3种菊头蝠科蝙蝠分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊头蝠科蝙蝠隶属于翼手目小蝙蝠亚目,该科包括两个亚科:蹄蝠亚科和菊头蝠亚科。大蹄蝠和中华菊头蝠/托氏菊头蝠复杂体分别是两个亚科在中国的广布种,且他们的分布区范围基本相似,均分布于中国南部和西南部。本文以这3种菊头蝠科蝙蝠为研究对象,研究大蹄蝠的系统地理学和种群遗传结构以及中华菊头蝠/托氏菊头蝠复杂体的遗传多样性和系统地理学。
     通过分析mtDNA控制区615 bp的序列变异评价中国大蹄蝠遗传结构的地理模式。分子变异分析揭示出大蹄蝠的5个区域(西南区、东部区、西部区、滇南区和海南区)间具有较强的遗传结构。NJ树、由TCS构建的单倍型网络图和MDS散点图都表明在5个区域之间存在显著的地理分化。在大蹄蝠内检测到的高遗传结构可能是较弱的扩散能力、当地的适应性或是显著的雌蝠归家冲动的结果。由高黎贡山和琼州海峡分隔成的3个区域之间缺乏遗传结构可能是由于不完全的世系分类。我们估计了大蹄蝠种群的分歧时间,暗示出较近期的分化。应该给予具有最高遗传多样性的滇南群体和具有最低遗传多样性的海南群体最优先的保护。虽然已经有研究表明大蹄蝠携带与人类疾病直接相关的病毒,但我们基本上没有发现种群混合的证据。因此我们建议为了减少病毒传播的潜在风险,尽量减少对蝙蝠栖息洞穴的干扰。
     中华菊头蝠和托氏菊头蝠在形态上十分相似,关于这两个种的分类地位一直存在很多争议。生物地理学研究可以提供更多关于物种进化模式和机制的有价值的观点,同时也可以提供更多关于物种分类学的观点,对物种的保护十分重要。论文通过分析mtDNA控制区部分序列465 bp的序列变异探讨了中华菊头蝠和托氏菊头蝠复杂体的遗传多样性和种群统计学历史。NJ树、ML树和MP树表明来自于4个区域(西南区、东部区、西部区、滇南区)的复杂体发生了显著的地理分化,形成了与地理区域划分一致的4个亚进化枝。在所有种群中以及4个区域中均检测到高水平的遗传多样性,反映了这个复杂体具有一个长期稳定的进化历史。它们具有共同祖先的时间大约是254 700年前,暗示了这个复杂体是一个古老的物种。根据分歧时间和进化树中各亚进化枝间的亲缘关系,我们推测来自于滇南区的群体可能是复杂体内的隐藏种,且相对于中华菊头蝠和托氏菊头蝠而言是一个更古老的物种。大约是在200 000年前滇南区群体与东部区群体最早发生分化,处于中更新世的晚期。随后西部区和西南区组成的群体与东部区群体和滇南区群体相继发生分化。所有样本大约在晚更新世的早期135600年前发生种群扩张。我们的数据暗示“[滇南区] [西南区] [西部区] [东部区]”这4个区域应该被看作4个管理单元(MU),由于它们在遗传上的唯一性,应该同时予以保护。
     由于普遍的平行演化和趋同现象,通过形态数据不一定能反映出分类单元之间的系统发育关系。然而,将形态和分子数据结合可以洞察生物体的进化以及潜在的相关因素。这里我们集中研究了分类关系不明确的中华菊头蝠和托氏菊头蝠。传统的形态测定方法很难将它们分开,而我们以Cyt b基因为基础的研究表明它们分化成3个强支持的亚进化枝。我们进一步使用以标志点为基础的几何形态测量法分析了属于这个物种复杂体的80个样本的头骨差异。头骨的质心大小和形状差异将它们界定成3个形态类群,与以分子数据为基础提出的分类指定相一致,因此我们推测来自于滇南区的种群应为中华菊头蝠/托氏菊头蝠复杂体内的隐藏种。
The family Rhinolophidae belongs to the suborder Microchiroptera, which includes two subfamilies, namely, Hipposiderinae and Rhinolophinae. Hipposideros armiger and Rhinolophus sinicus/Rhinolophus thomasi complex including respectively to the two subfamilies are widely distributed in China. Their distribution area is similar and located in the southern and southwestern China. In this study, we assessed phylogeography and genetic structure of H. armiger and R. sinicus/R. thomasi complex.
     The geographical patterns of the genetic structure of H. armiger in China were assessed by analyzing sequence variation in the mtDNA control region. Analysis of molecular variance revealed a very strong genetic structure among five regions in H. armiger. A NJ tree, haplotype network construction by TCS and MDS plots all showed significant geographic differentiation among five regions. The high genetic structure detected in H. armiger could be a consequence of poor dispersal ability, local adaptation, or marked female philopatry. The lack of genetic structure among three regions separated by the Gaoligong Range and the Qiongzhou Strait could be due to incomplete lineage sorting. Our estimated times of divergence for H. armiger populations suggested a relatively recent split. The S Yunnan population with the highest genetic diversity and the Hainan population with the lowest genetic diversity should be equally given priority for conservation. Although H. armiger has been shown to carry viruses implicated in human disease, we find little evidence for population mixing. We thus suggest minimizing disturbance to bats’roosting caves for minimizing the potential risk of virus transmission.
     Owing to their similarity in morphology between R. sinicus and R. thomasi, there are much controversy in regard to their taxonomic status. Biogeography can provide more insight into patterns and mechanisms of evolution, as well as into taxa, and be critical to conservation. We analyzed sequence variation in mtDNA control region of 465 bp to assess genetic diversity and demographic history of the complex. NJ, ML and MP trees indicated that significant geographical differentiation was found in the complex species from 4 regions (Southwest, East, West and S Yunnan). A high level of genetic diversity was observed within all regions and each region, reflecting a long evolutionary history of a large, stable population. The time of the most recent common ancestor for the complex species was estimated to be 254 700 years ago, suggesting that this complex is an old species. According to the divergence times and the phylogenetic relationship between the species, we speculated that the populations from the S Yunnan region might be cryptic species within the complex species. The earliest differentiation in the complex is estimated to be approximately 200 000 years ago between S Yunnan region and East region during the later Middle Pleistocene. Subsequently, differentiation has occurred between the West/Southwest group and East group and between the West/Southwest group and S Yunnan group. The estimated time since expansion for all the samples was about 135 600 years ago during the early Later Pleistocene. Our data indicated that those regions of“[S Yunnan] [Southwest] [West] [East]”should be regards as 4 MUs. We suggested that the protection should be implemented simultaneously due to their genetic uniqueness.
     Phylogenetic relationships between taxa are not necessarily reflected by morphological data due to widespread homoplasy and convergence. However, combining morphological and molecular data provides insights into the evolution of biological forms and into the potential factors involved. Here we focus on R. sinicus and R. thomasi with unclear taxonomic affinities. Traditional morphometric methods were difficult to separate them, whereas our Cyt b gene-based studies suggested that they were divided into three strongly supported subclades. We further used landmark-based geometric morphometrics methods to analyze the skull variability of 80 specimens belonging to this species complex. Patterns of size and shape delimitate three morphological groups that are congruent with the proposed taxonomic assignments based on molecular data, and therefore support the existence of cryptic species from the S Yunnan population.
引文
[1] Avise J C, Arnold J, Ball R M, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics [J]. Annu Rev Ecol Syst, 1987, 18 (1): 489-522.
    [2] Emerson B C, Hewitt G M. Phylogeography [J]. Curr Biol 2005, 15 (10): R367-R371.
    [3] Emerson B C, Paradis E, Thébaud C. Revealing the demographic histories of species using DNA sequences [J]. Trends Ecol Evol, 2001, 16 (12): 707-716.
    [4] Avise J C. Phylogeography: The History and Formation of Species [M]. Cambridge, Massachusetts: Harvard University Press, 2000.
    [5]王静,李明,魏辅文,等.分子系统地理学及其应用[J].动物分类学报, 2001, 26 (4): 431-439.
    [6] Chapin F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242.
    [7] Jablonski D. Extinction: past and present [J]. Nature, 2004, 427: 589.
    [8] Jenkins M. Prospects for biodiversity [J]. Science, 2003, 302: 1175-1177.
    [9] Sala O E, Chapin F S, Armesto J J, et al. Global biodiversity scenarios for the year 2100 [J]. Science, 2000, 287: 1770-1774.
    [10] Templeton A R. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history [J]. Mol Ecol, 1998, 7 (4): 381-397.
    [11] Burland T M, Barratt E M, Beaumont M A, et al. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus [J]. Proc R Soc Lond B, 1999, 266: 975–980.
    [12] Ketmaier V, Bernardini C. Structure of the mitochondrial control region of the Eurasian otter (Lutra lutra; Carnivora, Mustelidae): patterns of genetic heterogeneity and implications for conservation of the species in Italy [J]. J Hered, 2005, 96 (4): 318-328.
    [13] Rossiter S J, Jones G, Ransome R D, et al. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum [J]. Mol Ecol, 2000, 9 (8): 1131-5.
    [14]沈浪,陈小勇,李媛媛.生物冰期避难所与冰期后的重新扩散[J].生态学报2002, 22 (11): 1983-1990.
    [15] Hewitt G. The genetic legacy of the Quaternary ice ages [J]. Nature, 2000, 405 (6789): 907-13.
    [16] Hewitt G M. Some genetic consequences of ice ages, and their role in divergence and speciation [J]. Biol J Linn Soc, 1996, 58: 247-276.
    [17] Zhang R Z. Geological events and mammalian distribution in China [J]. Acta Zoologica Sinica, 2002, 48 (2): 141-153.
    [18]刘东升,李志国.亚洲地理[M].北京:商务出版社, 1996.
    [19]张荣祖.中国动物地理[M].北京:科学出版社, 1999.
    [20] Avise J C. Phylogeography: retrospect and prospect [J]. J Biogeogr, 2009, 36: 3-15.
    [21] Avise J C, Toward a regional conservation genetic perspective: phylogeography of faunas in the southeastern United States [M]. In Conservation Genetics: Case Histories from Nature Avise, J C, Hamrick J L, Eds. Chapman & Hall, New York, 1996; 431-470.
    [22] Avise J C. The history and preview of phylogeograhy: a personal reflection [J]. Mol Ecol, 1998, 7: 371-379.
    [23] Wilkinson G S, Chapman A M. Length and sequence variation in evening bat D-loop mtDNA [J]. Genetics, 1991, 128 (3): 607.
    [24] Nikaido M, Harada M, Cao Y, et al. Monophyletic origin of the order Chiroptera and its phylogenetic position among Mammalia, as inferred from the complete sequence of the mitochondrialDNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus) [J]. J Mol Evol, 2000, 51 (4): 318-328.
    [25] Brown W M, George M, Wilson A C. Rapid evolution of animal mitochondrial DNA [J]. Proc Natl Acad Sci USA, 1979, 76 (4): 1967.
    [26] Brown W M, Vinograd J. Restriction endonuclease cleavage maps of animal mitochondrial DNAs [J]. Proc Natl Acad Sci USA, 1974, 71 (11): 4617-4621.
    [27] Upholt W B, Dawid I B. Mapping of mitochondrial DNA of individual sheep and goats: Rapid evolution in the D-loop region [J]. Cell, 1977, 11 (3): 571-583.
    [28] Avise J C, Giblin-Davidson C, Laerm J, et al. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis [J]. Proc Natl Acad Sci USA, 1979, 76 (12): 6694.
    [29] Bermingham E, Rohwer S, Freeman S, et al. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: a test of Mengel's model [J]. Proc Natl Acad Sci USA, 1992, 89 (14): 6624.
    [30] Chen S F, Rossiter S J, Faulkes C G, et al. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros) [J]. Mol Ecol, 2006, 15 (6): 1643-56.
    [31] Chen X L, Chiang T Y, Lin H D, et al. Mitochondrial DNA phylogeography of Glyptothorax fokiensis and Glyptothorax hainanensis in Asia [J]. J Fish Biol, 2007, 70 (SUPPL. A): 75-93.
    [32] Li M, Liu Z J, Gou J X, et al. Phylogeography and population structure of the golden monkeys (Rhinopithecus roxellana): inferred from mitochondrial DNA sequences [J]. Am J Primatol, 2007, 69 (11): 1195-209.
    [33] Flanders J O N, Jones G, Benda P, et al. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data[J]. Mol Ecol, 2009, 18 (2): 306-318.
    [34] Zhang H, Yan J, Zhang G, et al. Phylogeography and demographic history of Chinese black-spotted frog populations (Pelophylax nigromaculata): evidence for independent refugia expansion and secondary contact [J]. BMC Evol Biol, 2008, 8: 21.
    [35] Salgueiro P, Palmeirim J M, Ruedi M, et al. Gene flow and population structure of the endemic Azorean bat (Nyctalus azoreum) based on microsatellites: implications for conservation [J]. Conserv Genet, 2008, 9 (5): 1163-1171.
    [36] Clayton D A. Transcription and replication of animal mitochondrial DNAs [J]. Mitochondrial genomes, 1978, 141: 217.
    [37] Clayton D A. Transcription of the mammalian mitochondrial genome [J]. Annu Rev Biochem, 1984, 53 (1): 573-594.
    [38] SbisàE, Tanzariello F, Reyes A, et al. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications [J]. Gene, 1997, 205 (1-2): 125-140.
    [39] Yoshino H, Armstrong K N, Izawa M, et al. Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? [J]. Mol Ecol, 2008, 17: 4978-4991.
    [40] Wilkinson G S, Mayer F, Kerth G, et al. Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA [J]. Genetics, 1997, 146 (3): 1035.
    [41] Salgueiro P, Coelho M M, Palmeirim J M, et al. Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum) [J]. Mol Ecol, 2004, 13 (11): 3357-66.
    [42] Javier J, Carlos I, Domingo T, et al. Phylogeography of Barbastelle bats (Barbastella barbastellus) in the western Mediterranean and the Canary Islands [J]. Acta Chiropterol, 2003, 5 (2): 165-175.
    [43] Lloyd B D. Intraspecific phylogeny of the New Zealand short-tailed bat Mystacina tuberculatainferred from multiple mitochondrial gene sequences [J]. Syst Biol, 2003, 52 (4): 460-76.
    [44] Ruedi M, Castella V. Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey [J]. Mol Ecol, 2003, 12 (6): 1527-1540.
    [45] Ruedi M, Walter S, Fischer M C, et al. Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera: Vespertilionidae) in Europe [J]. Mol Ecol, 2008, 17 (7): 1801-14.
    [46] Castella V, Ruedi M, Excoffier L. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis [J]. J Evol Biol, 2001, 14 (5): 708.
    [47] Rossiter S J, Benda P, Dietz C, et al. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation [J]. Mol Ecol, 2007, 16 (22): 4699-4714.
    [48] Li M, Wei F W, Goossens B, et al. Mitochondrial phylogeography and subspecific variation in the red panda (Ailurus fulgens): implications for conservation [J]. Mol Phylogenet Evol, 2005, 36 (1): 78-89.
    [49] Zhang F F, Jiang Z G. Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conservation [J]. Mol Phylogenet Evol, 2006, 41: 313-321.
    [50] Zhang Q, Zeng Z G, Ji Y J, et al. Microsatellite variation in China's Hainan Eld's deer (Cervus eldi hainanus) and implications for their conservation [J]. Conserv Genet, 2008, 9: 507-514.
    [51] Wu H, Wan Q H, Fang S G. Two genetically distinct units of the Chinese sika deer (Cervus nippon): analyses of mitochondrial DNA variation [J]. Biol Conserv, 2004, 119 (2): 183-190.
    [52] Chen S Y, Duan Z Y, Sha T, et al. Origin, genetic diversity, and population structure of Chinese domestic sheep [J]. Gene, 2006, 376 (2): 216-223.
    [53] Chen S F, Jones G, Rossiter S J. Sex-biased gene flow and colonization in the Formosan lesser horseshoe bat: inference from nuclear and mitochondrial markers [J]. J Zool, 2008, 274: 207-215.
    [54] Mao X, Zhang J, Zhang S, et al. Historical male-mediated introgression in horseshoe bats revealed by multilocus DNA sequence data[J]. Mol Ecol, 2010, 19: 1352-1366.
    [55] Wei L, Flanders J R, Rossiter S J, et al. Phylogeography of the Japanese pipistrelle bat in China: the impact of ancient and recent events on population genetic structure [J]. Biol J Linn Soc, 2010, 99: 582-594.
    [56] Simmons N B, A reappraisal of interfamilial relationships of bats [M]. In Bats: Phylogeny, Morphology, Echolocation and Conservation Biology, Kunz, T H, Racey P A, Eds. Smithsonian Institution Press: Washington, D.C., 1998.
    [57] Simmons N B, Geisler J H. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera [J]. Bull Am Mus Nat Hist, 1998, 235: 1-182.
    [58] Koopman K F, Order Chiroptera [M]. In Mammal species of the world: a taxonomic and geographic reference, Wilson, D E,Reeder D M, Eds. Smithsonian Institution Press: Washington, DC, 1993.
    [59] Pierson E D. Molecular systematics of the Microchiroptera: higher taxon relationships and biogeography[D]: Berkely, California: University of California 1986.
    [60] Springer M S, Teeling E C, Madsen O, et al. Integrated fossil and molecular data reconstruct bat echolocation [J]. Proc Natl Acad Sci USA, 2001, 98: 6241-6246.
    [61] Koopman K F. Chiroptera: systematics, Handbook of Zoology, VIII [J]. Mammalia, 1994, 60: 1-217.
    [62] Bogdanowicz W, Owen R D. In the Minotaur's labyrinth: the phylogeny of the bat family Hipposideridae [M]. Washington, D.C.: Smithsonian Institution Press, 1998.
    [63] Hand S J, Kirsch J A W. A southern origin for the Hipposideridae (Microchiroptera)? Evidence from the Australian fossil record [M]. Washington, D.C.: Smithsonian Institution Press, 1998.
    [64] Bogdanowicz W, Owen R D. Phylogenetic analyses of the bat family Rhinolophidae [J]. Zeitschrift für zoologische Systematik und Evolutionsforschung, 1992, 30: 142-160.
    [65]张荣祖,金善科,全国强,等.中国哺乳动物分布大全[M].北京:中国林业出版社, 1997.27-29.
    [66] Smith T H, Xie Y. A guide to the mammals of China [M]. Princeton, New Jersey: Princeton University Press, 2008.
    [67]王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社, 2003. 27-29.
    [68] Baker N. http://www.ecologyasia.com/verts/bats/great-roundleaf_bat.htm
    [69]冯江,周江.同一山洞中五种蝙蝠的回声定位比较及生态位的分化[J].生态学报, 2002, 22: 150-155.
    [70]冯江,赵辉华. 4种蹄蝠回声定位声波特征与体型的相关性[J].东北师大学报(自然科学版), 2001, 33: 81-85.
    [71] Bogdanowicz W, Fenton M B, Daleszczyk K. The relationships between echolocation calls, morphology and diet in insectivorous bats [J]. J Zool Lond, 1999, 247: 381-393.
    [72] Zhao H H, Zhang S Y, Zuo M X, et al. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae [J]. J Zool Lond, 2003, 259: 189-195.
    [73]谷晓明.大蹄蝠的核型分析[J].动物学杂志, 2002, 37 (003): 19-21.
    [74]吴毅,原田正史,李艳红.四川七种蝙蝠的核型[J].兽类学报, 2004, 24 (001): 30-35.
    [75] Guo T T, Hua P Y, Lin L K, et al. Characterization of novel microsatellite loci in the great leaf-nosed bat, Hipposideros armiger and cross-amplification in other related species [J]. Conserv Genet, 2008, 9 (4): 1063-1065.
    [76]贺春凤.大蹄蝠mtDNA控制区序列变异及遗传多样性研究[D]:长春:东北师范大学城市与环境科学学院, 2007.
    [77] Andersen K. On some bats of the genus Rhinolophus with remarks on their mutual affinities, and descriptions of twenty-six new forms [J]. Proc Zool Soc London, 1905, 2: 75-145.
    [78] Thomas N M. Morphological and mitochondrial-DNA variation in Rhinolophus rouxii (Chiroptera) [J]. Bonner Zoologisches Beitrage, 2000, 49: 1-18.
    [79]王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社, 2003.
    [80] Liu W C, Zhang J S, Hua P Y, et al. Development and characterisation of novel microsatellite markers from the Chinese rufous horseshoe bat (Rhinolophus sinicus) with cross-species amplification in closely related taxa [J]. Mol Ecol Resour, 2009, 9: 183-185.
    [81] Csorba G, Ujhelyi P, Thomas N. Horseshoe bats of the world (Chiroptera: Rhinolophidae) [M]. Shropshire, UK: Alana Books, 2003.
    [82]卡尔可H,周本雄.周口店第一地点下部各层的地层、古生物学观察及第一地点的时代[J].古脊椎动物与古人类, 1986, 5 (3): 212-229.
    [83]周延儒.中国自然地理:古地理[M].北京:科学出版社, 1984.
    [84]刘东生.中国第四纪沉积物区域分布特征的探讨[M].北京:科学出版社, 1964.
    [85]李吉均.青藏高原隆起的时代、幅度和形成的探讨[J].中国科学, 1979, (6): 608-616.
    [86]陈园田,台湾海峡和福建沿海晚更新世晚期海相地层[M]. In中国海陆第四纪对比研究,梁名胜,张吉林,主编.科学出版社:北京, 1991.
    [87] Beheregaray L B. Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere [J]. Mol Ecol, 2008, 17 (17): 3754-3774.
    [88] Huang S, He S P, Peng Z G, et al. Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in Mainland China [J]. Mol Phylogenet Evol, 2007, 44 (3): 942-52.
    [89] Avise J C. Molecular Markers, Natural History, and Evolution [M]. New York: Chapman and Hall, 1994.
    [90] Echenique-Díaz L M, Yokoyama J, Takahashi O, et al. Genetic structure of island populations of theendangered bat Hipposideros turpis turpis: implications for conservation [J]. Popul Ecol, 2009, 51 (1): 153-160.
    [91] Monteiro F A, Donnelly M J, Beard C B, et al. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil [J]. Mol Phylogenet Evol, 2004, 32 (1): 46-56.
    [92] Bargues M D, Klisiowicz D R, Gonzalez-Candelas F, et al. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma [J]. PLoS Negl Trop Dis, 2008, 2 (5): e233.
    [93] Hemmerter S, Slapeta J, van den Hurk A F, et al. A curious coincidence: mosquito biodiversity and the limits of the Japanese encephalitis virus in Australasia [J]. BMC Evol Biol, 2007, 7: 100.
    [94] Merrill S A, Ramberg F B, Hagedorn H H. Phylogeography and population structure of Aedes aegypti in Arizona [J]. Am J Trop Med Hyg, 2005, 72 (3): 304-310.
    [95] de la Cruz K D, Whiting M F. Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII) [J]. Parasitol Res, 2003, 91 (1): 55-59.
    [96] Mavárez J, Steiner C, Pointier J P, et al. Evolutionary history and phylogeography of the schistosome-vector freshwater snail Biomphalaria glabrata based on nuclear and mitochondrial DNA sequences [J]. Heredity, 2002, 89 (4): 266-272.
    [97] Bengis R G, Leighton F A, Fischer J R, et al. The role of wildlife in emerging and re-emerging zoonoses [J]. Revue Scientifique et Technique-Office International des Epizooties, 2004, 23 (2): 497-512.
    [98] Fèvre E M, Bronsvoort B M C, Hamilton K A, et al. Animal movements and the spread of infectious diseases [J]. Trends Microbiol, 2006, 14 (3): 125-131.
    [99] Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses [J]. Science, 2005, 310 (5748): 676-679.
    [100] Wang L F, Shi Z L, Zhang S Y, et al. Review of bats and SARS [J]. Emerg Infect Dis, 2006, 12 (12): 1834-40.
    [101] Zhu H C, Chu D K W, Liu W, et al. Detection of diverse astroviruses from bats in China [J]. J Gen Virol, 2009, 90 (4): 883-887.
    [102] Lumlertdacha B, Boongird K, Wanghongsa S, et al. Survey for bat lyssaviruses, Thailand [J]. Emerg. Infect. Dis., 2005, 11: 232-236.
    [103] Bates P J J, Harrison D L. Bats of the Indian subcontinent [M]. Sevenoaks: Harrison Zoological Museum Publications, 1997.
    [104] Liu Z J, Ren B P, Wei F W, et al. Phylogeography and population structure of the Yunnan snub-nosed monkey (Rhinopithecus bieti) inferred from mitochondrial control region DNA sequence analysis [J]. Mol Ecol, 2007, 16 (16): 3334-49.
    [105] Zhang L, Wang N. An initial study on habitat conservation of Asian elephant (Elephas maximus), with a focus on human elephant conflict in Simao, China [J]. Biol Conserv, 2003, 112 (3): 453-459.
    [106]王刚,万景林,王二七.高黎贡山脉南部的晚新生代构造-重力垮塌及其成因[J].地质学报, 2006, 80 (9): 1262-1273.
    [107]赵焕庭,王丽荣,袁家义.琼州海峡成因与时代[J].海洋地质与第四纪地质, 2007, 27 (2): 33-40.
    [108] Norberg U M, Rayner J M V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation [J]. P Roy Soc B-Biol Sci, 1987, 316 (1179): 335-427.
    [109] Worthington Wilmer J, Barratt E. A non-lethal method of tissue sampling for genetic studies of chiropterans [J]. Bat Research News, 1996, 37: 1-3.
    [110] Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers [J]. Proc Natl Acad Sci USA, 1989, 86 (16): 6196-6200.
    [111] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res, 1997, 25 (24): 4876-82.
    [112] Rozas J, Sánchez-DeI, Barrio J C, et al. DNASP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 2003, 19 (18): 2496-7.
    [113] Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: an integrated soft ware package for population genetics data analysis [J]. Evol Bioinf Online, 2005, 1: 47-50.
    [114] Excoffier L, Analysis of population subdivision [M]. In Handbook of Statistical Genetics, Balding, D J, Bishop M,Cannings C, Eds. John Wiley & Sons: New York, 2003; 713-750.
    [115] Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data [J]. Genetics, 1992, 131 (2): 479-91.
    [116] Geffen E L I, Anderson M J, Wayne R K. Climate and habitat barriers to dispersal in the highly mobile grey wolf [J]. Mol Ecol, 2004, 13 (8): 2481-2490.
    [117] Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance[J]. Genetics, 1997, 145 (4): 1219-28.
    [118] Swofford D L, PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. In Sinauer Associates: Sunderland, Massachusetts, 2002.
    [119] Posada D, Crandall K A. MODELTEST: testing the model of DNA substitution [J]. Bioinformatics, 1998, 14 (9): 817-8.
    [120] Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees [J]. Mol Biol Evol, 1993, 10 (3): 512-26.
    [121] Clement M, Posada D, Crandall K A. TCS: A computer program to estimate gene genealogies[J]. Mol Ecol, 2000, 9: 1657-1659.
    [122] Panchal M, Beaumont M A, Sunnucks P. The automation and evaluation of nested clade phylogeographic analysis [J]. Evolution, 2007, 61 (6): 1466-1480.
    [123] Posada D, Crandall K A, Templeton A R. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes [J]. Mol Ecol, 2000, 9 (4): 487-488.
    [124] Templeton A R. Statistical phylogeography: methods of evaluating and minimizing inference errors [J]. Mol Ecol, 2004, 13 (4): 789-809.
    [125] Harpending H C, Sherry S T, Rogers A R, et al. The genetic structure of human populations [J]. Curr Anthropol, 1993, 34: 483-496.
    [126] Petit E, Excoffier L, Mayer F. No evidence of bottleneck in the postglacial recolonization of Europe by the noctule bat (Nyctalus noctula) [J]. Evolution, 1999, 53 (4): 1247-1258.
    [127] Felsenstein J. Estimating effective population size from samples of sequences: inefficiency of pairwise and segregating sites as compared to phylogenetic estimates [J]. Genet Res, 1992, 59 (2): 139-147.
    [128] Fu Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection [J]. Genetics, 1997, 147 (2): 915-925.
    [129] Ramos-Onsins S E, Rozas J. Statistical properties of new neutrality tests against population growth [J]. Mol Biol Evol, 2002, 19 (12): 2092-100.
    [130] Fu Y X, Li W H. Statistical tests of neutrality of mutations [J]. Genetics, 1993, 133 (3): 693-709.
    [131] Malvárez G, Carbone I, Grunwald N J, et al. New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington [J]. Phytopathology, 2007, 97 (4): 470-483.
    [132] Wilkinson G S, Fleming T H. Migration and evolution of lesser long-nosed bats Leptonycteris curasoae, inferred from mitochondrial DNA [J]. Mol Ecol, 1996, 5 (3): 329-39.
    [133] Miller-Butterworth C M, Jacobs D S, Harley E H. Strong population substructure is correlated with morphology and ecology in a migratory bat [J]. Nature, 2003, 424 (6945): 187-191.
    [134] Worthington Wilmer J, Hall L, Barratt E, et al. Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas) [J]. Evolution, 1999, 53 (5): 1582-1591.
    [135]陈锡东,范时清.海南岛西北面海区晚第四纪沉积与环境[J].热带海洋, 1988, 7 (1): 39-47.
    [136] Slatkin M. Rare alleles as indicators of gene flow [J]. Evolution, 1985: 53-65.
    [137] Peterson A T, Heaney L R. Genetic differentiation in Philippine bats of the genera Cynopterus and Haplonycteris [J]. Biol J Linn Soc, 1993, 49 (3): 203-218.
    [138] Russell A L, Medellin R A, McCracken G F. Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana) [J]. Mol Ecol, 2005, 14 (7): 2207-22.
    [139] Ruedi E A, Hughes K A. Natural genetic variation in complex mating behaviors of male Drosophila melanogaster [J]. Behav Genet, 2008, 38 (4): 424-36.
    [140] Grant W A S, Bowen B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation [J]. J Hered, 1998, 89 (5): 415.
    [141] Baker R J, Bradley R D. Speciation in mammals and the genetic species concept [J]. J Mamm, 2006, 87 (4): 643-662.
    [142] Cui Z J, Zhang W. Discussion about the glacier extent and advance/retreat asynchrony during the last glaciation [J]. J Glaciol Geocryol, 2003, 25: 510-516.
    [143] Zhang R Z. Relict distribution of land vertebrates and Quaternary glaciation in China [J]. Acta Zoologica Sinica, 2004, 50 (5): 841-851.
    [144] Moritz C. Defining 'evolutionarily significant units' for conservation [J]. Trends Ecol Evol, 1994, 9 (10): 373-375.
    [145] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia [J]. Climatic Change, 1991, 19 (1): 53-61.
    [146] Sheldon F H, Lohman D J, Lim H C, et al. Phylogeography of the magpie-robin species complex (Aves: Turdidae: Copsychus) reveals a Philippine species, an interesting isolating barrier and unusual dispersal patterns in the Indian Ocean and Southeast Asia [J]. J Biogeogr, 2009, 36 (6): 1070-1083.
    [147] Fuchs J, Ericson P G P, Pasquet E. Mitochondrial phylogeographic structure of the white-browed piculet (Sasia ochracea): cryptic genetic differentiation and endemism in Indochina [J]. J Biogeogr, 2008, 35: 565-575.
    [148] Appleton B R, McKenzie J A, Christidis L. Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae) [J]. Mol Phylogenet Evol, 2004, 31 (2): 431-439.
    [149] Campbell P, Schneider C J, Adnan A M, et al. Phylogeny and phylogeography of Old World fruit bats in the Cynopterus brachyotis complex [J]. Mol Phylogenet Evol, 2004, 33 (3): 764-781.
    [150] Corbet G B, Hill J E. Mammals of the Indomalayan Region. A Systematic Review [M]. Oxford: Oxford University Press, 1992.
    [151] Sanborn C C. Eight new bats of the genus Rhinolophus [J]. Field Museum of Natural History, Zoological Series, 1939, 24: 37-43.
    [152] Simmons N B, Order Chiroptera [M]. In Mammal species of the world: a taxonomic and geographic reference, 3rd edition, Wilson, D E,Reeder D M, Eds. The Johns Hopkins University Press: Baltimore, Maryland, 2005; 312-529.
    [153] Sun K, Feng J, Jin L, et al. Structure, DNA sequence variation and phylogenetic implications ofthe mitochondrial control region in horseshoe bats [J]. Mamm Biol, 2009, 74: 130-144.
    [154] Ersts P J, [Internet] Geographic Distance Matrix Generator (version 1.2.3). In American Museum of Natural History, Center for Biodiversity and Conservation. Available from http://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed on 2010-4-16.
    [155] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap [J]. Evolution, 1985, 39: 783-791.
    [156] Lanave C, Preparata G, Sacone C, et al. A new method for calculating evolutionary substitution rates [J]. J Mol Evol, 1984, 20 (1): 86-93.
    [157] Rodriguez F, Oliver J L, Marin A, et al. The general stochastic model of nucleotide substitution [J]. J Theor Biol, 1990, 142 (4): 485-501.
    [158] Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data [J]. Mol Biol Evol, 1997, 14 (7): 685-95.
    [159] Petit E, Mayer F. A population genetic analysis of migration: the case of the noctule bat (Nyctalus noctula) [J]. Mol Ecol, 2000, 9 (6): 683-90.
    [160] Frankham R. Relationship of genetic variation to population size in wildlife [J]. Conserv Biol, 1996, 10 (6): 1500-1508.
    [161] Bossart J L, Prowell P. Genetic estimates of population structure and gene flow: limitations, lessons and new directions [J]. Trends Ecol Evol, 1998, 13 (5): 202-206.
    [162] Kimura M, Weiss G H. The stepping stone model of population structure and the decrease of genetic correlation with distance [J]. Genetics, 1964, 49 (4): 561-76.
    [163] Claude J, Paradis E, Tong H, et al. A geometric morphometric assessment of the effects of environment and cladogenesis on the evolution of the turtle shell [J]. Biol J Linn Soc, 2003, 79: 485-501.
    [164] Evin A, Baylac M, Ruedi M, et al. Taxonomy, skull diversity and evolution in a species complex of Myotis (Chiroptera: Vespertilionidae): a geometric morphometric appraisal [J]. Biol J Linn Soc, 2008, 95 (3): 529-538.
    [165] Klingenberg C P. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae) [J]. Biol J Linn Soc, 1996, 59: 143-177.
    [166] Cordeiro-Estrela P, Baylac M, Denys C, et al. Interspecific patterns of skull variation between sympatric Brazilian vesper mice: geometric morphometrics assessment [J]. J Mamm, 2006, 87: 1270-1279.
    [167] Gannon W L, Rácz G R. Character displacement and ecomorphological analysis of twolong-eared Myotis (M. auriculus and M. evotis) [J]. J Mamm, 2006, 87: 171-179.
    [168] Monteiro L R. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape [J]. Syst Biol, 1999, 48: 192-199.
    [169] Adams D C, Rohlf F J. Ecological character displacement in plethodon: biomechanical differences found from a geometric morphometric study [J]. Proc Natl Acad Sci USA, 2000, 97: 4106-4111.
    [170] McKinnon J S, Mori S, Blackman B K, et al. Evidence for ecology' s role in speciation [J]. Nature, 2004, 429: 294-298.
    [171] Marroig G, Cheverud J M. A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology and ontogeny during cranial evolution of New World monkeys [J]. Evolution, 2001, 55: 2576-2600.
    [172] Marroig G, Cheverud J M. Did natural selection or genetic drift produce the cranial diversification of neotropical monkeys? [J]. The American Naturalist, 2004, 163: 417-428.
    [173] Hanken J, Hall B K. The skull. Volume 3. Functional and evolutionary mechanisms [M]. Chicago, IL: University of Chicago Press, 1993.
    [174] Barratt E M, Deaville R, Burland T M, et al. DNA answers the call of pipistrelle bat species [J].Nature, 1997, 387: 138-139.
    [175] Kiefer A, Veith M. A new species of long-eared bat from Europe (Chiroptera: Vespertilionidae) [J]. Myotis, 2001, 39: 5-16.
    [176] Anthony E L P, Age determination in bats [M]. In Ecological and behavioral methods for the study of bats, Kunz, T H, Ed. Smithsonian Institution Press: Washington, DC, 1988; 47-58.
    [177] Irwin D W, Kocher T D, Wilson A C. Evolution of the cytochrome b gene of mammals [J]. J Mol Evol, 1991, 32: 128-144.
    [178] Hasegawa M, Kishino H, Yano T. Dating the human-ape split by a molecular clock of mitochondrial DNA [J]. J Mol Evol, 1985, 22: 160-174.
    [179] Bookstein F L. Morphometric tools for landmark data: geometry and biology [M]. Cambridge: Cambridge University Press, 1991.
    [180] Kendall D G. The diffusion of shape [J]. Adv Appl Probab, 1977, 9: 428-430.
    [181] Rohlf F J, Slice D E. Extensions of the procustes method for the optimal superimposition of landmarks [J]. Syst Zool, 1990, 39: 40-59.
    [182] Rohlf F J. TPSDig Version 2.1 [M]. Stony Brook, NY: State University of New York, 2006.
    [183] Rohlf F J, tpsRelw: relative warps. In Ver. 1.45 ed.; http://life.bio.sunysb.edu/morph: 2007.
    [184] Rohlf F J. Shape statistics: Procrustes superimpositions and tangent spaces [J]. J Classif, 1999, 16 (2): 197-223.
    [185] Slice D E. Landmark coordinates aligned by Procrustes analysis do not lie in Kendall's shape space [J]. Syst Biol, 2001, 50 (1): 141-149.
    [186] Monteiro L R, Diniz-Filho J A F, dos Reis S F, et al. Shape distances in general linear models: are they really at odds with the goals of morphometrics? A reply to Klingenberg [J]. Evolution, 2003, 57 (1): 196-199.
    [187] Ruedi M, Mayer F. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences [J]. Mol Phylogenet Evol, 2001, 21 (3): 436-448.
    [188] Johnson J B, Dowling T E, Belk M C. Neglected taxonomy of rare desert fishes: congruent evidence for two species of leatherside chub [J]. Syst Biol, 2004, 53 (6): 841-855.
    [189] Johnson W E, Culver M, Iriarte J A, et al. Tracking the evolution of the elusive Andean mountain cat (Oreailurus jacobita from mitochondrial DNA [J]. J Hered, 1998, 89 (3): 227.
    [190] Walker D, OrtíG, Avise J C. Phylogenetic distinctiveness of a threatened aquatic turtle (Sternotherus depressus) [J]. Conserv Biol, 1998, 12 (3): 639-645.
    [191] Wiens J J, Penkrot T A. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus) [J]. Syst Biol, 2002, 51 (1): 69-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700