波浪与抛石防波堤相互作用及其砂质海床动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波浪作用下海床地基的动力稳定性是近海岸及离岸工程建筑物在设计和建造过程中必须充分考虑的重要问题之一。海洋上传播的波浪在海水与海床的交界面处施加了循环波压力荷载。在这种循环的波压力作用之下,会引起海床内孔隙水压力与有效应力变化,致使海床出现土体位移和变形,在一定条件下可能发生土体剪切破坏和砂土液化现象;而波浪与防波堤相互作用及其海床和抛石介质的动力响应问题求解也是海洋工程中普遍存在的另一技术难题,对基岩特性的忽视和不适当的工程处置可能导致海床失稳,乃至海床上建筑物的破坏。因此研究波浪与防波堤相互作用及其海床动力响应和基岩特性影响问题具有重要理论及工程意义。
     文中针对波浪与带有抛石介质防波堤的相互作用及其相应的砂质海床和没有建筑物的纯砂质海床的动弹性响应问题,通过国内外广泛调研、理论分析、模型试验和数值模拟计算对其进行了深入研究,获取的研究成果主要有以下几方面:
     (1)通过室内物理模型试验,研究了线性波或浅水椭圆余弦波作用下不同海床介质、波浪类型、波高、周期和水深等因素影响下抛石潜堤、海床和带抛石基床防波堤海床的动力响应问题,获得了孔隙水压力等物理量分布及其响应变化规律;
     (2)基于对波浪域和孔隙流体域的理论分析,建立波浪域的紊流Navier-Stokes方程和抛石多孔介质孔隙流体域的Forchheimer方程,采用VOF方法对自由表面进行跟踪,引入k-e模型来封闭雷诺方程,籍之构建了整个波浪场的控制方程,来描述非线性较强的波浪行为及大颗粒多孔介质内部的孔隙流;
     (3)基于描述波浪-抛石介质相互耦合作用的VOFFDM计算模型程序,计算得到了不同入射波要素、水深、抛石介质孔隙率和堤断面尺寸等因素影响下海床的动力响应规律,揭示了堤前堤后波高、堤内孔隙水压力和孔隙流场随波浪性质、波要素、水深以及抛石介质孔隙率和堤断面尺寸等因素影响下的变化特征,为进一步分析防波堤下卧海床内沿程动力响应以及抛石单体和防波堤整体的稳定性提供了重要依据。物模试验结果验证了VOFFDM程序的有效性与可靠性。
     (4)针对天然饱和海床固有的各向异性特征,将天然海床假定为横观各向同性的饱和多孔介质,基于横观各向同性饱和多孔介质Biot动力渗透-固结理论,文中首次建立了横观各向同性饱和海床的动力方程,编制了动力固结有限元程序BCFEM,模型试验结果验证了程序的有效性与可靠性。
     (5)应用动力固结有限元程序BCFEM,对线性波和浅水椭圆余弦波作用下的均质各向同性饱和海床、非均质各向异性饱和海床的动力响应问题进行了深入研究,获取了不同波浪要素组合下及其有无防波堤海床内孔隙水压力等参数的变化规律,揭示了海床对波浪的动力响应是由波浪要素和海床介质特性共同决定的,其中波高和波周期是其主要的控制参数,海床固有的非均质性和各向异性特征对其孔隙水压力和有效应力等分布具有较显著影响。
It is of importance to analyze the dynamic stability of seabed or structure foundation under wave action in the design and construction of offshore and coastal structures. When wave propagates over ocean surface, a sequence of wave pressure is induced on the seafloor, which causes the fluctuations of pore water pressure or effective stress, displacement of soil particles, and deformation of soil skeleton within seabed simultaneously. Because of unsuitable treatment in engineering, part of seabed may even lead to soil shear fracture or sandy liquefaction under certain conditions, which is responsible to the damage or destruction of offshore structures. In spite of the technologic difficulties widely existing in offshore engineering, it has important significance in theory and application to study the interaction between wave and breakwater, the corresponding dynamic pore water pressure etc. responses within sandy seabed and riprap porous media of breakwater.
     This paper researches those questions, the interaction between wave and breakwater with riprap porous media, the corresponding elastic dynamic response within its sandy seabed or riprap porous media and the natural sandy seabed without breakwater as well as following.
     (1) A series of lab tests in wave tank were performed for the models of breakwater with riprap media, sandy seabed with or without breakwater, to study the interaction between wave and breakwater and the dynamic responses within seabed or riprap media. By means of different lab group situation, such as different seabed media,water depth, approaching wave height or wave period, under the action of linear wave or shallow water cnoidal wave,the laws of the pore water pressure within sandy seabed or riprap media and the wave height before or after breakwater were obtained and analyzed as well.
     (2) Based on the theoretical analysis of wave field and porous fluid field within riprap media, the optimum numerical model was built, which applied turbulent Navier—Stokes Equation and introduced k-εmodel to close Renault Equation, can describe more objectively the nonlinear effect caused by fluid—solid boundary action and the turbulent fluctuation effect by viscous fluid action in wave field domain. As for porous fluid field, turbulent Forchheimer Equation was used to reveal the relationship between Non—ancy porous flow velocity and pressure gradient. On the basis of the analysis model above, this paper developed a large-scale practical finite difference method program so called VOFFDM, in which, VOF method was employed to trace water free surface and the problem of the fluid-solid coupling on the interface between wave field and porous media was solved by making sure that the velocities or pressures of the two field flows on the interface keep to be equal all the time, so that the program VOFFDM can calculate the wave field and porous media simultaneously with any type of breakwater and complicated boundary.
     (3) The comparison between VOFFDM numerical results and test results showed good agreement and demonstrated that the numerical model can successfully simulated the interaction between wave and breakwater with riprap porous media. With different wave parameter, water depth, riprap porosity, the dimension of breakwater section, and under the action of linear wave or shallow water cnoidal wave, the details of wave height before or after breakwater and pore water pressure or flow velocity within riprap media were discussed. The analysis results above were the important basis on further studying not only the responses of the seabed below breakwater but also the stability of riprap single or the structure itself.
     (4) Based on the inherent anisotropy characteristics of natural saturation seabed, the natural seabed was assumed to be transversely isotropic saturated porous media. According to Biot dynamic penetration- consolidation theory of transversely isotropic saturated porous media, this paper built the dynamic equation of transversely isotropic saturated seabed for the first time and developed the dynamic consolidation finite element program so called BCFEM. Furthermore, its correctness was verified by model tests.
     (5) By applying the dynamic consolidation finite element program BCFEM, an amount of system parameter analysis on the dynamic responses of homogeneous and isotropic saturated seabed and the responses of heterogeneous anisotropic saturated seabed was carried out,and the laws of pore water pressure etc. within seabed under the action of linear wave or shallow water cnoidal wave were obtained with different conditions such as the sandy seabed with or without breakwater, different wave parameter group, water depth etc.. From the results above, it was concluded that the wave dynamic responses are decided by both wave parameters and the characteristics of seabed media, wave parameters such as wave height or wave period are mainly controlling elements, seabed inherent heterogeneity and anisotropy have significant effect on the distribution of pore water pressure or effective stress within it.
引文
[1]邱大洪.波浪理论及其在工程上的应用[M].北京,高等教育出版社,1985
    [2]别社安.赵子丹.刘同利等.波浪作用砂床中的孔隙水压力响应模型试验研究[J].海洋通报,1997,16(5):56-58
    [3]林缅.海床对水表面波动态响应的研究[D].北京:中国科学院博士学位论文.2000,5-15
    [4]周援衡,程智杰.非线性波与可渗潜堤的相互作用数值模拟[J].水运工程,2005,(3):46-48
    [5]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社,2002
    [6]Hirt C W, Nichols B D. Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries[J]. Journal of Computational Physics,1981,39(1):201-225.
    [7]马福喜,王金瑞.三维水流数值模拟[J].水利学报,1996(8):39-44.
    [8]王金瑞.波浪运动的数值模拟[J].华北水利水电学院学报,1996,17(1):13-20.
    [9]王利生.波浪与可渗基床防波堤相互作用的数值模拟与实验验证[D].大连:大连理工大学博士学位论文,1996.
    [10]Qiu D., Wang L. Numerical and experimental research for wave damping over a submerged porous breakwater[J]. ISOPE'96,572-576.
    [11]马福喜.一个新紊流模式的检验及其应用[J].水科学进展,1997,8(2).142-147
    [12]万德成,缪国平.数值模拟波浪翻越直立方柱.水动力学研究与进展,1998.13(3): 363-370
    [13]滕爱国,沈永明,郑永红等.波浪变形数值模拟[J].大连理工大学学报,2001,41(3).359-362.
    [14]王永学.无反射造波数值波浪水槽[J].水动力学研究与进展,1994,9(2):205-214.
    [15]邹志利,邱大洪,王永学.VOF方法模拟波浪槽中二维非线性波[J]..水动力学研究与进展,1996,11(1):93-103.
    [16]齐鹏,王永学.三维数值波浪水池技术与应用[J].大连理工大学学报,2003,43(6):825-830
    [17]洪毓康.土质学与土力学[M].北京:人民交通出版社,2000,16-21
    [18]吴宋仁,陈永宽.港口及航道工程模型试验[M].北京:人民交通出版社,1993,126-136
    [19]陈士荫,顾家龙,吴宋仁.海岸动力学[M].北京:人民交通出版社,1995,11-36
    [20]别社安.波浪作用下海床中的孔隙水应力响应及其对建筑物稳定性的影响[D].天津:天津大学博士学位论文,1997,49-69
    [21]Jeng D S, Cha D H, Lin Y S, et al. Analysis on pore pressure in an anisotropic seabed in the vicinity of a caisson[J].Applied Ocean Research,2000,22(3): 321-328
    [22]Tzang, Shiaw-Yih. Water wave-induced soil fluidization in a cohesionless fine-grained seabed [dissertation]. Berkeley:Univ. of California,1992,28-39
    [23]Takahiro, Kumagai. Analytical model of the response of a composite-type caisson breakwater and seabed to waves:[dissertation]. Berkeley:Univ. of California,1998,44-52
    [24]Toshikazu Kitano, Hajime Mase. Wave-induced porewater pressure in a seabed with inhomogeneous permeability[J]. Ocean Engineering,2001,28:282-286
    [25]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998,112-146
    [26]杨少丽,沈渭铨,杨作升.波浪作用下海底粉砂液化的机理分析[J].岩土工程学报,1995,17(4):30-33
    [27]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002,50-68
    [28]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000,120-128
    [29]徐芝纶.弹性力学[M].北京:人民教育出版社,1979,253-260
    [30]张金凤.波浪作用下建筑物地基基础动力响应的研究[D].:天津:.天津大学硕士学位论文,2003,11-20
    [31]霍素霞.黄河三角洲沉积物对波浪响应试验研究和数值模拟[D].青岛:中国海洋大学硕士学位论文,2003,62-74
    [32]王栋,栾茂田,郭莹.波浪作用弹性海床的动力反应及其影响因素分析[J].岩石力学与工程学报,2001,20(1):1132-1134
    [33]王栋.波浪作用下海床动力学研究进展[R].见:第五届全国土动力学学术会议论文集.北京:万国学术出版社,1998,382-387
    [34]栾茂田,王栋.波浪作用海床动力反应的数值分析[J].海洋工程,2001,19(4): 41-43
    [35]Dong-Soo Hur, Norimi Mizutani. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater[J]. Coastal Engineering,2003,47:332-335
    [36]A. Vijaya kumar, S. Neelamani, S. Narasimha Rao. Wave pressures and uplift forces on and scour around submarine pipeline in clayey soil[J]. Ocean Engineering,2003,30:282-288
    [37]I. J. Losada et al.3-D non-breaking regular wave interaction with submerged breakwaters[J]. Coastal Engineering.1996,28,229-248
    [38]Patrick J. Lynett, et al. Solitary wave interaction with porous breakwaters[J].Journal of waterway, port, coastal, and ocean engineering. December 2000,314-322.
    [39]Sheng-Wen Twu et al. Wave damping characteristics of deeply submerged breakwaters[J].Journal of waterway, port, coastal, and ocean engineering. April 2001,97-105.
    [40]I. J. Losada et al. Experimental study of wave-induced flow in a porous structure. [J]. Coast. Engrg.,1995,26:77-98.
    [41]孙昭晨,邱大洪.作用于可渗可压缩海床上的墩柱底部的波浪力[J].海洋学报,1989,11(3)
    [42]邹志利,邱大洪等.可渗可压缩海床上墩柱底面波浪渗流力的计算[J].海洋工程,1993,11(4)
    [43]邱大洪,陈健.抛石基床上圆柱墩底部的波浪浮托力[J].海洋学报,1994,16(1):114-123.
    [44]邱大洪,臧军.群墩上的波浪浮托力[J].港口工程,1995,5:8-12.
    [45]邱大洪,臧军.作用于可变形地基上墩柱底部的波浪渗流力[J].大连理工大学学报,1995,35(5):709-713
    [46]邱大洪,杨钢.不规则波在抛石基床中的渗流对墩柱的作用[J].海洋学报,1997,19(3):119-132.
    [47]Norimi Mizutani et al. Nonlinear regular wave, submerged breakwater and seabed dynamic interaction[J]. Coastal Engineering,1998,(33):177-202.
    [48]M. Mostafa et al. Nonlinear wave, composite breakwater, and seabed dynamic interaction[J].Journal of waterway, port, coastal, and ocean engineering. April 199988-97.
    [49]Philip L.-F. Liu, et al. Numerical modeling of wave interaction with porous structures[J]. Journal of waterway, port, coastal, and ocean engineering. December 1999 322-330.
    [50]Altasghar golshant et al. Three-dimensional analysis of nonlinear interaction between water waves and vertical permeable breakwater. Coastal Engineering, 2003,45(1):1-28.
    [51]章根德,顾小芸.有限厚度砂床对波浪载荷的响应[J].力学学报,1993,25(1): 62-68
    [52]吴坚如,周援衡.非线性波作用下直立式防波堤的稳定性分析[J].水运工程,2002,342(7):46-48
    [53]赵贤,姜伟,林彦等.波浪作用下弹性海洋地基的动力反应[J].山东建筑工程学院学报,2002,17(3):13-16
    [54]T.C.Lee, C.D. Tsai, D.S. Jeng. Ocean waves propagating over porous seabed of finite thickness[J]. Ocean Engineering,2002,29:1578-1582
    [55]Ishihara K. Towhata I. Sand response to cyclic rotation of principal stress rotation in soils[J]. Soil and Foundations,1983,23(4):11-26
    [56]Zen. K. Yamazaki H. Mechanics of wave-induced liquefaction and densification in seabed[J].Soil and Foundations,1990,30(4):90-104
    [57]徐杨青,郭见杨.海洋土特殊工程性质的成因分析[J].岩土力学,1989,10(4)67-74
    [58]Luan M-T, Wang D. Dynamic response of seabed under wave-induced loading[J]. In:Proceedings of 4th international conference on record Advance in Soil Dynamics and Geotechnical earthquake Engineering. San Diego,2001
    [59]Ishihara K. Yamazaki A. Wave-induced liquefaction in seabed deposits of sand. Seabed Mechanics[M]. Edited by B Benness. Newcastle:Graham Trotman publication.1983.139-148
    [60]Tsui Y. Helfrich S C. Wave-induced pore pressure in submerge sand layer[J]. Journal of geotechnical and Engineering, ASCE,1983,103(7):603-618
    [61]Demars K.R. Measurement of wave-induced pressure and stresses in a sand bed[J]. Marine Geotechnology.1985.6(1) 29-59
    [62]Zen. K. Yamazaki H. Oscillatory pore pressure and liquefaction in seabed induced by ocean waves[J].Soil and Foundations 1990,30(4).147-161
    [63]Miutra S. Kondo H. Tanaka N etal. Sand flow failure induced by ocean wave and oscillation of coastal structure[J]. In:Earthquake Geotechnical Engineering. Edited by Ishihara K.1995,743-748
    [64]陈仲颐等.波浪作用下海底土层的稳定性模型试验[M].第六届全国土力学及基础工程会议论文集,上海:同济大学出版社,1991
    [65]Sekiguchi H, Kifa K, Okamoto O. Response of poro-elastoplastic beds to standing waves[J]. Soil and Foundations 1995,35(3):31-42
    [66]Sassa S. Sekiguchi H. Wave induced liquefaction of beds of sand in centrifuge. Geotechnique,1999,49(5):621-638
    [67]Yamamoto T, Koming HL, Sellmeiher E.V. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics 1978,87(1),193-206
    [68]Mei C C. Foda M A. Wave-induced response in a fluid-filled poro-elastic solid with a free-surface-a boundary layer theory[J]. Geophysical Journal Royal Australia Society.1981,66:597-631
    [69]李向维.波浪作用下砂质海床的瞬态应力[J].力学与实践,1989,1(16):17-20
    [70]Tsail C P. Wave-induced liquefaction potential in a porous seabed in front of breakwater[J].Ocean Engineering,1995,22(1):1-18
    [71]Seymceur BR. Jeng DS. Hsu JRC. Transient soil response in a porous slaked with variable permeability[J]. Ocean Engineering,2005,32(10):34-49
    [72]Jeng DS. Hsu JRC. Wave-induced response in a nearly saturated sea-bed of finite thickness[J].. Geotechnigue 1996,46(3):427-440
    [73]Jeng DS. Soil response in cross-ant isotropic slaked due to standing waves[J]. Journal of geotechnical and Geo environmental Engineering, ASCE,1997, 123(1):9-19
    [74]Jeng DS. Seymour BR. Response in slaked of finite depth with variable permeability[J]. Journal of geotechnical and Geo environmental Engineering, ASCE,1997,123(10):902-911
    [75]Thomas SDA. Finite element modal for the analysis of wave induced stresses displacements, and pore pressures in an unsaturated slaked Ⅱ:Model verification[J]. Comp toss and Geotechnics 1995,17:107-132
    [76]Gatmiri B.A Simplified finite element analysis of wave-induced effective stresses and pore pressures in permeable sea-bed[J].Geotechnigue,1990,40(1): 15-30
    [77]Jeng DS. Lin YS. Finite element modeling for water waves-soil interaction. Soil Dynamics and Earthquake Engineering[J].1996,15(5),283-300
    [78]Lin YS. Jeng DS. The effects of variable permeability on the wave-induced sea-bed response. Ocean Engineering[J].1997,24 (7):623-643
    [79]Jeng DS. Lin YS. Non-linear wave-induced response of porous sea-bed:a finite element analysis[J].International Journal for Numerical and Analytical Methods in Geotechnics 1997,21(1):15-42
    [80]Yamamoto T. Numerical integration method for sea-bed response to water wave[J]. Soil Dynamics and Earthquake Engineering.1983,2(2),92-100
    [81]Huang L H, Song C H. Dynamics response of prelatic bed to nonlinear water wave[J]. Journal of Engineering mechanics, ASCE,1996,119(8):1103-1020
    [82]Chen T W, Huang L H, Song C H. Dynamics response of prelatic bed to nonlinear water wave[J].Journal of Engineering mechanics, ASCE,1996, 123(10):1041-1049
    [83]Seed H B and ldriss L M. On the importance of dissipation affect Mechanics-Transient and Cyclic Load[M]. chapter 4.Edited by G N Pande, O L Zinkiewiez John Wiley and Sons Lfd.982
    [84]盛虞,卢盛松,姜林.土工建筑物的动力固结欧和振动方程[J].水利学报,1989,(12):31-42
    [85]Seed H B Rahman M.S. Wave-induced pore pressure in relation to ocean floor stability of cohesion Hess soil [J].Marine Geotechnology,1978,3(2),123-150
    [86]Rahman M.S. Seed H B. Booker J.R. Pore pressure development under offshore gravity structures[J]. Journal of Geotechnical Engineering, ASCE,1978, 103(12):1419-1436
    [87]Rahman M.S. Wave-induced instability of slaked:Mechanism and conditions[J]. Marine Geotechnology,1991,10:277-299
    [88]Finn W D. Siddarthan R, Marine G R. Response of seafloor to ocean wave[J]. Journal of Geotechnology, ASCE,1982.109(14):556-572
    [89]Hataraja M S,Gill H S. Ocean wave-induce liquefaction analysis[J]. Journal of Geotechnology Engineering, ASCE,1982.109(4):573-590
    [90]马时东.平台地记载波浪荷载下的循环位移和固结沉降计算[J].岩土力学,1991,12(4):1-10
    [91]陈仲颐,李向维.波浪引起的饱和土体残余孔隙水压力计算[M].第五届全国土力学即基础工程会议论文选集.北京:中国建筑工业出版社,1990,675-681
    [92]盛虞,姜林,卢盛松.波浪作用下重力式平台地基中孔隙水压力的实验研究与有限元分析[J].海洋工程,1989,7(4):51-58
    [93]Zienkiewicz O C, Shiomi T. Dynamic behavior of saturated porous media; the generalized.Biots formulation and its numerical solution.International[J]. Journal for Numerical and Analytical Methods in Geomechanics 1984.8:71-96
    [94]Simon B R.Zien kiewicz O C, Paul D K. An analytical solution for the transient analytical[J]. Methods in Geomechanics,1984,8:381-389
    [95]徐干成,谢义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究[J].岩土工程学报,1995,17(2):1-12
    [96]Arulanandan K. Li X S, Sivathasan K. Numerical simulation of liquefaction-induced deformation[J]. Journal of geotechnical and Geo environmental Engineering, ASCE,2000,126(7):657-666
    [97]Smith, A.W. and Gordon,A.D.,Large breakwaters toe failures, port[J]. Coastal and Ocean Engineering,ASCE,1983,109(2):253-255
    [98]Jeng D S.Mechanism of the Wave-induced seabed instability in the vicinity of a breakwater:Areview[J].Ocean Engineering,2001,28:537-570.
    [99]Silvesyer,R SI HSU,J.R., Since Revisited, Journal of waterway, port, coastal and Ocean Engineering,1987,ASCE,115(3):327-334
    [100]Zen,K etal.,A ease of the wave-induced liquefaction of sand layers under the damaged breakwafor[J]. proc.3rd Canada Conf. Marine Georech, EngINEER ING,505-520,1986.
    [101]Moshagen,H,etal., Wave induced pressures in slaked, Journal of Waterways Harbor[J].Coastal Engineering Division,SACE,1975101:49-58
    [102]Okusa,S.,Wave-indced stresses in Usaturated Subm rine Sediments[J].Georechnique,2004,35:517-532
    [103]周援衡,卢海斌.波浪作用下弹性海床孔隙水压力响应的数值模拟[J].水道港口,2005,6
    [104]Hsu, J.R.C.etal., Wave Induced soil Response in an unsaturated Anisotropic seaked of finite thickness[J].International Journal of Numerical and Analytical Methods in Greomechanics,1994,18:78-97
    [105]周援衡.非线性波作用下直立式防波堤的稳定性分析[J].水运工程.2002,7
    [106]Madsen,O.S. Wave-induced pore pressure and effecfire stresses in a porous ked,Georechnique,1978,28(4):377-393.
    [107]Biot M.A. General theory of three-dimensional consolidation Japlphys,1941,12:155-164.
    [108]栾茂田,王栋.考虑土骨架加速度效应的海床动力反应及其影响因素分析[J].海洋学报,2002,24(6):112-119
    [109]林缅,李家春.波浪、海洋上参数对海床稳定性的影响[J].应用数学和力学,2001,22(8):806-816
    [110]别社安.波浪作用下海床中的孔隙水压力响应及其对建筑物稳定性的影响[D].天津:天津大学博士学位论文
    [111]Jeng D. S. cha D.H, Lin Y.S., etal. Analysis on pore pressure in an anisotropic seaked in the vicinity of a caisson, Applied Ocean Research, 2000,23(3):321-328
    [112]王栋.波浪作用下海床动力响应与液化的数值分析[D].大连:大连理工大学博士论文,2002,34-40
    [113]吴梦喜,楼志刚.波浪作用下海床的有效应力分析[J].海洋学报,2002,20(1):65-67
    [114]吴梦喜,楼志刚.波浪作用下海床的稳定性与液化分析[J].工程力学,2002,5(1):97-102
    [115]吴采仁,陈永存.港口及航道工程模型试验[M].北京:人民交通出版社1995,126-136
    [116]邱大洪,孙昭晨.波浪渗流力学[M].北京:国防工业出版社,2006-5-25
    [117]金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1983
    [118]章根德.土的本构模型及其工程应用[M].北京:科学出版社,1995
    [119]Patrick J. Lynett etal Solifary wave interaction with poroy bteakwaters Jornal of water wave port [J].coastal and ocean engineering., December 2000.314-322
    [120]I.J Losada etal experimental study of wave-indced flow in a porous structure[J]. coastal engry.,1995,26,77-78
    [121]Philip.L.F. Liu, etal. Numerical modeling of wave interaction with porous structures[J]. Journal of water port coastal, and ocean engineering December 1999 216-222
    [122]Alt asghar golshant etal. Three-dimensional analysis of nonlinear interaction between water waves and vertical permeable breakwater[J].Coastal engineering, 2003,45(1):1-28
    [123]王永学,任冰,波浪冲击过程的湍流数值模拟[J].水动力学研究与发展,1999,A辑,14(4):409-417
    [124]王永学.VOF方法数值直墙式建筑物前的波浪破碎过程[J].自然科学进展--国家重点实验室通讯,1993,3:553-559.
    [125]Sarpkaya T,Isaacson M.Mechanics of Wave Forces on Offshore Structures[M]. New York:Van Nostrand Publishing Compang,1981.131~137.
    [126]Romate J E. Absorbing boundary condition free surface waves[J] Journal of computational physics,1992,99:135~145
    [127]成德成.堤坝内流场和外流场计算[J].上海大学学报(自然科学版),1997(3):289-289
    [128]王建军等.自由液面流体大晃动有限元方法[J].水动力学研究与进展,A辑,2001,16(3):390-395.
    [129]黄壮.三维水流数值模拟研究进展[J].水利水运工程学报.200(3):66-73
    [130]万德成,戴世强.孤立波通过潜水孤立物体的数值模拟研究[J].上海力学,1998,19(4):95-100
    [131]万德成,戴世强.孤立波通过潜水孤立物体的数值模拟研究.力学季刊,2000,21(4):401-408
    [132]Clukey E C. Vermersch J A, Koch S P. Natural densification by wave action of sand surrounding a buried offshore pipeline[J]. Proceedings of the 21st Annual of shore Technology Conference. Houston, Texas,1989:291-300
    [133]Lundgren H, Lindhart Jacobsen H C, Romhild C J. Stability of breakwater on poor foundation. Proceedings of the Fourth International Conference on Soil Mechanics and Foundation Engineering[J]. Rotterdam, Boston.1989:451-454
    [134]王栋,栾茂田,郭莹.波浪作用下海床动力反应有限元数值模拟与液化分析[J].大连理工大学学报,2001,41(2):216-222.
    [135]Biot M A. The theory of propagation of elastic waver in fluid saturated porous solid[J]. J Acoust Soc Am,1956,28(2):168-191.
    [136]Biot M A. General theory of acoustic propagation in porous dissipative medial [J]. J Acoust Soc Am,1962,34(9):1254-1264.
    [137]Biot M A. Mechanics of deformation and acoustic propagation in porous medial [J]. JAppl phys,1962,33(4):1482-1498.
    [138]林缅.波浪作用下海洋底床动态响应的研究[J].地球物理学进展,1998,14(3):108-114.
    [139]Jeng D S, Seymour B R. Response in seabed of finite depth with variable permeability[J]. Journal of Geotechnical and Geoenvironment Engineering, 1997,123(10):902-911.
    [140]Lin Y S, Jeng D S. The effect of variable permeability on the wave-induced seabed response[J]. Ocean Engineering,1997,24(7):623-643.
    [141]张金凤,张庆河,秦崇仁.波浪作用下非均质各向异性海床响应的数值模拟[J].天津大学学报,2006,39(2):159-164
    [142]Arthur, J R F, etc. Inherent anisotropy in a sand[J]. Geotechnique,1972,22 (1): 115~128.
    [143]Arthur, J R F, etc. Induced anisotropy in a sand[J]. Geotechnique,1977,27 (1): 1~30.
    [144]殷宗泽,徐志伟.土体的各向异性及近似模拟[J].岩土工程学报,2002,24(5):547~551.
    [145]张坤勇,殷宗泽,徐志伟.土体各向异性的再认识[J].岩土工程技术,2004,18(1):1-4
    [146]张坤勇,殷宗泽,梅国雄.土体各向异性研究进展[J].岩土力学,2004,25(9):1503~1509.
    [147]Lekhnitskii, S G. Theory of elasticity of an anisotropic elastic body[J]. Holden-Day Inc., San Franicisco:1963
    [148]邱大洪,周援衡.浅水区孤立墩上非线性波浪力[J].水利学报,1989(4),26-31
    [149]邱大洪,周援衡.浅水区孤立墩上波浪力试验研究[J].水利学报,1991(1),19-22
    [150]Qiu D., Zhou Yuan-Heng(周援衡)etc. The nonlinear wave force on pier group in shallow water[J].OMAE91, Norway:1991,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700