碳纳米管基复合材料的制备、表征及其超电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种具有高功率和长寿命的优良储能器件,但其能量密度相对较低。研究如何在保持其高功率优势的同时并获得较高能量密度成为现今研究的热点。具有法拉第准电容特性的电活性物质与具有良好双电层电容特性的碳纳米管的复合有望实现二者优势互补,从而使其在大电流密度下可以获得高的比能量密度。因此,本论文的研究内容主要集中于碳纳米管基复合材料的制备、表征及其在超级电容器中的应用,旨在实现其可以同时获得较高的比能量密度和比功率特性。论文的具体内容介绍如下:
     1.聚苯乙烯磺酸钠(PSS)对碳纳米管(CNTs)的非共价缠绕修饰及其在超级电容器电极材料中的应用。选用带负电荷的PSS聚电解质对CNTs进行缠绕修饰,不仅使其表面具有丰富的负电荷并作为“锚”便于电活性材料在其表面均匀附着、成核和生长;也可以提高其在水溶液中的分散性。因此,PSS的存在对于均匀分散的碳纳米管基复合材料的制备具有双重作用。本论文采用PSS缠绕修饰的碳纳米管(PSS-CNTs)作为具有氧化还原超电容特性电活性材料的载体,它对于碳纳米管基复合材料结构的设计和有效构筑起到了重要的作用。
     2.钌基碳纳米管复合材料的制备及其高的电化学利用率。选用荷负电荷的PSS-CNTs为载体,在温和水热条件下实现了弱晶化的水合二氧化钌(RuO_2·nH_2O)纳米点在其表面的均匀分散,在RuO_2·nH_2O高负载的情况下获得了高的电化学利用率。研究表明,水热方法制备的RuO_2·nH_2O /PSS-CNTs复合材料在RuO_2·nH_2O负载量为10 wt.%时,其质量比电容为1474 F g-1,其电化学利用率为71%。当RuO_2·nH_2O的负载量为25 wt.%和45 wt.%时,仍可以保持RuO_2·nH_2O纳米点在PSS-CNTs表面很好的分散性,其质量比电容分别为774和703 F g-1。通过该方法实现了RuO_2·nH_2O纳米点的高负载,高分散和高的电化学利用率。RuO_2·nH_2O纳米点“点饰”碳纳米管的复合材料可以使电解质离子和电子同时接触到更多高电活性的RuO_2·nH_2O纳米点,进行更充分的法拉第氧化还原反应,从而实现较高的电化学储能。二元钌基复合金属氧化物已成为现今一个研究热点,为了在减少钌用量的前提下仍然保持其较高的质量比电容,我们采用水热法合成了具有高分散性的二元钌铟复合金属氧化物(Ru_xIn_(1-x)Oy·nH_2O)/PSS-CNTs复合材料。电化学测试表明,该复合材料具有良好的超电容行为。
     3.构筑在强酸性电解质中稳定工作的聚苯胺(PANI)/二氧化锰(MnO_2)/PSS-CNTs“三明治”结构复合材料和核壳结构的PANI/PSS-CNTs复合材料。在PSS的协助作用下,使MnO_2均匀负载在碳纳米管表面。进而通过PANI的包覆制备了PANI/MnO_2/PSS-CNTs“三明治”结构复合材料。这样就使在酸性电解质中本来不稳定的MnO_2可以在强酸性电解质中稳定工作,而且其超电容行为取决于酸性电解质中的质子浓度。PANI壳层不仅在强酸性电解质中起到保护MnO_2的作用,也可作为超级电容器电极材料进行更有效的电化学储能。该复合材料在优化的酸性电解质(0.5 M Na_2SO_4 - 0.5 M H_2SO_4)中比电容约为384 F g~(-1)。其中,MnO_2所贡献的质量比电容约为880 F g~(-1)。经过1000次连续充放电,其比容量衰减约为初始容量的18%。这说明了MnO_2在强酸性电解质中获得了较高的电化学储能和良好的电化学稳定性。在此基础之上,以制备的MnO_2/PSS-CNTs作为模板和氧化剂,采用“反应模板法”制备了核壳结构的PANI/PSS-CNTs复合材料。研究发现,在2 A g~(-1)的电流密度下,该复合材料的比电容为296 F g~(-1),在5 A g~(-1)时,其比电容仍可保持为220 F g~(-1),这显示出其良好的能量密度和比功率特性。
     4.具有丰富孔道结构的氧化镍(NiO)/PSS-CNTs复合材料的制备及其超电容行为。采用简单回流和后续热解两步法制备了具有多级孔(中孔和大孔)道结构的NiO球形微纳超结构。该微纳超结构既可充分利用其纳米构筑单元的优良电化学储能能力,又可凭借其微米级的尺寸而便于实际加工并确保其填实密度。研究表明,NiO微纳超结构是由具有丰富中孔结构的NiO纳米片经过取向合并生长和Ostwald熟化生长机理自组装而形成的。其丰富的中孔孔道提供了较高的电活性比表面积。其自组装堆积形成的大孔可以像“蓄水池”一样吸附电解液,满足大电流工作时对电解质离子的大量需求,使其可以在高功率情况下保持其较高的能量密度。为了进一步提高其导电性并获得更好的电化学储能能力,我们制备了具有有序中孔孔道结构的NiO/PSS-CNTs复合材料。碳纳米管交错的三维空间导电网络结构使这种复合材料不仅可以获得高的电活性面积和良好的电子导电性,也可以使其获得丰富的离子通道,从而实现其更有效的电化学储能。电化学测试表明,在6 A g~(-1)的电流密度下,该复合材料(约48 wt.%的NiO)的比电容约为439 F g~(-1),这显示出其良好的功率特性和比能量密度。
     5.界面(二硫化碳/水)水热法制备了新型的超级电容器电极材料CoSx,并对其在KOH碱性水溶液中真正的电化学储能机理进行了详细探讨。研究表明,在KOH碱性水溶液中,CoSx本身其实并不具有电化学储能能力,而是在KOH水溶液中经过连续多次循环伏安扫描,在其表面电化学诱导形成了真正具有电化学储能能力的新的物相Co(OH)_2,从而达到了电化学储能的效果。为了进一步获得更优的电化学储能能力,我们进而合成了均匀分散的CoSx/PSS-CNTs复合材料。电化学测试表明,碳纳米管的加入使其比功率特性和比能量密度均得到进一步提高。
Supercapacitor is a good energy-storage device with high power property and long cycling life, however,its energy density is relatively poor.Thus,it turns out to be a research spot how to further obtain the larger energy density but not sacrifice its immanent higher power density.A hybrid of carbon nanotubes (CNTs) with good electronic double layer capacitance and electroactive materials with good Faradaic pseudocapacitance has been proposed as ideal electrode materials for supercapacitors , because such hybrid can both utilize the fast and reversible Faradaic pseudocapacitance and the indefinitely reversible double-layer capacitance at the electrolyte/CNTs interface so as to obtain large energy density at high rate.Therefore,the thesis is focused upon the preparation and characterization of the CNTs-based composites and their application in electrochemical capacitors (ECs) in order for the simultaneous achievement of large specific energy density and good power property.
     1.The wrapping modification of CNTs by poly (sodium 4-styrene sulfonate) (PSS) and their use in electrode materials for ECs.PSS was originally applied to solubilize CNTs well into the aqueous solution and noncovalently functionalize CNTs through a polymer-wrapping mechnism.As a consequence,the noncovalent sidewall functionalization of CNTs with negatively charged PSS,as an“anchor”,could create much more electroactive sites facilitating the subsequent nuclearation,growth and good dispersion of electroactive materials onto their surfaces.In addition,the PSS-functionalized CNTs (PSS-CNTs) would be solubilized well in the aqueous solution. The PSS-CNTs were used as a support for the electroactive materials with redox Faradaic psuedocapacitance,which is important in the design and efficient construction of the CNTs-based composites for ECs application.
     2 . Preparation and investigation of ruthenium oxide-based nanocomposites with high electrochemical utilization for ECs.The RuO_2·nH_2O nanodots,in the case of high loadings,were originally dispersed onto the surface of PSS-CNTs well under the mild hydrothermal treatment.Electrochemical results demonstrated that the synthesized RuO_2·nH_2O nanodots/PSS-CNTs nanocomposite (10 wt.% loading) could deliver a specific capacitance (SC) of 1474 F g~(-1) for the Ru species,resulting in an electrochemical utilization of ca. 71%.The composites with even more loadings still maintained the good dispersion of RuO_2·nH_2O nanodots,such as,25 wt.% and 45 wt.%, whose SCs were 774 and 703 F g~(-1),respectively,for the Ru species.It indicated that the applied method made the RuO_2·nH_2O nanodots well dispersed and large electrochemical utilization,even in the case of high loadings.Such RuO_2·nH_2O nanodots/PSS-CNTs nanostructures facilitated electrolyte ions and electrons contact much more RuO_2·nH_2O nanodots with high electroactive activity for more efficient Faradaic reactions to realize their high electrochemical energy storage.Binary Ru-based oxides doped with homovalent and/or heterovalent substitution had become the research hot,because they could not only reduce the amount of Ru species but also enhance the utilization of ruthenium oxide . The Ru_(1-x)In_xO_y·nH_2O/PSS-CNTs nanocomposite was first synthesized under the mild hydrothermal treatment. Electrochemical data showed a good electrochemical performance for the nanocomposite.
     3 . Construction and electrochemical performance of the“sandwich-like”polyaniline (PANI)/MnO_2/PSS-CNTs hybrids and core-shell PANI/PSS-CNTs composites for ECs in strong acidic electrolytes.MnO_2 was dispersed uniformly onto the surface of CNTs under the assistance of PSS.The MnO_2/PSS-CNTs composites could operate stably in the strong acidic medium due to the protective modification of PANI coating layer onto their surface.The electrochemical performance of the PANI/MnO_2/PSS-CNTs was greatly dependent upon the concentration of protons in the acidic electrolytes.PANI not only served as a physical barrier to restrain the underlying MnO_2 phase from reductive-dissolution process so as to make the novel ternary hybrid material work in strongly acidic medium to enhance the utilization of MnO_2 as much as possible,but also was another electroactive material for energy storage in the acidic mixed electrolytes.It was due to the existence of PNAI layer that an even larger SC of 384 F g~(-1) and a much better SC degradation of ca. 18% over 1000 continuous charge/discharge cycles were delivered by the hybrid in the optimum 0.5 M Na_2SO_(4-0.5) M H2SO4 mixed electrolyte.Particularly,a SC contributed by the MnO_2 reached about 880 F g~(-1) . Furthermore , the core-shell PANI/PSS-CNTs nanocomposite was synthesized by the reacting-template method based on the MnO_2/PSS-CNTs as a template and an oxidant.A SC of 296 F g~(-1) could be obtained at 2 A g~(-1) and even 220 F g~(-1) at 5 A g~(-1) for the nanocomposite,revealing that it owned large energy density and good power property.
     4. Synthesis and electrochemical performance of porous nickel oxide/PSS-CNTs composites for ECs application.First,a facile and efficiency route was described to synthesize NiO microspheres with hierarchical (meso- and macro-) porosity by following thermal decomposition of the precursor obtained via simply refluxing process.Such superstructure could not only make full use of the favorable kinetics and high capacities of the nanosized building blocks but also guarantee its good stability,easiness to fabrication and tap density.The formation mechanism of such superstructure was proposed attentively that the hierarchical structured NiO microspheres were obtained by the self-assembly of two-dimensional and mesoporous NiO petal building blocks based on the coalescence and Ostwald-ripening mechanisms.Such macroporous structure,due to its great role of“ion-buffering reservoirs”,could maintain the sustentation of OH- ions and make sure that the enough Faradaic reactions could take place at high current densities for larger energy storage.To further enhance its conductivity and obtain even better electrochemical behavior,PSS-CNTs were added during the synthetic process.The ordered mesoporous NiO/PSS-CNTs composites were unexpectedly formed.PSS-CNTs,as a good three-dimensional conducting network,not only enhanced the conductivity of the composite,but facilitated electrolyte soaking into particles,maintained the sustentation of it,and created much more porous channel for electrolyte ions to transport and electrochemically access even more electroactive sites of the ordered mesoporous NiO for energy storage at larger current densities.Electrochemical data demonstrated that the unique composite (ca. 48 wt.% NiO) could deliver large energy density and high power property,and a SC of 439 F g~(-1) could be delivered at 6 A g~(-1).
     5.Interface hydrothermal synthesis of the CoSx/PSS-CNTs nanocomposites for ECs and minute investigation of their real energy-storage mechanisms in alkaline KOH solution . Novel CoSx/PSS-CNTs composites were first synthesized in the unique H2O/CS2 interface under mild hydrothermal treatment.Electrochemical data demonstrated that the CoSx itself did not own energy-storage ability in the alkaline electrolyte,but the new phase Co(OH)2 formed during the continuous CV scanning in the KOH solution should be responsible for its good energy-storage property in the KOH solution.To obtain much better electrochemical performance, a good dispersed CoSx/PSS-CNTs composite was further obtained. And the CoSx/PSS-CNTs composite delivered even higher energy density and better power properties after the addition of PSS-CNTs.
引文
[1] B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitora, J. Power Sources, 1997, 66 (1-2), 1 ~ 14.
    [2] W.G. Pell, B.E. Conway, W.A. Adams, et al., Electrochemical efficiency in multiple discharge/recharge cycling of super-capacitors in hybrid EV application, J. Power Sources, 1999, 80 (1-2), 134 ~ 141.
    [3] B.E. Conway, Electrochemical Supercapacitors, New York, Kluwer Academic/Plenum Publishers, 1999.
    [4] B.E. Conway, Transition from“supercapacitor”to“Battery”behavior in electrochemical energy storage, J. Electrochem. Soc., 1991, 138 (6), 1539 ~ 1548.
    [5] J.P. Zheng, T.R. Jow, A new charge storage mechanism for electrochemical capacitors, J.Electrochem. Soc., 1995, 142 (1), L6 ~ L8.
    [6] R.A. Huggins, Supercapacitors and electrochemical pulse sources, Solid State Ionics, 2000, 134 (1-2), 179 ~ 195.
    [7]南俊民,杨勇,林祖赓,电化学电容器及其研究进展,电源技术, 1996, 20(4), 152-164.
    [8] L.T. Lam, R.H. Newnham, H. Ozgun, et al., Advance design of valve-regulated lead-acid battery for hybrid electric vehicles, J. Power Sources, 2000, 88 (1), 92 ~ 95.
    [9] K.V. Schaller, C. Gruber, Fuel cell drive and high dynamic energy storage systems-Opportunities for the future city bus, Fuel Cells Bull., 2000, 3 (27), 9 ~ 13.
    [10] G. Gutmann, Hybrid electric vehicles and electrochemical storage systems-a technology push-pull couple, J. Power Sources, 1999, 84 (2), 275 ~ 279.
    [11] A, Rudge, I. Raistrick, S. Gottesfeld, et al., A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochim. Acta, 1994, 39(2), 273 ~ 287.
    [12] J. Gamby, P.L. Taberna, P. Simon, et al., Studies and charactrisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources, 2001, 101 (1), 109 ~ 116.
    [13] Q.U. Deyung, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources, 1998, 74 (1), 99 ~ 102.
    [14]西野敦,用活性炭纤维制备的双层电容器,炭素, 1988, 132, 57 ~ 72.
    [15]马仁志,魏秉庆,徐才录等,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版), 2000, 40 (8), 7 ~ 10.
    [16]江奇,卢晓英,陈召勇等,碳纳米管电化学超级电容器性能初探,第五届全国新型碳材料学术研讨会论文集, 2001, 371.
    [17]田艳红,付旭涛,吴伯荣,超级电容器用多孔碳材料的研究进展,电源技术, 2002, 26 (6): 466 ~ 469.
    [18] R.Z. Ma, J. Liang, B.Q. Wei, Study of electrochemical capacitors utilizing carbon nanotube electrode, J. Power Sources, 1999, 84 (1), 126 ~ 129.
    [19] K. Gurunathan, A.V. Murugan, R. Marimuthu, et al., Electrochemically synthesized conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices, Mater. Chem. Phys., 1999, 61 (3), 173 ~ 191.
    [20] C. Arbizzani, M. Mastragostino, L. meneghllo, Polymer-based redox supercapacitors: A comparative study, Electrochim. Acta, 1996, 41 (1), 21 ~ 26.
    [21]唐致远,许国祥,电子导电聚合物在电化学电容器中的应用,化工进展, 2002, 21 (9), 652 ~ 655.
    [22] P.J. Cygan, T.B. Atwter, L.P. Jarvis, Hybrid power sources for military application, Battery conference on applications and advances, 13th, 1998, 13 ~ 16, 85.
    [23] S.M. Halpin, R.M. Nelms, J.E. Schatz, Characterization of double-layer capacitor application issues for commercial and military applications, IECON, 23th international, 1997, 3, 1074.
    [24] X. Andrieu, J.F. Fauvarque, Supercapacitor for telecommunication applications, INTELEC, 15th international, 1993, 1 (27-30), 79.
    [25] I.B. Weinstock, Recent advances in the US department of energy` energy storage technology research and development programs for hybrid electric and electric vehicles, J. Power Sources, 2002, 110 (2), 471 ~ 478.
    [26] D.Y. Jung, Y.H. Kim, S.W. Kim, et al., Development of ultracapacitor modules for 42-V automotive electrical systems, J. Power Sources, 2003, 114 (2), 366 ~ 373.
    [27] L.P. Jarvis, T.B. Atwater, P.J. Cygan, Fuel cell/electrochemical capacitor hybrid for intermittent high power applications, J. Power Sources, 1999, 79 (1), 60 ~ 63.
    [28] E. Faggioli, P. Rena, V. Danel, et al., Supercapacitors for the energy management of electric vehicles, J. Power Soures, 1999, 84 (2), 261 ~ 269.
    [29]程夕明,孙逢春,电动汽车能量储存技术概况,电源技术, 2001, 25(1), 47 ~ 52.
    [30]李凯,利用超大容量电容器改善内燃机柴油发电机组的电启动性能,机车电传动, 2002, 2 (3), 37 ~ 39.
    [31]李强,李开喜,王芙蓉等,针状焦基活性炭的制备及其作为EDLCs电极材料的电化学性能,新型炭材料, 2005, 20 (4), 335 ~ 341.
    [32]韦文生,梁吉,徐才录,碳纳米管超大容量电容器在光伏系统中的应用,太阳能学报, 2002,23 (2), 223 ~ 2493.
    [33] S. Nomoto, H. Nakata, K. Yoshioka, et al., Advanced capacitors and their application, J. Power Sources, 2001 (97-98), 807 ~ 811.
    [34] K. Kinoshita, Carbon: Electrochemical and physicochemical properties, New York: Kodansa Press, 1988, 326.
    [35] G. Salitra, A. Soffer, L. Eliad, et al., Carbon electodes for double-layer capacitance, I. Relation between ion and pore dimensions, J. Electrochem. Soc., 2000, 147 (7), 2486 ~ 2493.
    [36] L. Eliad, G. Salitra, A. Soffer, et al., Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solution, J. Phys. Chem. B, 2001, 105 (29), 6880 ~ 6887.
    [37] L. Eliad, G. Salitra, A. Soffer, et al., Proton selective environment in the pores of activated molecular sieving carbon electrodes, J. Phys. Chem. B, 2002, 106 (39), 10128 ~ 10134.
    [38] H. Shi, Activated carbons and double layer capacitance, Electrochim. Acta, 1996, 41 (10), 1633 ~ 1639.
    [39] D.Y. Qu, H. Shui, Studies of activated carbons used in double-layer capacitances, J. Power Sources, 1998,74 (1), 99-107.
    [40] K. Kim, X. Chu, Carbon for supercapacitors in electrochemical capacitors, The electrochemical Society Proceedings Serious, Pennington, 1996, 135, 121.
    [41] S.R.S. Prabaharan, R. Vimala, Z. Zainal, Nanostructured mesoporous carbon as electrodes for supercapacitors, J. Power Sources, 2006, 161 (1), 730 ~ 736.
    [42] H. Tamai, M. Kouzu, M. Morita, et al., Preparation and Electronic double layer capacitance of mesoporous carbon, Electrochem. Solid state Lett., 2003, 6 (10), A214 ~ A217.
    [43] T. Momma, X.J. Liu, T. Osaka, et al., Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources, 1996, 60 (2), 249 ~ 253.
    [44] Y.R. Nian, H. Teng, Nitric and modification of activated carbon electrodes for improvement of electrochemical capacitance, J. Electrochem. Soc., 2002, 149 (8), A1008 ~ A1014.
    [45] C.H. Kim, S. Pyun, H.C. Shin, Kinetics of double-layer charging/discharging of activated carbon electrodes: role of surface acidic functional groups, J. Electrochem. Soc., 2002, 149 (2), A93 ~ A98.
    [46] M. Ishikawa, A. Sakamoto, M. Monta, et al., Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors, J. Power Sources, 1996, 60 (2), 233 ~ 238.
    [47] D.Y. Qu, Studies of the activated carbons used in double-layer supercapacitors, J. power Sources, 2002, 109 (2), 403 ~ 411.
    [48] A.Y. Rychagov, Electrochemical chracteristics and properties of the surface of activate carbon electrodes in a double-layer capacitor, Russ. J. Electrochem., 2001, 37 (11), 1172 ~ 1179.
    [49] A. Yoshida, I. Tanahashi, A. Nishino, Effect of concentration of surfacce acdaic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28 (5), 611 ~ 615.
    [50] F. Beguin, K. Szostak, G. Lota, et al., A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends, Adv. Mater., 2005, 177 (19), 2380 ~ 2384.
    [51] J. Chmiola, G. Yushin, Y. Gogotsi, et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Sceince, 2006, 313 (5794), 1760 ~ 1763.
    [52] D.N. Futaba, K. Hata, T. Yamada, et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater., 2006, 5 (12), 987 ~ 994.
    [53] S. Wei, W.P. Kang, J.L. Davidson, et al., Supercapacitive behavior of CVD carbon nanotubes grown on ti coated Si wafer, Diamond Relat. Mater., 2008, 17 (4-5), 906 ~ 911.
    [54] D.W. Wang, F. Li, M. Liu, et al., Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation, New Carbon Mater., 2007, 22 (4), 307 ~ 314.
    [55] J. Yang, Y.F. Liu, X.M. Chen, et al., Carbon electrode material with high densities of energy and power, Acta Phys-Chim Sin, 2008, 24 (1), 13 ~ 19.
    [56] V. Subramanian, C. Luo, A.M. Stephan, et al., Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C, 2007, 111 (20), 7527 ~ 7531.
    [57] E. Raymundo-Pinero, F. Leroux, F. Beguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 2006, 18 (7), 1877 ~ 1882.
    [58] T. Thomberg, A. Janes, E. Lust, Energy and power performance of vanadium carbide derived carbon electrode materials for supercapactiors, J. Electroanal. Chem., 2009, 630 (1-5), 55 ~ 62.
    [59]夏永姚,李会巧,高比表面积鳞片状石墨作为电极材料的电化学电容器,申请号: 200710036305.8,公开号: CN101009161.
    [60] H.Q. Li, Y.G. Wang, C.X. Wang, et al., A competitive candidate material for aqueous supercapacitors: high surface-area graphite, J. Power Sources, 2008, 185 (2), 1557 ~ 1562.
    [61] K.S. Novoselov, A. K. Geim, S.V. Morozov, et al., Electric effect in atomically thin carbon film, Science, 2004, 306, 666 ~ 669.
    [62] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nat. Mater., 2007, 6 (3), 183 ~ 191.
    [63] T. Seyller, A. Bostwick, K.V. Emtsev, et al., Epitaxial graphene: a new material, Phys. Stat. Sol. B, 2008, 245 (7), 1436 ~ 1446.
    [64] M.D. Stoller, S. Park, Y. Zhu, et al., Graphene-based ultracapacitors, Nano Lett., 2008, 8, 3498~ 3502.
    [65] S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, et al., Graphene-based electrochemical supercapacitors, J. Chem. Sci., 2008, 120 (1), 9 ~ 13.
    [66] H.L. Wang, Q.L. Hao, X.J. Yang, et al., Graphene oxide doped polyaniline for supercapacitors, Electrochem. Commun., 2009, 11 (6), 1158 ~ 1161.
    [67] Y.P. Zhang, H.B. Li, L.K. Pan, T. Lu, Z. Sun, Capacitive behavior of graphene-ZnO composite film for supercapacitors, J. Electroanal. Chem., 2009, 634 (1), 68 ~ 71.
    [68] C.C. Hu, M.J. Liu, K.H. Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, Electrochim. Acta, 2007, 163 (2), 1126 ~ 1131.
    [69] Y.Y. Liang, H.L. Li, X.G. Zhang, Solid state synthesis of hydrous ruthenium oxide for supercapacitors, J. Power Source, 2007, 173 (1), 599 ~ 602.
    [70] T.P. Gujar, V.R. Shinde, C.D. Lokhande, et al., Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor, Electrochem. Commun., 2007, 9 (3), 504 ~ 510.
    [71] Y. Liu,W.W. Zhao, X.G. Zhang, Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors, Electrochim. Acta, 2008, 53 (8), 3296 ~ 3304.
    [72] B.J. Lee, S.R. Sivakkumar, J.M. Ko, et al., Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors, J. Power Sources, 2007, 168 (2), 546 ~ 552.
    [73] K. Naoi, S. Ishimoto, N. Oqihara, et al., Encapsulation of nanodot Ruthenium oxide into KB for electrochemical capacitors, J. Electrochem. Soc., 2009, 156 (1), A52 ~ A59.
    [74] C.Z. Yuan, L. Chen, B. Gao, et al., Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors, J. Mater. Chem., 2009, 19 (2), 246 ~ 252.
    [75] K.R. Prasad, N. Miura, Electrochemical Synthesis and Characterization of Nanostructured tin Oxide for Electrochemical Redox Supercapacitors, Electrochem. Commun., 2004, 6 (8), 849 ~ 852.
    [76] H.T. Liu, P. He, Z.Y. Li, et al., A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte, Electrochim. Acta, 2006, 51 (10), 1925 ~ 1931.
    [77] C.J. Xu, H.D. Du, B.H. Li, et al., Asymmetric activated carbon-manganese dioxide capacitors inmild aqeous electrolytes containing alkaline-earth cations, J. Electrochem. Soc., 2009, 156 (6), A435 ~ A441.
    [78] C.Z. Yuan, B. Gao, L.H. Su, et al., Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors, J. Colloid. Interface Sci., 2008, 322 (2), 545 ~ 550.
    [79] T.P. Gujar, V.R. Shinde, C.D. Lokhande, et al., Electrosynthesis of B2O3 thin films anf their use in electrochemical supercapacitors, J. Power Sources, 2006, 161 (2), 1479 ~ 1485.
    [80] D.S. Yuan, J.H. Zeng, N. Kristian, et al., Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors, Electrochem. Commun., 2009, 11 (2), 313 ~ 317.
    [81] J.H. Chang, R.S. Mane, D. Ham, et al., Electrochemical capacitive properties of cadmium oxide films, Electrochim. Acta, 2007, 53 (2), 695 ~ 699.
    [82] H.M. Zeng, Y. zhao, Y.J. Hao, et al., Preparation and capacitive properties of sheet V6O13 for electrochemical supercapacitor, J. Alloys compd., 2009, 477 (1-2), 800 ~ 804.
    [83] Y.P. Zhang, X.W. Sun, L.K. Pan, et al., Carbon nanotube-zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors, J. Alloys compd., Doi:10.1016/j.jallcom.2009.01.114
    [84] J. Wang, J. Polleux, J. Lim, et al., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 2007, 111 (40), 14925 ~ 14931.
    [85] G.X. Wang, M.Z. Qu, Z. L. Yu, et al., LiNi0.8Co0.2O2/MWCNTs composite electrodes for supercapacitors, Mater. Chem. Phy., 2007, 105 (2-3), 169 ~ 174.
    [86] Z.J. Zhang, X.Y. Chen, B.N. Wang, et al., Hydrothermal synthesis and self-assemble of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties, J. Cryst. Growth, 2008, 310 (24), 5453 ~ 5457.
    [87] S.Y. Wang, K.C. Ho, S.L. Kuo, et al., Investigation on capacitance mechnism of Fe3O4 electrochemical capacitors, J. Electrochem. Soc., 2006, 153 (1), A75 ~ A80.
    [88] S.L. Kuo, N.L. Wu, Electrochemical capacitor of MnFe2O4 with orgnic Li-ion electrolyte, Electrochem. Solid-State Lett., 2007, 10 (7), A171 ~ 175.
    [89] D. Choi, G.E. Blomgre, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater., 2006, 18 (9), 1178 ~ 1182.
    [90] F. Tao, Y.Q. Zhao, G.Q. Zhang, et al., Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors, Electrochem. Commun., 2007, 9 (6), 1282 ~ 1287.
    [91] S.J. Bao, C.M. Li, C.X. Guo, et al., Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors, J. Power Sources, 2008, 180 (1), 676 ~ 681.
    [92] C.Z. Yuan, B. Gao, L.H. Su, et al., Electrochemically induced phase transformation andcharge-storage mechnism of amorphous CoSx nanoparticles prepared by interface-hydrothermal method, J. Electrochem. Soc., 2009, 156 (3), A199 ~ A203.
    [93] T. Morishita, Y. Soneda, H. Hatori, et al., Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor, Electrochim. Acta, 2007, 52 (7), 2478 ~ 2784.
    [94] H.H. Zhou, H. Chen, S.L. Luo, et al., The effect of the polyaniline morphology on the performance of polyaniline supercapacitors, J. Solid State Electrochem., 2005, 9 (8), 574 ~ 580.
    [95] B.C. Kim, J.M. Ko, G.G. Wallace, A novel capacitor material based on nafion-doped polypyrrole, J. Power Source, 2008, 177 (2), 665 ~ 668.
    [96] L.J. Pan, L. Pu, Y. Shi, et al., Synthesis of polyaniline nanotubes with a reactive template of Manganese oxide, Adv. Mater., 2007, 19 (3), 461 ~ 464.
    [97] Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater., 2006, 18 (19), 2619 ~ 2623.
    [98] H.Y. Mi, X.G. Zhang, X.G. Ye, et al., Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors, J. Power Source, 2008, 176 (1), 403 ~ 409.
    [99] R.K. Sharma, A.C. Rastogi, S.B. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor, Electrochim. Acta, 2008, 53 (26), 7690 ~ 7695.
    [100] K. Naoi, S. Suematsu, A. Manago, Electrochemistry of Poly(1,5diaminoanthraquinone) and Application in electrochemical Capacitor Material, J. Electrochem. Soc., 2000, 147 (2), 420 ~ 426.
    [101] S.R. Sivakkumar, Performance evaluation of poly (N-methylaniline) and polyisothianaphthene in charge-storage devices, J. Power Sources, 2004, 137 (2), 322 ~ 328.
    [102] L.B. Groenendaal, F. Jonas, D. Freitag, et al., Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present and future, Adv. Mater., 2000, 12 (7), 481 ~ 494.
    [103] C. Carlberg, X.W. Chen, O. Inganas, Ionic transport and electronic structure in poly (3,4-ethylenedioxythiophene), Solid State Ionics, 1996, 85 (1-4), 73 ~ 78.
    [104]孙小杰,肖迎红,导电聚3,4-乙撑二氧噻吩的制备及性能,高分子材料科学与工程, 2007, 23 (2), 141~144.
    [105] R. Liu, S.I. Cho, S.B. Lee, Poly (3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor, Nanotechnology, 2008, 19 (21), 215710 ~ 215717.
    [106] K.S. Ryu, Y.G. Lee, Y.S. Hong, et al., Poly(ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor, Electrochim. Acta, 2004, 50 (2-3), 843 ~ 847.
    [107] L. Chen, C.Z. Yuan, H. Dou, et al., Synthesis and electrochemical capacitance of core-shellpoly(3, 4-ethylenedioxythiophene)poly(sodium 4-styrenesulfonate)-modified mutiwalled carbon nanotube nanocomposites, Electrochim. Acta, 2009, 54 (8), 2335 ~ 2341.
    [108] G. Sikha, R.E. White, B.N. Popov, A mathematical model for a lithium-ion battery/electrochemical capacitor hybrid system, J. Electrochem. Soc., 2005, 152 (8), A1682 ~ A1693.
    [109] Y.G. Wang, L. Chen, Y.Y. Xia, Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution, J. Power Soures, 2006, 153 (1), 191 ~ 196.
    [110] V. Khomenko, E. Raymundo-Pinero, F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium, J. Power Sources, 2006, 153 (1), 183 ~ 190.
    [111] L. Chen, H.Q. Li, Y.Y. Xia, A hybrid nonaqueous electrochemical supercapacitor using nanosized iron oxyhydroxide and activated carbon, J. Solid State Electrochem., 2006, 10 (6), 405-410.
    [112] S. Nohara, A.A. Toshihide, H. Wada, et al., Hybrid capacitor with activated carbon electrode, Ni(OH)2 electrode and polymer hydrogel electrolyte, J. Power Sources, 2006, 157 (1), 605 ~ 609.
    [113] Y.G. Wang, Y.Y. Xia, Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system, J. Electrochem. Soc., 2006, 153 (2), A450 ~ A454.
    [114] Y.G. Wang, J.Y. Luo, C.X. Wang, et al., Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds II. Comparasion of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes, J. Electrochem. Soc., 2006, 153 (8), A1425-A1431.
    [115] Y.G. Wang, Z.D. Wang, Y.Y. Xia, An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes, Electrochim. Acta, 2005, 50 (28), 5641 ~ 5646.
    [116] L. Chen, H.J. Liu, J.J. Zhang, et al., Nanosized Li4Ti5O12 prepared by molten Salts method as an electrode material for hybrid elelctrochemical supercapacitors, J. Electrochem. Soc., 2006, 153 (8), A1472 ~ A1477.
    [117] G.J. Wang, L.J. Fu, N.H. Zhao, et al., An aqueous rechargeable Lithium battery with good cycling performance, Angew. Chem. Int. Ed., 2006, 46 (1-2), 295 ~ 297.
    [118] C.Z. Yuan, X.G. Zhang, Q.F. Wu, et al., Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte, Solid State Ionics, 2006,177 (13-14), 1237 ~ 1242.
    [119] Y.M. Volfkovich, T.M. Sedyuk, Elelctrochemical capacitors, Russ. J. Electrochem., 2002, 38 (9), 935 ~ 938.
    [120] S.M. Lipka, D.E. Reisner, J. Dai, et al., In proceedings of the 11th International Seminar on Double Layer Capacitors, Florida Educational Seminars Inc., 2001.
    [121] M. Yoshio, H. Nakamura, H.Y. Wang, Novel megalo-capacitance capacitor based on graphitic carbon cathode, Electrochem. Solid State Lett., 2006, 9 (12), A561 ~ A563.
    [122]张锐,现代材料分析方法,北京,化学工业出版社, 2007: 5 ~ 221.
    [123]祁景玉,现代分析测试技术,上海,同济大学出版社, 2005: 86 ~ 385.
    [124]周瑞发,韩雅芬,陈祥宝,纳米材料技术,北京,国防工业出版社, 2003: 34 ~ 45.
    [125]陈国珍,黄贤智,刘文远,北京,分光光度法(上册),原子能出版社, 1980: 74 ~76.
    [126]阿伦·J·巴德,拉里·R·福克纳,北京,电化学方法-原理和应用(邵元华,朱果逸,董献堆,张柏林译),北京,化学工业出版社, 2005: 156 ~ 178.
    [127]龚竹青,理论电化学导论,长沙,中南工业大学出版社, 1988: 329 ~ 340.
    [128]曹楚南,张鉴清,电化学阻抗谱导论,北京,科学出版社, 2002: 20 ~ 75.
    [129]田昭武,电化学研究方法,北京,科学出版社, 1984: 250 ~ 389.
    [130]藤岛昭,相泽益男,井上撤,电化学测定方法(陈震,姚建年译),北京,北京大学出版社, 1995: 204 ~ 206.
    [131] S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354 (6348), 56 ~ 58.
    [132] M.J. O`Connel, P. Boul, L.M. Ericson, et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342 (3 - 4), 265 ~ 271.
    [133] D. Tasis, N. Tagmatarchis, A. Bianco, et al., Chemistry of carbon nanotubes, Chem. Rev., 2006, 106 (3), 1105 ~ 1136.
    [134] B. Gao, C.Z. Yuan, L.H. Su, et al., High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes, Electrochim. Acta, 2009, 54 (13), 3561 ~ 3567.
    [135] M.N. Zhang, L. Su, L.Q. Mao, Surfacant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT muti-layer films and fabrication of gold nanoparticles/CNT nanohybrid, Carbon, 2006, 44 (2), 276 ~ 283.
    [136] N. Du, H. Zhang, B.D. Chen, et al., Porous indium oxide nanotubes: Layer-by-layer assembly on carbon-nanotubes templates and application for room-temperature NH3 gas sensor, Adv. Mater., 2007, 19 (12), 1641 ~ 1645.
    [137] S.C.J. Huang, A.B. Artyukhin, Y.M. Wang, et al., Persistence length control of thepolyelectrolyte layer-by-layer self-assembly on carbon nanotubes, J. Am. Chem. Soc., 2005, 127 (41), 14176 ~ 14177.
    [138] P. Ruetschi, R. Giovanoli, The behaviour of MnO2 in strongly acidic solutions, J. App. Electrochem., 1982, 12 (1), 109 ~ 114.
    [139] H.X. Luo, Z.J. Shi, N.Q. Li, et al., Investigation of the electrochemical and electrcatalytic behavior of single-wall carbon nanotube film on a glass carbon electrode, Anal. Chem., 2001, 73 (5), 915 ~ 920.
    [140] C.C. Hu, W.C. Chen, K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. ELectrochem. Soc., 2004, 151 (2), A281 ~ A290.
    [141] W. Sugimoto, H. Iwata, Y. Yasunaga, et al., Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Ed., 2003, 42 (34), 4092 ~ 4096.
    [142] K.H. Chang, C.C. Hu, C.Y. Chou, Textural and capacitive characteristics of hydrothermally derived RuO2·H2O nanocrystallites: Independent control of cryastal size and water content, Chem. Mater., 2007, 19 (8), 2112 ~ 2119.
    [143] C.C. Hu, K.H. Chang, C.C. Wang, Two-step hydrothermal syntheis of Ru-Sn oxide composite for electrochemical supercapacitors, Electrochim. Acta, 2007, 52 (13), 4411 ~ 4418.
    [144] R. Kannan, B.A. Kakade, V.K. Pillai, Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes, Angew. Chem. Int . Ed., 2008, 47 (1), 1 ~ 5.
    [145] M. Iurlo, D. Paolucci, M. Marcaccio, et al., Electron transfer in pristine and functionalised single-walled carbon nanotubes, Chem. Commun., 2008, 40, 4867 ~ 4874.
    [146] N. Krstaji?, S. Trasatti, Cathodic behavior of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions: surface characterization, J. Electrochem. Soc., 1995, 412 (8), 2675 ~ 2681.
    [147] Y. Liu, W.W. Zhao, X.G. Zhang, Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors, Electrochim. Acta, 2008, 53 (8), 3296 ~ 3304.
    [148] K. Macounová, I. Jirka, A. Trojánek, et al., Electrochemical behavior of nanocrystalline Ru0.8Me0.2O2-x (M = Fe, Co, Ni) oxide electrodes in double-layer region, J. Electrochem. Soc., 2007, 154 (12), A1077 ~ A1082.
    [149] K.H. Chang, C.C. Hu, Hydrothermal synthesis of binary Ru-Ti oxides with excellent performances for supercapacitors, Electrochim. Acta, 2006, 52 (4), 1749 ~ 1757.
    [150] K. Yokoshima, T. Shibutani, M. Hirota, et al., Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1-xVxO2, J. Power Sources, 2006, 160 (2), 1480 ~ 1486.
    [151] Y.U. Jeong, A. Manthiram, amorphous ruthenium-chromium oxides for electrochemicalcapacitors, Electrochem. Solid-State Lett., 2000, 3 (5), 205 ~ 208.
    [152] O.R. Camara, S. Trasatti, Surface electrochemical properties of Ti(RuO2+ZrO2) electrodes, Eletrochim. Acta, 1996, 41 (3), 419 ~ 427.
    [153] L.A. Defaria, J.F.C. Boodts, S. Trasatti,Physico-chemical and electrochemical characterization of Ru-based ternary oxides containing Ti and Ce, Electrochim. Acta, 1992, 37 (13), 2511 ~ 2518.
    [154] V.K. Homenko, E. Raymundo-Pinero, E. Frackowiak, et al., high-voltage asymmetric supercapacitors operating in aqueous electrolyte, Appl. Phys., 2006, A82 (4), 567 ~ 573.
    [155] T. Cottineau, M. Toupin, T. Delahaye, et al., Nanostructured structured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys., 2006, A82 (4), 599 ~ 606.
    [156] V. Ganesh, S. Pitchumani, V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon, J. Power Sources, 2006, 158 (2), 1523 ~ 1532.
    [157] Y.G. Wang, X.G. Zhang, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim. Acta, 2004, 49 (12), 1957 ~ 1962.
    [158] Y. Matsuda, M. Morita, M. Ishikawa, et al., New electric double-layer capacitors using polymer solid electrolytes containing tetraalkylammonium salts, J. Electrochem. Soc., 1993, 140 (7), L109 ~ L110.
    [159] M. Ishikawa, M. Morita, M. Ihara, et al., Electric double-layer capacitor composed of activated carbon fiber cloth electrode and solid polymer electrolytes containing alkylammonium salts, J. Elctrochem. Soc., 1994, 141 (7), 1730 ~ 1734.
    [160] T. Xue, C.L. Xu, D.D. Zhao, et al., Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates, J. Power Sources, 2007, 164 (2), 953 ~ 958.
    [161] Y. Chen, M.L. Zhang, Z.H. Shi, Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor, J. Electrochem. Soc., 2005, 152 (6), A1272 ~ A1278.
    [162] M. Toupin, T. Brousee, D. Be′langer, Charge storage mechnism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater., 2004, 16 (16), 3184 ~ 3190.
    [163] R.N. Reddy, R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources, 2004, 132 (1-2), 315 ~ 320.
    [164] J.W. Long, C.P. Rhodes, A.L. Young, et al., Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: making mesoporus MnO2 nanoarchitectures atable in acid electrolytes, Nano Lett., 2003, 3 (8), 1155 ~ 1161.
    [165] S. Bakardjieva, P. Bezdicka, T. Grygar, et al., Reductive dissolution of microparticulatemanganese oxides, J. Solid State Electrochem., 2000, 4 (6), 306 ~ 313.
    [166] S. Bodoardo, J. Brenet, M. Maja, et al., Electrochemical behavior of MnO2 electrodes in sulphuric acid solution, Electrochim. Acta, 1994, 39 (21), 1999 ~ 2004.
    [167] S. Nijjer, J. Thonstad, G.M. Haarberg, Oxidation of manganese (II) and reduction of manganese dioxide in sulphuric acid, Electrochim. Acta, 2001, 46 (1-2), 395 ~ 399.
    [168] H.Y. Lee, H.S. Kim, S.W. Kim, Metal oxide electrochemical psedocapacitor having conducting polymer coated electrode, US Patent, 2003, 6510042.
    [169] K.P. Gong, P. Yu, L. Su, et al., polymer-assited synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen, J. Phys. Chem. C, 2007, 111 (5), 1882 ~ 1887.
    [170] Y. Furukawa, F. Ueda, Y. Hyodo, et al., Vibeational spectra ans structure of polyaniline, Macromolecules, 1988, 21 (5), 1297 ~ 1305.
    [171] A.B. Yuan, Q.L. Zhang, A novel hybrid manganese dioxide/activited carbon supercapacitor using liyhium hydroxide electrolyte, Electrochem. Commun., 2006, 8 (7), 1173 ~ 1178.
    [172] H.Y. Mi, X.G. Zhang, S.Y. An, et al., Microwave-assisted synthesis and electrochemical capacitance of polyaniline/mutiwalled carbon nanotubes composite, Electrochem. Commun., 2007, 9 (12), 2859 ~ 2862.
    [173] G.M. Milena, G.M. Janis, C. Raoul, et al., Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization, Chem. Mater., 2006, 18 (26), 6258 ~ 6265.
    [174] S. Quillard, G. Louarn, S. Lefrant, et al., Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases, Phys. Rev. B, 1994, 50 (17), 12496 ~ 12508.
    [175] H. Zengin, W. Zhou, J.Y. Jin, et al., Carbon nanotubes doped polyaniline, Adv. Mater., 2002, 14 (20), 1480 ~ 1483.
    [176] W. Xing, F. Li, Z.F. Yan, et al., Synthesis and electrochemical properties of mesoporous nickel oxide, J. Power Sources, 2004, 134 (2), 324 ~ 330.
    [177] F. Jiao, A.H. Hill, A. Harrison, et al., Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution, J. Am. Chem. Soc., 2008, 130 (15), 5262 ~ 5266.
    [178] H.W. Yan, C.F. Blanford, B.T. Holland, et al., A chemical synthesis of periodic macroporous NiO and metallic Ni, Adv. Mater., 1999, 11 (12), 1003 ~ 1006.
    [179] Y.G. Wang, Y.Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15, Electrochim. Acta, 2006, 51 (16), 3223 ~ 3227.
    [180] K.C. Liu, M.A. Anderson, Porous nickel oxide/nickel films for electrochemical capacitors, J. Electrochem. Soc., 1996, 143 (1), 124 ~ 131.
    [181] K.W. Nam, K.B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their storage mechnism, J. Electrochem. Soc., 2002, 149 (3), A346 ~ A354.
    [182] D.W. Wang, F. Li, H.M. Cheng, Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor, J. Power Sources, 2008, 185 (2), 1563 ~1568.
    [183] D.W. Wang, F. Li, M. Liu, et al., 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed., 2008, 47 (2), 373 ~ 376.
    [184] W.J. Cui, H.J. Liu, C.X. Wang, et al., Highly ordered three-dimentional macroporous FePO4 as cathode materials for lithium-ion batteries, Electrochem. Commun., 2008, 10 (10), 1587 ~ 1589.
    [185] J.R. Matos, M. Kruk, L.P. Mercuri, et al., Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time, J. Am. Chem. Soc., 2003, 125 (3), 821 ~ 829.
    [186] D. Grosso, G. Illia, E.L. Crepaldi, et al., Nanocrystalline transition-metal oxide spheres with controllable multi-scale porosity, Adv. Funct. Mater., 2003, 13 (1), 37 ~ 42.
    [187] X.W. Lou, D. Deng, J.Y. Lee, et al., Thermal formation of mesoporous single-crystal Co3O4 nanoneedles and their lithium storage properties, J. Mater. Chem., 2008, 18 (37), 4397 ~ 4408.
    [188] R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 1998, 281 (5379), 969 ~ 971.
    [189] B. Liu, S.H. Yu, L.J. Li, et al., Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4, J. Phys. Chem. B, 2004, 108 (9), 2788 ~ 2792.
    [190] E.R. Leite, T.R. Giraldi, F.M. Pontes, et al., Crystal gowth in colloidal tin oxide nanocrystals induced by coalescence at room temperature, Appl. Phys. Lett., 2003, 83 (8), 1566 ~ 1568.
    [191] B.J.Xi, S.L. Xiong, D.C. Xu, et al., Tetrarthylenepentamine-directed controllable synthesis of wurtzite ZnSe nanostructures with tunable morphology, Chem. Eur. J., 2008, 14 (31), 9786 ~ 9791.
    [192] M. Jayalakshmi, M.M. Rao, B.M. Choudary, Identifing nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions, Electrochem. Commun., 2004, 6 (11), 1119 ~ 1122.
    [193] A.M. de Jong, V.H.J. de Beer, J.A. Rob van Veen, et al., Surface science model of a workingcobalt-promoted molybdenum sulfide hydrodesulfurization catalyst: Characterization and reactivity, J. Phys. Chem., 1996, 100 (45), 17722 ~ 17724.
    [194] I. Alstrup, I. Chorkendorff, R. Candia, et al., A comnined X-ray photoelectron and M?ssbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts, J. Catal., 1982, 77 (2), 397 ~ 409.
    [195] S.M. Park, W. Li, J. Yu, et al., Sol-gel synthesis of highly dispersed cobalt nanoparticles on silica thin film, J. Mater. Res., 2005, 20 (11), 3094 ~ 3101.
    [196] L. Cao, F. Xu, Y.Y. Liang, et al., Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density, Adv. Mater., 2004, 16 (20), 1853 ~ 1857.
    [197] Y.Y. Liang, L. Cao, L.B. Kong, et al., Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors, J. Power Sources, 2004, 136 (1), 197 ~ 200.
    [198] C.Z. Yuan, X.G. Zhang, B. Gao, et al., Synthesis and electrochemical capacitance of mesoporous Co(OH)2, Mater. Chem. Phys., 2007, 101 (1), 148 ~ 152.
    [199] S.L. Chou, J.Z. Wang, H.K. Liu, et al., Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery, J. Power Sources, 2008, 182 (1), 359 ~ 364.
    [200] B.H. Aritizábal, C.M.D. Correa, A.I. Serykh, et al., In situ FTIR study of the adsorption and reaction of ortho-dichlorobenzene over Pd-promoted Co-HMOR, Micropor. Mesopor. Mater., 2008, 112 (1-3), 432 ~ 440.
    [201] V. Gupta, T. Kusahara, H. Toyama, et al., Potentiostatically deposition nanostructuredα-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochem. Commun., 2007, 9 (9), 2315~ 2319.
    [202] P. Elumalai, H.N. Vasan, Electrochemical studies of cobalt hydroxide-an additive for nickel electrodes, J. Power Sources, 2001, 93 (1-2), 201 ~ 208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700