Nb3Sn wires. IEEE Transactions on Applied Superconductivity.1995, 5(2):1900-1904.
    [121]Seeber, B., Ferreira, A., Abacherli, V. and Flukiger, R. Critical current of a Nb3Sn bronze route conductor under uniaxial tensile and transverse compressive stress. Superconductor Science and Technology.2007,20:S184-S188.
    [122]ten Haken, B., Godeke, A., ten Kate, H. H. J. The influence of various strain components on the critical parameters of layer shaped Nb3Sn. Advances in Cryogenic Engineering.1993,40:875-882.
    [123]Godeke, A. Performance boundaries in Nb3Sn superconductors [PhD thesis]. Enschede, The Netherlands:University of Twente.2005.
    [124]Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Theory of superconductivity. Physical Review.1957,108:1175-1204.
    [125]Denis Markiewicz, W. Invariant temperature and field strain functions for Nb3Sn composite superconductors. Cryogenics.2006,46:846-863.
    [126]Denis Markiewicz, W. Invariant strain analysis of the critical temperature Tc of Nb3Sn. IEEE Transactions on Applied Superconductivity.2005,15(2):3368-3371.
    [127]Denis Markiewicz, W., Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence. Cryogenics.2004,44:767-782.
    [128]Denis Markiewicz, W. Comparison of strain scaling functions for the strain dependence of composite Nb3Sn superconductors. Supercondutor Science and Technology.2008, 21:054004-11.
    [129]Arbelaez, D., Godeke, A., and Prestemon, S. O. An improved model for the strain dependence of the superconducting properties of Nb3Sn. Supercondutor Science and Technology.2009,22:025005-6.
    [130]Flukiger, R., Uglietti, D., Abacherli, V. and Seebar, B. Asymmetric behavior of Jc(ε) in Nb3Sn wires and correlation with the stress induced elastic tetragonal distortion. Superconductor Science and Technology.2005,18:S416-S423.
    [131]He, H. X., Boussaad, S., Xu, B. Q., Li, C. Z., Tao, N. J. Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps, Journal of Electroanalytical Chemistry,2002,522:167-172.
    [132]Smit, R. H. M., Noat, Y., Unitiedt, C., Lang, N. D., van Hemert, M. C., and van Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule. Nature, 2002,419:906-909.
    [133]AKoh, S. J. and Lee, H. P. Molecular dynamics simulation of size and strain rate dependent mechanical response of fcc metallic nanowires. Nanotechnology.2006,17: 3451-3467.
    [134]Rafii-Tabar, H. Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Physics Reports,2004,390:235-452.
    [135]Sun, C. Q., Tay, B. K., Zeng, X. T., Li, S., Chen, T. P., Zhou, J., Bai, H. L. and Jiang, E. Y. Bond-order-bond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics:Condensed Matter.2002, 14:7781-7795.
    [136]Newnham, R. E. Structure-Property Relations. Berlin:Springer-Verlag.1975.
    [137]黄昆.固体物理学.北京:人民教育出版社.1966.
    [138]Xie, D. Wang, M. P. and Qi, W. H. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. Journal of Physics: Condensed Matter.2004,16:L401-L405.
    [139]Rose, J. H., Smith, J. H., Guinea, F. and Ferrante, J. Universal features of the equation of state of metals. Physical Review B.1984,29:2963-7.
    [140]Lucovsky, G., Whitten, J. L. Metal gate electrodes:theoretical studies of Zr/ZrO2 and Hf/HfO2 interfaces. Surface Science.2007,601:4138-4143.
    [141]Long, Y., Chen, N. X. An atomistic simulation and phenomenological approach of misfit dislocation in metal/oxide interfaces. Surface Science.2008,602:1122-1130.
    [142]Todorova, M., Li, W. X., Ganduglia-Pirovano, M. V., Stampfl, C., Reuter, K., and Scheffler, M. Role of subsurface oxygen in oxide formation at transition metal surfaces. Physical Review Letters.2002,89:096103-4.
    [143]Ashby, M. F., Jones, D. R. H. Engineering materials. Oxford:Pergamon.1980.
    [144]Dowling, N.E. Mechanical behavior of materials:engineering methods for deformation, fracture, and fatigue. Upper Sadle River, NJ:Prentice Hall.1999.
    [145]Postma, H. W. C., Kozinsky, I., Husain, A., and Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Applied Physics Letters. 2005,86:223105-3.
    [146]Wang, Z., Philippe, L. Deformation of doubly clamped single-walled carbon nanotubes in an electrostatic field. Physical Review Letters.2009,102(21):215501-4.
    [147]Gartstein, Y. N., Zakhidov, A. A., Baughman, R. H. Mechanical and electromechanical coupling in carbon nanotube distortions. Physical Review B,2003,68(11):115415-11.
    [148]Verissimo-Alves, M., Koiller, B., Chacham, H., Capaz, R. B. Electromechanical effects in carbon nanotube:ab initio and analytical tight-binding calculations. Physical Review B.2003,67(16):161401-4.
    [149]Li, C., Chou, T.-W. Theoretical studies on the charge-induced failure of single-walled carbon nanotubes. Carbon,2007,45:922-930.
    [150]Li, C., Chou, T.-W. Charge-induced strains in single-walled carbon nanotubes. Nanotechnology,2006,17:4624-4628.
    [151]Waters, J. F., Guduru, P. R., Xu, J. M. Nanotube mechanics-recent progress in shell buckling mechanics and quantum electromechanical coupling. Composites Science and Technology.2006,66:1141-50.
    [152]Hartman, A. Z., Jouzi, M., Barnett, R. L., Xu, J. M. Theoretical and experimental studies of carbon nanotube electromechanical coupling. Physical Review Letters.2004,92: 236804-4.
    [153]Gleiter, H., Weissmuller, J., Wollersheim, O., Wurschum, R. Nanocrystalline materials: a way to solids with tunable electronic structures and properties? Acta Materialia.2001, 49:737-745.
    [154]Kramer, D., Viswanath, R. N., Weissmuller, J. Surface-Stress induced macroscopic bending of nanoporous gold cantilevers. Nano Letters.2004,4:793-796.
    [155]Viswanath, R. N., Kramer, D., Weissmuller, J. Variation of the surface stress- charge coefficient of Platinum with electrolyte concentration. Langmuir.2005,21:4604-09.
    [156]Weigend, F., Evers, F., Weissmuller, J. Structural relaxation in charged metal surfaces and cluster ions. Small.2006,2:1497-1503.
    [157]Li, C., Chou, T.-W. Electrostatic charge distribution on single-walled carbon nanotubes. Applied Physics Letters.2006,89(6):063103-3.
    [158]Mishchenko, E. G., Raikh, M. E. Electrostatics of straight and bent single-walled carbon nanotubes. Physical Review B.2006,74:155410-5.
    [159]Clarke, S., Inglesfield, J. E., Nekovee M. De Boer, P. K. Surface screening charge and effective charge. Physical Review Letters.1998,80:3571-74.
    [160]Daw, M. S. and Baskes, M. I. Embedded-atom method:derivation and application to impurities, surfaces, and other defects in metals. Physical Review B.1984,29:6443-53.
    [161]Finnis, M. W., and Sinclair, J. E. A simple empirical N-body potential for transition metals. Philosophical Magazine A.1984,50:45-55.
    [162]Tomanek, D., Aligia, A. A., and Balseiro, C. A. Calculation of elastic strain and electronic effects on surface segregation. Physical Review B.1985.32:5051-5056.
    [163]Cleri, F., and Rosato, V. Tight-binding potentials for transition metals and alloys. Physical Review B.1993.48:22-33.
    [164]Sutton, A.P., and Chen, J. Long-range finnis-sinclair potentials. Philosophical Magazine Letters.1990,61:139-146.
    [165]Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics. 1984,81:3684-90.
    [166]Horstemeyer, M. F., Baskes, M. I., Plimpton, S. J. Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia.2001,49:4363-74.
    [167]Koh, S. J. A., Lee, H. P., Lu, C. and Cheng, Q. H. Molecular dynamics simulation of a solid platinum nanowire under tensile strain:temperature and strain-rate effects. Physical Review B.2005,72:085414-11.
    [168]Lide, D. R. CRC Handbook of Chemistry and Physics,84th Edition. Boca Raton, Florida:CRC press.2003.
    [169]施雨,陈常强,张友生,闫允杰,朱静.氧化锌纳米线弹性模量的扫描电镜原位测量.电子显微学报.2005,24(4):276-276.
    [170]Lagowski, J., Gatos, H. C., and Sproles Jr, E. S. Surface stress and the normal mode of vibration of thin crystals:GaAs. Applied Physics Letters.1975,26(9):493-495.
    [171]Gurtin, M. E., Markenscoff, X., Thurston, R. N. Effect of surface stress on the natural frequency of thin crystals. Applied Physics Letters.1976,29(9):529-530.
    [172]Chen, G. Y., Thundat, T., Wachter, E. A., and Warmack, R. J. Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. Journal of Applied Physics.1995,77(8):3618-3622.
    [173]Zhang, Y., Ren, Q., and Zhao, Y.-P. Modelling analysis of surface stress on a rectangular cantilever beam. Journal of Physics D:Applied Physics.2004,37:2140-2145.
    [174]Hwang, K. S., Eom, K., Lee, J. H., Chun, D. W., Cha, B. H., Yoon, D. S., and Kim T. S. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Applied Physics Letters.2006,89:173905-3.
    [175]McFarland, A. W., Poggi, M. A., Doyle, M. J., Bottomley, L. A., Colton, J. S. Influence of surface stress on the resonance behavior of microcantilevers. Applied Physics Letters. 2005,87:053505-3.
    [176]Dorignac, J., Kalinowski, A., Erramilli, S., and Mohanty, P. Dynamical response of nanomechanical oscillators in immiscible viscous fluid for In Vitro Biomolecular Recognition. Physical Review Letters.2006,96:186105-4.
    [177]Wang, G.-F., Feng, X.-Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters.2007,90:231904-3.
    [178]Lachut, M. J., Sader, J. E. Effect of surface stress on the stiffness of cantilever plates. Physical Review Letters.2007,99:206102-4.
    [179]Liu, P., Lee, H. P., Lu, C., and Shea, S. J. O. Surface stress effects on the resonance properties of cantilever sensors. Physical Review B.2005,72:085405-5.
    [180]Li, S., Zhang, X., Yan, B., Yu, T. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method. Nanotechnology.2009,20:495604-9.
    [181]Sharma, P., Ganti, S. and Bhate, N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters.2003,82(4),535-538.
    [182]Chen, T., Chiu, M. S., and Weng, C. N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics.2006, 100:074308-5.
    [183]Jiang, Z. H., Liu, X. L., Zhang, H. Z., Li, G. Y., Lian, J. S. An analytical model for elastic stress field distribution in fiber composite with partially debonded interface. Composites Science and Technology.2005,65:1176-1194.
    [184]Zhang, W. X., Wang, T. J., Chen, X. Effect of surface stress on the asymmetric yield strength of nanowires. Journal of Applied Physics.2008,103:123527-5.
    [185]Simmons, G., Wang, H. Single crystal elastic constants and calculated aggregate properties. Cambridge, MA:MIT Press.1971.
    [186]Xu, F., Qin, Q. Q., Mishra, A., Gu, Y., and Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Reasearch.2010,3:271-280.
    [187]Hu, J., Liu, X. W., and Pan, B. C. A study of the size-dependent elastic properties of ZnO nanowires and nanotubes. Nanotechnology.2008,19:285710-6.
    [188]Zeng, Y.-J., Ye, Z.-Z., Xu, W.-Z., Zhu, L.-P., and Zhao, B.-H. Well-aligned ZnO nanowires grown on Si substrate via metal organic chemical vapor deposition. Applied Surface Science.2005,250:280-283.
    [189]Tsao, F. C., Chen, J. Y., Kuo, C. H., Chi, G. C., Pan, C. J., Huang, P. J., Tun, C. J., Pong, B. J., Hsueh, T. H., Chang, C. Y., Pearton, S. J., and Ren, F. Residual strain in ZnO nanowires grown by catalyst-free chemical vapor deposition on GaN/Sapphire(0001). Applied Physics Letters.2008,92:203110-3.
    [190]Jeong, M.-C., Oh, B.-Y., Lee, W., and Myoung, J.-M. Comperative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD). Journal of Crystal Growth.2004,268:149-154.
    [191]Chen, C.-W., Chen, K.-H., Shen, C.-H., Gangguly, A., Chen, L.-C, Wu. J.-J., Wen, H.-I., and Pong, W.-F. Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Applied Physics Letters.2006,88:241905-3.
    [192]Jo, S. H., Banerjee, D., and Ren, Z. F. Field emission of zinc oxide nanowires grown on carbon cloth. Applied Physics Letters.2004,85:1407-3.
    [193]Xu, Z., Bai, X. D., Wang, E. G., and Wang, Z. L. Field emission of individual carbon nanotube with in situ tip image and real work function. Applied Physics Letters.2005, 87:163106-3.
    [194]Zhang, Y. S., Wang, L. S., Liu, X. H., Yan, Y. J., Chen, C. Q., and Zhu, J. Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate, The Journal of Physical Chemistry B.2005,109(27):13091-13093.
    [195]Fietz, W. A., Webb, W. W. Hysteresis in superconducting alloys-temperature and field dependence of dislocation pinning in Niobium alloys. Physical Review.1969, 178(2):657-11.
    [196]Hampshire, D. P., Jones, H., Mitchell, E. W. J. An indepth characterization of (NbTa)3Sn filamentary superconductor. IEEE Transactions on Magnetics.1985, 21(2),289-292.
    [197]Kramer, E. J. Scaling laws for flux pinning in hard superconductors. Journal of Applied Physics.1973,44:1360-11.
    [198]Welch, D. O. Alternation of the superconducting properties of A15 compounds and elementary composite superconductors by nonhydrostatic elastic strain. Advances in Cryogenic Engineering.1980,26:48-65.
    [199]Summers, L. T., Guinan, M. W., Miller, J. R. and Hahn, P. A. A model for the prediction of Nb3Sn critical current as a function of field, temperature, strain, and radiation damage. IEEE Transactions on Magnetics.1991,27(2):2041-2044.
    [200]Parks, R. D. (ed) Superconductivity. New York:Dekker.1969.
    [201]Maki, K. The magnetic properties of superconducting alloys Ⅱ. Physics.1964,1(2): 127-143.
    [202]de Gennes, P. G. Superconductivity of metals and alloys. New York:Benjamin.1966.
    [203]de Gennes, P. G. Behavior of dirty superconductors in high magnetic fields. Physik der Kondensierten Materie.1964,3(2):79-90.
    [204]Rainer, D. and Bergmann, G. Temperature dependence of Hc2 and κ1, in strong coupling superconductors. Journal of Low Temperature Physics.1974,14:501-519.
    [205]Eliashberg, G. M. Vzaimodeistvie elektronov s kolebaniyami reshetki v sverkhprovodnike. Zh. Eksp. Teor. Fiz.1960,38(3):966-974. Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Soviet Physics—JETP.1960,11:696-702. (Engl. Transl.)
    [206]Kresin, V. Z. On the critical temperature for any strength of the electron-phonon coupling. Physics Letters A.1987,122:434-438.
    [207]Kresin, V. Z., Gutfreund, H., Little, W. A. Superconducting state in strong coupling, Solid State Communications.1984,51:339-342.
    [208]Allen, P. B., Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Physical Review B.1975,12:905-922.
    [209]Oh, S., Kim, K. A scaling law for the critical current of Nb3Sn strands based on strong-coupling theory of superconductivity. Journal of Applied Physics.2006, 99:033909-8.
    [210]Oh, S., and Kim, K. A consistent description of scaling law for flux pinning in Nb3Sn strands. IEEE Transactions on Applied Superconductivity.2006,16:1216-1219.
    [211]Hojo, M., Matsuoka, T., Hashimoto, M., Tanaka, M., Sugano, M., Ochiai, S., Miyashita,K. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method. Physica C: superconductivity and its applications.2006,445-448:814-818.
    [212]Belevtsev, B. I. Superconductivity and localization of electrons in disordered two-dimensional metal systems. Soviet Physics-Uspekhi.1990,33(1):36-54.
    [213]Sekimoto, K., Matsubara, T. Model for the tetragonal-to-tetragonal phase transition of A15 pseudobinary alloy Nb3Sn1-xSbx. Physical Review B.1983,27(1):578-580.
    [214]Lee, T. K. Birman, J. L., Williamson, S. J. New three-dimensional k·p model for the electronic structure of A-15 compounds. Physical Review Letters.1977,39(13):839-842.
    [215]Baber, W. G., The contribution to the electrical resistance of metals from collisions between electrons. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Science.1937,158:383-396.
    [216]Sankarayanan, V., Rangarajan, G .and Srinivsan, R. Normal-state electrical resistivity of chevrel-phase superconductors of the type Cu1.8Mo6S8-ySey,0≤y≤8. Journal of Physics F:Metal Physics.1984,14:691-702.
    [217]Wiesmann, H., Gurvitch, M., Lutz, H., Ghosh, A., Schwarz, B., Strongin, M., Allen, P. B. Simple model for characterizing the electrical resistivity in A-15 superconductors. Physical Review Letters.1977,38(14):782-785.
    [218]Khazeni, K., Jia, Y. J., Crespi, V. H., Lu, L., Zettl, A., and Cohen, M. L. Pressure dependence of the resistivity and magnetoresistance in sing-crystal Nd0062Pb0.30MnO3-δ. Journal of Physics:Condensed Matter.1996,8:7723-7731.
    [219]Ahoranta, M., Lehtonen, J., Tarhasaari, T., and Weiss, K. Modelling of local strain and stress relaxation in bronze processed Nb3Sn wires. Superconductor Science and Technology.2008,21:025005-9.
    [220]梁明,张平祥,卢亚峰,李金山,李成山,唐先德.磁体用Nb3Sn超导体研究进展[J].材料导报.2006,201:1-4.
    [221]Godeke, A., Jewell, M. C., Fischer, C. M., Squitieri, A. A., Lee, P. J., and Larbalestier D. C. The upper critical field of filamentary Nb3Sn conductors. Journal of Applied Physics. 2005,97:093909-12.
    [222]Lee, P. J., Larbalestier, D. C. Position normalization as a tool to extract compositional and microstructural profiles from backscatter and secondary electron images. Microscopy and Microanalysis.2000,6(supplement 2):1026-1027.
    [223]van den Eijnden, N. C, Nijhuis, A., Ilyin, Y., Wessel, W. A. J., ten Kate, H. H. J., Axial tensile stress-strain characterization of ITER model coil type Nb3Sn strands in TARSIS. Superconductor Science and Technology.2005,18:1523-1532.
    [224]Nijhuis, A., Ilyin, Y. Transverse load optimization in Nb3Sn CICC design; influence of cabling, void fraction and strand stiffness. Superconductor Science and Technology. 2006,19:945-962.
    [225]刘方,武玉,龙风.应变-临界电流测量系统中超导线应变分布及临界电流分析.核聚变与等离子体物理.2010,30(4):355-359.
    [226]Farinon, S., Boutboul, T., Devred, A., Fabbricatore, P., Leroy, D., Oberli, L. Finite element model to study the deformations of Nb3Sn wires for the next European Dipole. IEEE Transactions on Applied Superconductivity.2007,17(2):1136-1139.
    [227]Boso, D. P., Lefik, M., Schrefler, B. A. A multilevel homogenised model for superconducting strand thermomechanics. Cryogenics.2005,45(4):259-271.
    [228]Boso, D. P.,Lefik, M., Schrefler, B. A. Homogenisation methods for the thermo-mechanical analysis of Nb3Sn strand. Cryogenics.2006,46(7-8):569-580.
    [229]Mitchell. N. Modeling of the effect of Nb3Sn strand composition on the thermal strains and superconducting performance. IEEE Transaction on Applied Superconductivity. 2005.15(2):3572-3576.
    [230]Boso, D. P., Lefik, M., Schrefler B. A.Thermal and bending strain on Nb3Sn strands. IEEE Transaction on Applied Superconductivity.2006,16(2):1823-5.
    [231]Schrefler, B. A., Gori, R. E. A composite beam model for the mechanical analysis of superconducting magnetic pancakes. Fusion Engineering and Design,1990, 13(2):103-123.
    [232]Pichler, H. R. The interior elastic stress field in a continuous, close-packed filamentary composite material under uniaxial tension. Fiber-Strengthened Metallic Composites, ASTM STP 427, American Society for Testing and Materials.1967, pp.3-26.
    [233]Boso, D. P., Lefik, M. A thermo-mechanical model for Nb3Sn filaments and wires. strain field for different strand layouts. Superconductor Science and Technology.2009,22: 125012-12.
    [234]Bray, S. L., Ekin, J. W., and Sesselmann, R. Tensile measurements of the modulus of elasticity of Nb3Sn at room temperature and 4K. IEEE Transactions on Applied Superconductivity.1997,7(2):1451-4.
    [235]Mitchell, N. Finite element analysis simulations of elasto-plastic process in Nb3Sn strands. Cryogenics.2005,45:501-515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700