雅鲁藏布大峡谷地区地震活动性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅鲁藏布大峡谷位于喜马拉雅山脉东部,是印度板块向北与欧亚板块碰撞的喜马拉雅东构造结的核心部位,地壳结构复杂、构造运动强烈、地震活动频繁、自然灾害严重。然而,由于大峡谷地区环境恶劣、交通不便,致使其核心部分仍然是科学调查与研究的空白区,这里的地震监测能力低下,对地震活动性还没有进行过专门的分析和研究,是探索地震活动性与深浅构造关系的理想场所。
     作者综合有关地质调查、地震台阵建设、数据采集与数据处理、资料解释过程中发现的现象和遇到的问题,形成了论文的基本研究思路:通过历史破坏性地震资料、现代小震资料及大峡谷地区临时地震台阵监测获得的资料,进行地震定位和震源机制解等数据处理,结合深浅构造特征,对雅鲁藏布江大峡谷地区的地震活动规律和构造应力场特征进行分析,并初步探讨其与东喜马拉雅(南迦巴瓦)构造结的深浅构造关系。
     论文包括以下具体工作内容:地震台阵建设、运行和数据采集;地震数据处理(地壳速度模型建立、地震波形数据处理、地震定位、震源机制求解);地震活动性和构造应力场特征分析;地震活动与深浅构造的关系及孕震构造条件讨论。论文工作实现了从地质调查、台阵选点、台站建设、数据采集、数据处理、资料分析和结果讨论等环节技术初步的掌握。论文从地球物理应用角度出发,联系地质构造,较为系统地研究了地震活动性分析技术和研究方法,研究结果一定程度上阐明了雅鲁藏布大峡谷地区的地震活动性和构造应力场特征及其与深浅构造的关系,填补了该区相关研究的空白。
     论文研究理论紧密结合实际,得到了以下主要结果、结论和认识:
     ①雅鲁藏布大峡谷地区地震活动强烈,历史上记载有M_s≥4.7级破坏性地震157次,其中6.0级及6.0级以上地震21次,最大地震为1950年察隅-墨脱8.6级地震。
     ②临时地震台阵第一期(2007.8—2008.8)记录大峡谷地区203次地震,最小震级为0.6级,最大为4.6级,其中M_L≥1.8级地震资料基本是完整的。
     ③地震活动与构造运动强度和分区及断裂构造关系密切,表现出明显的时空不均匀性,主要分布于大拐弯前锋(5—6级)、墨脱断裂带和阿帕龙断裂带(8.6级)、班公-怒江断裂带和嘉黎断裂带(6—7级)和东喜马拉雅内部等。
     ④区内地震多属浅源地震,地震最大深度向北、向东变大,强震分布在深40—60km(从南向北加深、从南迦巴瓦构造结向东西两侧变浅)的界面之上。
     ⑤地震分布特征反映了地壳块体的构造作用,显示其受到印度板块向北俯冲、南迦巴瓦构造结向北东楔入的摔制。
     ⑥强烈地震主要发生在块体周边的深断裂带及其附近,7级及以上地震主要与北西向和北东向断裂构造带有关,尤其是与断裂构造带中规模较大、全新世强烈活动段密切相关。其中,8级地震主要发生存断裂构造带中走滑分量较大的北西西向断裂带上;而以倾滑为主、单条规模不大的断裂,最大震级为7级左右。
     ⑦强烈地震还经常发生在断裂几何构造复杂部位或多组方向断裂交汇区。
     ⑧7级以上大地震多发生在地壳厚度陡变带、布格重力异常梯级带上,6级以上强震大多发生在重力异常等值线同形扭曲、不同活动块体之间的不同重磁异常区的分区界线上。
     ⑨雅鲁藏布大峡谷地区的构造应力场是以北东-北北东向近水平挤压为主的复杂图像,易于发生走滑、逆冲和走滑逆冲型的断层活动。
Yarlung Tsangpo Grand Canyon is located in the eastern Himalayas,is the core parts of the eastern Himalayas structures,which is formed by Indian plate moved northward and collided with Eurasian plate,the crust structure is complex,the tectonic movements are intensive,the earthquakes are frequent,the natural disasters are serious.However,the Grand Canyon area as a result of environment and transport facilities,the core of it is scientific investigation and research gaps,where the capacity of the seismic monitoring is lower,seismic activity has not been specialized analyzed and researched,here is an ideal site to explore the seismic activity and the relationship between deep and shallow structures.
     The author integrated the phenomenon and problems which were discovered in the process of geological survey,seismic array construction,data acquisition,data processing and information explanation,formed a basic research idea of this paper: proceeding earthquake locations and focal mechanism solutions,by history devastating earthquakes information,modern small earthquakes information and the temporary seismic array data of the Grand Canyon region,combined with the characteristics of deep and shallow structures,to analyze the seismic active regularity and the characteristics of tectonic stress field of Yarlung Tsangpo Grand Canyon region,preliminary study the relationship between deep and shallow structures with Eastern Himalayas(Namjagbarwa)structure.
     The Paper includes the following specific contents:seismic array construction, operation and data acquisition;seismic data processing(crust velocity model building, seismic waveform data processing,earthquake locations,focal mechanism solutions); seismic activity and the characteristics of tectonic stress field analysis;the relationship between earthquake activities and the deep-shallow structures and discussing the conditions of the structure of earthquake preparation area.The paper realized the grasp of geological survey,sites choice,array building,data acquisition, data processing,data analysis and results discussion.The paper from the application point of view of geophysics,contacted with geological structure,studied the analytical techniques and research methods of seismic activity more systematic,the research results to some extent,explained the Yarlung Tsangpo Grand Canyon region seismic activity,the characteristics of tectonic stress field and the relationship between deep and shallow structures,filled the gaps in relevant research area.
     The papers research theory is close connected with reality,by the following major findings,conclusions and understanding of:
     ①The seismic activity of Yarlung Tsangpo Grand Canyon is strong,there are 157 destructive earthquakes in history which M_s≥4.7,including 21 earthquakes which M_s≥6.0,the largest earthquake is Zay-Moto earthquake which M_s=8.6 and occurred in 1950.
     ②Phase I of the temporary seismic array(2007.8-2008.8) recorded 203 earthquakes,the smallest magnitude is 0.6,the maximum magnitude is 4.6,the information of the earthquakes which M_L≥1.8 is complete.
     ③Seismic activity is closely related to tectonic movement strength and divisional and fracture structure,time and space show that heterogeneity,is mainly distributed in the forward of the Grand Canyon region(5-6 magnitude),the Moto fault zone and Appalachian Long fault zone(8.6 magnitude),Bangong-Nujiang fault zone and Jiali fault zone(6-7 magnitude) and internal of the eastern Himalayas.
     ④The earthquakes in the region are mostly shallow,maximum depth of the earthquake is in the north and the east,strong earthquakes are in the deep of 40-60km (deepened from south to north,turn shallow from Namjagbarwa structure to the east and west sides).
     ⑤The distribution characteristics of earthquakes reflect the crust structure, show Indian plate northward subduction,Namjagbarwa structure northward and eastward subduction.
     ⑥Strong earthquakes occur in the blocks surrounding where is the deep fault zone and its vicinity,and over seven magnitude earthquakes are related to the faults in north east direction and northwest direction,in particular closely related to the fault zones of the larger and strong activity of Holocene epoch.Of these,eight magnitude earthquakes occur in the faults in west northwest direction with strike-slip component larger;but mainly dip-slip,a single fracture no scale,the largest magnitude is about 7.
     ⑦Strong earthquakes often occur in parts of the complex geometry or a convergence of directions of fracture zones.
     ⑧Over seven magnitude earthquakes occur in the crust thickness changes with the steep,gradient zones of gravity anomaly belt,over seven magnitude earthquakes occur in the anomaly with the shape distortion between the different activities of the different pieces of gravity and magnetic anomalies district boundary.
     ⑨The tectonic stress field of Yarlung Tsangpo Grand Canyon region is ne-nne to nearly the level of extrusion,prone to strike-slip,thrust and strike-slip thrust faults.
引文
刁桂苓,于利民.1992.震源机制解的系统聚类分析——以海城地震序列为例.中国地震,8(3):86-92
    傅淑芳,刘宝诚,李文艺.1991.地震学教程.北京:地震出版社,1-594
    郭贵安,冯锐.1992.新丰江水库三维速度结构和震源参数的联合反演.地球物理学报,35(3):331-341
    国家地震局地球物理研究所.1978.近震分析.北京:地震出版社,218-219
    胡新亮,刁桂苓,马瑾,等.2004.利用数字地震记录的P、S振幅比资料测定小震震源机制解的可靠性分析.地震地质,26(2):347-354
    胡幸平,俞春泉,陶开,等.2008.利用P波初动资料求解汶川地震及其强余震震源机制解.地球物理学报,51(6):1711-1718
    黄玮琼.1994.中国大陆地震资料完整性研究之一(以华北地区为例).地震学报,16(3):122-130
    李鸿吉.1993.震源机制解表达中的问题和标准化.国际地震动态,(11):1-3
    李文军,王培德,陈棋福.2006.1982年卢龙Ms 6.1地震余震序列震源机制的矩张量反演.地震学报,28(2):111-118
    李旭,陈天长.1999.1989年四川省巴塘群震5个事件的震源机制.地震地磁观测与研究,20(2):34-40
    李志海,赵翠萍,王海涛.2004.双差地震定位法在北天山地区地震精确定位中的初步应用.内陆地震,18(2):146-153
    梁尚鸿,李幼铭,束沛镒,等.1984.利用区域地震台网P、S振幅比资料测定小震震源参数.地球物理学报,27(3):249-257
    刘福田.1984.震源位置和速度结构的联合反演——理论和方法.地球物理学报,27(2):167-175
    刘杰,郑斯华,康英,等.2004.利用P波和S波的初动和振幅比计算中小地震的震源机制解.地震,24(1):19-26
    刘启元.1986.美国大陆岩石圈的地震台阵研究计划.地震地质译丛,8(6):21-24
    刘启元,李志明,沈立人,等.1993.GDS-1000宽频带通用流动数字地震观测系统.地球物理学报,36(5):600-608
    刘启元.2000.高分辨率地震成像研究——21世纪地震学发展的一个重要趋势.国际地震动态,(4):9-11
    刘启元,吴建春.2003.论地震数值预报——关于我国地震预报研究发展战略的思考.地学前缘,10(特刊):217-224
    刘瑞丰,陈培善,任克新,等.1999.地震矩张量反演在地震观测报告中的应用.地震地磁观测与研究,20(4):1-6
    刘焰,钟大赉.1998.东喜马拉雅构造结地质构造框架.自然科学进展,8(4):506-509
    马宗晋,张家声.1998.青藏高原三维变形运动学的时段划分和新构造分区.地质学报,72 (3):211-227
    潘桂棠,王培生,徐耀荣,等.1990.青藏高原新生代构造演化.北京:地质出版社,1-19
    任金卫,汪一鹏,吴章明.1999.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率,见:中国地震局地质研究所编,活动断裂研究(7).北京:地震出版社,147-164
    任金卫,沈军,曹忠权,等.2000.西藏东南部嘉黎断裂新知.地震地质,22(4):344-350
    邵翠茹,尤惠川,曹忠权,等.2008.雅鲁藏布大峡谷地区构造和地震活动特征.震灾防御技术,3(4):398--412
    沈军,任金卫,汪一鹏,等.2001.嘉黎断裂带晚第四纪右旋走滑运动研究.见:中国地震局地质研究所编,活动断裂研究(8).北京:地震出版社,149-158
    沈军,汪一鹏,任金卫,等.2003.青藏高原东南部第四纪右旋剪切运动.新疆地质,(1):127-132
    滕吉文.2008.中国青藏高原地球物理研究的第一批重大成果其发展导向与核心科学问题的认识和思考.地球物理学进展,23(2):301-318
    田玥,陈晓非.2002.地震定位研究综述.地球物理学进展,17(1):147-155
    万永革,李鸿吉.1995.遗传算法在确定震源位置中的应用.地震地磁观测与研究,16(6):1-7
    汪一鹏.1998.有关塔波尼亚的青藏高原运动学模型的要点及评述.国际地震动态,(1):9-13
    汪一鹏.2001.青藏高原活动构造基本特征.见:马宗晋,汪一鹏,张燕平主编,青藏高原岩石圈现今变动与动力学.北京:地震出版社,251-262
    王椿镛,王溪莉,颜其中.1993.昆明地震台网多事件定位问题的初步研究.地震学报,15(2):136-145
    王椿镛,楼海,吕智勇,等.2008.青藏高原东部地壳上地幔S波速度结构--下地壳流的深部环境.中国科学(D辑),38(1):22-32
    吴大铭,王培德,陈运泰.1989.用SH波和P波振幅比确定震源机制解.地震学报,11(3):275-281
    西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,613-626
    西藏自治区科学技术委员会.1988.西藏察隅当雄大地震考察.拉萨:西藏人民出版社,1-166
    许力生,蒋长胜,陈运泰,等.2007.2004年首都圈地区中小地震的矩张量反演.地震学报,29(3):229-239
    许志琴,蔡志慧,张泽明,等.2008.喜马拉雅东构造结--南迦巴瓦构造及组构运动学.岩石学报,24(7):1463-1476
    许忠淮,阎明,赵仲和.1983.由多个小地震推断的华北地区构造应力场的方向.地震学报,5(3):268--279
    杨文东,金星,李山有,等.2005.地震定位研究及应用综述.地震工程与工程振动,25(1):14--20
    杨智娴,陈运泰,张宏志.2002.张北-尚义地震序列的重新定位和发震构造.地震学报,24(4):366--377
    杨智娴,陈运泰,郑月军,等.2003.双差地震定位法在我国中西部地区地震精确定位中的 应用.中国科学(D辑),3(增刊):129-134
    杨智娴,陈运泰.2004.用双差地震定位法再次精确测定1998年张北-尚义地震序列的震源参数.地震学报,26(2):115-120
    姚振兴.1979.层状介质、非轴对称震源情况下的反射法.地球物理学报,22(2):181-193
    尹安.2001.喜马拉雅-青藏高原造山带地质演化--显生宙亚洲大陆生长.地球学报,22(3):193-230
    于海英.1999.地震台阵的应用及最新进展.地震地磁观测与研究,20(6):68-73
    张泽明,王金丽,赵国春,等.2008.喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化.岩石学报,24(7):1477-1487
    赵燕来,孙若昧,梅世蓉.1993.渤海地区地震参数的修定.中国地震,9(2):129-137
    赵仲和.1983.北京地区地震参数与速度结构的联合测定.地球物理学报,26(2):131-139
    赵珠,丁志峰,易桂喜,等.1994.西藏地震定位--一种使用单纯形优化的非线性方法.地震学报,16(2):212-219
    郑来林,金振民,潘桂堂,等.2004.东喜马拉雅南迦巴瓦地区区域地质特征及构造演化.地质学报,78(6):744-751
    钟大赉,等.1998.滇川西部古特提斯造山带.北京:科学出版社,1-23
    周翠英,华爱军,蒋海昆,等.2003.以格点尝试法求取的山东地区现代中小地震震源机制解.东北地震研究,19(1):2-11
    周民都,张元生,张树勋,等.1999.遗传算法在地震定位中的应用.西北地震学报,21(2):167-171
    周荣茂,陈运泰,吴忠良.1999.由矩张量反演得到的海南东方震群的震源机制.地震学报,21(4):337-343
    周仕勇,许忠淮,韩京,等.1999.主地震定位方法分析以及1997年新疆伽师震群高精度定位.地震学报,21(3):258--265
    朱艾斓,徐锡伟,胡平,等.2005a.首都圈地区小震重新定位及其在地震构造研究中的应用.地质评论,51(3):268-274
    朱艾斓,徐锡伟,周永胜,等.2005b.川西地区小震重新定位及其活动构造意义.地球物理学报,48(3):629-636
    朱介寿,曹家敏,蔡学林,等.2003.中国及邻近陆域海域地球内部三维结构及动力学研究.地球科学进展,18(4):10-16
    朱元清,范长青,浦小峰.1995.南黄海地震序列时空参数的精细测定和分析.中国地震,11(1):54-61
    Crosson R S.1976.Crustal structure modeling of earthquake data,Part 1,Simultaneous least squares estimation of hypocenter and velocity parameters.J.Geophys.Res,81(17):3036-3046
    Douglas A.1976.Joint epicenter determination.Nature,215(5096):45-48
    Ekstrom G,Humphreys G,Levander A.1998.USA ray-Probing the continent.IRIS Newsletter, 16(2): 2-6
    Geiger L. 1912. Probability method for the determination of earthquake epicenters from the arrival time only. Bull.St.Louis Univ., (8): 60-71
    Kennett B L N, Engdahl E R. 1991. Travel-times for global earthquake location and phase identification. Geophys J Int, 122: 429-465
    Pavlis G, Booker J R. 1983. Progressive multiple event location (PMLE). Bull.Seism.Soc.Am. 73(6): 1753-1777
    Pujol J. 1988. Comments on the joint determination of hypocenter and station corrections.Bull.Seism.Soc.Am, 78 (3): 1179-1189
    Pujol J. 2000. Joint event location ——The JHD technique and applications to data from local seismic networks. In: Thurber C, N Rabinowitz, Advances in seismic event location. Kluwer Academic Publishers, 163-204
    Spence W. 1980. Relative epicenter determination using P-wave arrival-time differences.Bull.Seism.Soc.Am, 70(1): 171-183
    Snoke J A, Munsey J W, Teague A G, et al. 1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earthquake Notes, 55(3): 15
    Snoke J A. 1989. Earthquake mechanism. In: James DE, Encyclopedia of Geophysics. New York: Van Nostrand Reinhold Company, 239-245
    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm: method and application to the Northern Hayward Fault, California. Bull.Seism.Soc.Am, 90(6):1353-1368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700