2003年青海德令哈6.7级地震序列的发震构造及破裂特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2003年4月17日在青海省德令哈市怀头他拉乡西北部高山区发生了ML=6.7的地震,其后发生了一系列余震,本文称其为德令哈地震序列。对该地震序列的研究关系到对青藏高原东北部现今构造运动的认识,同时,对于该地区的地震趋势估计也有重要意义。本研究利用中国地质调查局项目(20010201)布设的流动数字地震观测台网中的8个台站记录的德令哈地震序列近震体波到时和波形资料,并补充国家数字地震台网中28个台站的有关记录,对德令哈地震的时空分布、发震构造和震源破裂特征进行了系统研究,取得了以下几方面的研究成果:
    1)应用交切法对德令哈地震序列6.7级的主震和截止至2003年10月25日的1.0级以上的117次余震进行了初始定位,并以双差地震定位法对这些地震中的95次地震进行了精确再定位。结果表明,余震震中呈现出NWW-SEE方向的延伸分布,余震的优势深度范围是7~18 km的上地壳,余震在垂直方向上分布比较陡立。
    2)应用Snoke等(1984)的测定震源机制解的网格尝试法,通过比较理论计算的与实际观测的P波、SV波、SH波的初动方向和振幅比,以选择矛盾符号数最少和振幅比残差最小方式,求得德令哈地震序列60个2.4级以上主要地震的震源机制解。结果表明,主震和大部分余震都是沿NWW-SEE走向的逆断层错动,震源区发生最大压缩的方向为近水平的NNE-SSW方向。
    3)尽管震源区在主震前几年发生过数次4级多的地震,但主震前40天未记录到震源区的地震活动。德令哈地震序列的时间变化说明,这是一次主震-余震型地震序列。该序列主震后10天内发生的余震是按大森房吉定律正常衰减的,衰减指数p=1.2;以后的余震衰减比较慢,主震后一年左右在震源区又接连发生了6次5级多的晚期强余震。整个余震序列的b值为0.65, b值是较低的。
    4)对德令哈地震序列余震区的扩展分析结果表明,该地震序列的震源过程是一次不对称的双侧破裂,向NWW的破裂分支长于向SEE的分支。地震断层平均位错约0.39 m,平均地震应力降估算为4.6 MPa,这是一次应力降较大的逆断层活动。
    5)在综合分析重新定位后的地震序列的空间分布、本研究和哈佛大学测得的主要地震的震源机制解以及震源区主要地质断裂构造的基础上,判定了德令哈地震序列的发震构造是NWW-SEE走向的大柴旦-宗务隆山活动断裂,这是柴达木断陷区与祁连断隆带之间的分区边界断裂,地震序列是该断裂的一次深部活动。
    6)根据本文对德令哈地震序列空间分布和震源机制解特征的研究结果,结合青藏高原东北缘的新构造活动环境和现今构造应力场特征的分析,可以看出德令哈地震活动是青藏高原东北缘受NNE-SSW向挤压产生隆升活动的显示,这也是青藏高原继续处于隆升活动中的表现。青藏高原东北部这一继承性新构造运动是德令哈地震序列的发震原因。
An ML6.7 earthquake occurred on April 17, 2003, in Huaitoutala village (37.56°N,96.52°E), Delingha County, Qinghai Province. The epicentral region is in a mountainarea on northeastern Qingzang plateau. Then followed a series of aftershocks. Theseearthquakes are referred to as the Delingha earthquake sequence. Investigating thisearthquake sequence will be helpful for understanding the present-day tectonic movementof the northeastern Qingzang plateau and for estimating the future earthquake activity inthis region. The author did the research on space-time distribute, seismogenic structureand source fracture characteristics of the Delingha earthquake sequence. The data usedare the digital seismic records from 8 temporary seismic stations installed by the ChinaGeological Survey scientific research project (20010201) and the digital records from 28seismic stations of the China National Seismic Network (CNSN). The main works andresults of this study are as follows.
    1) The author conducted the preliminary location of the mainshock and 117 ML>1.0aftershocks occurred up to October 25, 2003, using the hypocenter distance trajectorycrossing approach, and then relocated the 117 events with the Double-DifferenceAlgorithm (Waldhauser and E11sworth, 2000). Finally 95 events were relocated. Theresult indicates that the aftershock epicenters distribute in a NWW-SEE elongated region,and the focal depths are dominantly in the range of 7-18 km. Vertically the aftershockregion is a rather steep zone.
    2) Focal mechanisms of the mainshock and 60 ML≥2.4 aftershocks were determinedusing Snoke's algorithm (Snoke et al., 1984). The data used are the polarity readings ofthe first P, SH and SV wave, as well as their amplitude ratio observation. The algorithmperforms an efficient, systematic grid search over the variables space of the 3 parametersof a double-couple source model, and finds acceptable solutions based on the selectedcriteria on the inconsistent polarity readings and errors in amplitude ratios. The resultshows that the mainshock and most aftershocks have a reverse faulting mechanism withthe possible fault striking in NWW-SEE and the maximum source compression inNNE-SSW direction.
    3) Though in a few years before the mainshock there were some middle sizeearthquakes in the source region, no earthquakes have been recorded in the 40 days justbefore the mainshock. The Delingha earthquake series is an earthquake sequence of themainshock-aftershock type. The daily aftershocks within first 10 days after the mainshockdecayed normally following the Omori law, with the decaying index p=1.2. Afterwardsthe aftershocks decayed slowly. More than one year later there successively occurred 6rather strong aftershocks with M beyond 5. The b value of the whole aftershock sequencetakes a low value of 0.65.
    4) Investigation on aftershock region expanding reveals that the source fractured in aprocess of unsymmetrical bilateral expanding, with NWW branch being longer than theSEE one. Average fault dislocation of the Delingha earthquake sequence is about 0.39 mand the average global stress drop is estimated to be 4.6 MPa, indicating this is a reverse
    faulting earthquake with high stress drop.5) An integrated analysis on the spatial distribution of aftershocks and the focalmechanisms given by both this study and Harvard university, in combination with theconsideration on relevant major geologic faults, results in the judgment that theseismogenic structure of the Delingha earthquake sequence is the NWW-SEE striking DaQaidam-Zongwulongshan active fault, which is a boundary fault between the Qaidamfaulted depression and the Qilian fold uplift. The earthquake sequence is an exhibition ofthe activity in deep part of the fault.6) Based on the characteristics of the aftershock spatial distribution and focalmechanisms, in reference to the study result of Neo-tectonic movement and present-daytectonic stress in northeastern part of the Qingzang plateau, we can see that theoccurrence of the Delingha earthquake sequence is a manifestation of the present-dayuplifting movement of the Qingzang plateau under the NNE-SSW compression. And thepresent-day uplift movement of the northeastern Qingzang plateau serves as theseismogenic origin of the Delingha earthquake sequence.
引文
陈运泰、顾浩鼎,1990. 震源理论(讲议). 国家地震局地球物理研究所,中国科技大学研究生院. 81~83.
    陈运泰,许力生,1994. 用宽频带数字地震资料研究地震破裂过程的复杂性,第五届台湾地区地球物理研讨会文集,1~10.
    陈运泰,许忠淮,等, 2003. 地震参数, 北京:地震出版社.
    高国英、聂晓红、夏爱国, 2004. 2003 年伽师 6.8 级地震序列特征和震源机制的初步研究. 中国地震,20(4): 179-186.
    国家地震局震害防御司,1995. 中国历史强震目录,北京:地震出版社.
    何玉梅,郑天愉,1998. 宽频地震方法技术在地震探测工作中的应用. 地球物理学报,48(1): 98~106.
    候遵泽,杨文采,1997. 中国重力异常的小波变换与多尺度分析. 地球物理学报,40(1):85~95.
    华祥文,1980. 唐山强震前后北京、天津周围地区应力场的变化过程.地震学报, 2(2): 67~72.
    黄媛、杨建思、张天中, 2006. 2003 年新疆巴楚—伽师地震序列的双差法重新定位研究. 地球物理学报,49(1): 162-169.
    笠原庆一著, 1984.地震力学.北京:地震出版社,28~49.
    梁尚鸿,李幼铭,束沛镒,等,1984.利用区域地震台网 P、S 振幅比资料测定小震震源参数.地球物理学报,27(3):249~256.
    刘杰,郑斯华,康英,等,2004. 利用 P 波和 S 波的初动和振幅比计算中小地震的震源机制解. 地震,24(1):19~26.
    龙思胜,陈银,2003. 安宁河—则木河断裂带近期 7 次地震的震源机制解. 四川地震,2:21~25.
    龙思胜,2004. 2001 年四川雅江 6.0 级地震序列的破裂特征及发震构造. 中国地震,20(1):1~11.
    陆远忠等,1985. 地震预报的地震学方法. 北京:地震出版社,
    青海省区域地质志,1991. 中华人民共和国地质矿产部 地质专报—区域地质(第 24 号),青海省地质矿产局,地质出版社,538~546.
    王俊国,姚兰予,卞真付, 2004. 2003 年宁河地震序列特征的分析. 地震,24(2):103~108.
    王有学,W D Mooney,韩果花,等,2005. 台湾-阿尔泰地学断面阿尔金-龙门山剖面的地壳纵波速度结构. 地球物理学报,48(1):98~106.
    吴大铭,王培德,陈运泰,1989.用 SH 波和 P 波振幅比确定震源机制解.地震学报,11(3):275~218.
    吴开统,焦远碧,吕培苓等,1990. 地震序列概论,北京:北京大学版社.
    谢富仁,崔效锋,张景发等,2003. 中国现代构造应力场基本特征分区. 中国大陆地壳应力环境研究,地震出版社,39~47.
    谢富仁,崔效锋,赵建涛,2003. 中国大陆现代构造应力场与强震活动关系. 中国大陆地壳应力环境研究,地震出版社,69~76.
    许忠淮,刘玉芬,张郢珍,1979. 京、津、唐、张地区地震应力场的方向特征.地震学报,1(2):121~132.
    许忠淮,2001. 东亚地区现今构造应力图的编制. 地震学报,23(5):490~500.
    杨智娴,陈运泰,张宏志,1999.张北-尚义地震序列的重新定位.地震地磁观测与研究,20(6):6~9.
    杨智娴,陈运泰,张宏志,2002.张北-尚义地震序列的重新定位和发震构造.地震学报,24(4):366~377.
    杨智娴,陈运泰,郑月军,等,2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学,33(增刊):129~134.
    于海英,朱元清,郭育,2003. 使用 SV/P,SH/P 和 SV/SH 振幅比确定震源机制解.地震研究,26(4):355~360.
    曾秋生,1999. 青海地震综合研究,地震出版社,90~103.
    张诚, 1983. 地震分析基础, 北京:地震出版社.
    张诚,曹新玲,曲克信,等, 1990. 中国地震震源机制,北京:学术书刊出版社.
    郑治真, 1979. 波谱分析基础, 北京:地震出版社.
    张国民,马宏生,王辉等,2005. 中国大陆活动地块边界带与强震活动. 地球物理学报, 48 (3) :602~610
    中国地震局震害防御司,1999. 中国近代地震目录,北京:中国科学技术出版社.
    周仕勇,许忠淮,2000. 由震源谱推断1997年新疆伽师强震群破裂特性. 地震学报, 22(2):113~124.
    朱艾斓,徐锡伟,胡平等,2005. 首都圈地区小震重新定位及其在地震构造研究中的应用. 地质论评,51(3):268~274.
    Chadha R K and Mandal P,1997. Nucleation of moderate earthquakes in Koyamregion, Maharastra, India, The 29th General Assembly of IASEPI,S16(186).
    Chung,W.Y.and Kanamori,H.,1976. Source process and tectonic implications of the Spanish deep-focus earthquake of March 29,1954.Phys.Earth Planet.Interi.,13:85~96.
    Fitch,T.J.,1975.Compressional velocity in source regions of deep earthquakes:an application of the master event technique.Earth Planet.Sci.Lett.,26:156~166.
    Frechet,J.,1985.Sismogenese et Doublets Sismiques.These dEtat,Universite Scientifique et Modicale de Grenoble.206.
    Fukao,Y.,1972.Source process for a large earthquake and its tectonic implicalions—the western Brazil earthquake of 1963. Phys.Earth Planet.Interi.,5:6l~76.
    Got, J.-L., J. Frechet and F.W. Klein, 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea, J. Geophys.R.99, 15375~15386.
    Hanks T C, Wyss M. 1972. The use of body-wave spectra in the determination of seismic-source parameters[J]. Bull Seism Soc Amer,62: 2551~2589.
    Kagan Y.Y., 1997. Statistical aspects of Parkfield earthquake sequence and Parkfield prediction experiment. Tectonophysics, 270: 207-219.
    Kisslinger,C.,Bowman,J.R.and Koch,K.,1981.Procedures for computing focal mechanisms from local(SV/P)z data.Bull.Seism.Soc.Amer.,71(6):1719~1730.
    Larry Cochrance, 2004. WinQuke Version 2.9.8. http://www.seismicnet.com/wqdocs /wqbeta.html
    Linde A T, Sacks I S, 1997. Slow earthquakes, stress redistribution and fast earthquakes, The 29~(th) General Assembly of IASEPI,S16(184).
    Mikumo T,Miyatake T,Santoyo M A,1998. Dynamic rupture of asperities and stress change during a sequence of large interplate earthquakes in the Mexican subduction zone, B.S.S.A.,88(3):686~702.
    Paige, C.C. and M.A. Saunders,1982. LSQR: Sparse linear equations and least squares problems, ACM Transactions on Mathematical Software 8/2,195~209.
    Papazachos B C,1997. Rupture zones and seismic faults in the south Balkan area, The 29th General Assembly of IASEPI,S10(106).
    Ratchkovski N. A., S. Wiemer, and R. A. Hansen, 2004. Seismotectonics of the Central Denali Fault, Alaska, and the 2002 Denali Fault earthquake sequence. BSSA, 94(6B), S156-S174.
    Shi J,Kim W Y and Richards P G,1998. The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States,B.S.S.A.,88(2):531~542.
    Silver P,1983. Retrieval of source-extent parameters and the interpretation of corner frequency, B.S.S.A.,73(6):1499~1511.
    Snoke J A,Munsey J W,Teague A G,et al.1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthquake Notes,55(3):15.
    Snoke J A.1989, Earthquake mechanism. James D E.Encyclopedia of Geophysics. New York:Van Nostrand Reinhold Company,239~245.
    Snoke J A.Clyde and the Gopher,1990. A preliminary analysis of the 12 May 1990 Sakhalin Island event. Seism Res Letters,61:161.
    Snoke J A.2003, FOCMEC:FOCal MEChanism Determinations. http://www.geol.vt.edu/ outreach/vtso/focmec/
    Waldhauser,F.and E11sworth,W.L.,2000.A double difference earthquake location algorithm:Method and application to the Northern Hayward Fault,California. Bull.Seism.Soc.Amer., 90(6):1353~1368.
    Waldhauser,F., 2001. hypoDD-A Program to Compute Double-Difference Hypocenter Locations. U.S. Geological Survey Open-File Report 01-113.
    Wilmer Rivers and Robert Wagner,2005. geotool Version 4.0.0 Manual.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700