波浪作用下海床动力响应与液化的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波浪作用下海床或海洋地基的动力稳定性是近海和离岸工程建筑物在设计和建造过程中必须考虑的重要问题之一。海洋表面传播的波浪在海水-海床的交界面处施加了循环波压力,在这种循环波压力作用下,海床内土骨架的变形与孔隙流体的渗流运动相互耦合。与常规陆上荷载不同,波压力不仅是外加的循环表面力,而且是海床表面的超静孔隙水压力边界条件。在长时间的风暴作用过程中,土中超静孔压不断累积,同时也会由于部分排水固结发生消散与扩散,超静孔压的累积发展可能导致砂质海床发生液化。本文着重研究砂质海床的自由场动力响应。
     在过去三十多年的研究中,通常将问题分解为两个相对独立的问题分别进行处理,即弹性海床的自由场动力响应与残余孔压的数值模拟。对于第一个问题,一般基于Biot固结理论,将海床视为理想线弹性材料,重点考察瞬时超静孔压与瞬时有效应力幅值沿海床深度的分布,但不能给出波浪引起的累积变形与残余孔压;对于第二个问题大都根据地震动力响应有效应力分析法发展而来,将波浪引起的海床复杂应力状态简化为纯剪切应力,进而根据室内循环剪切试验确定海床土的等效粘弹性本构模型参数,然后进行动力方程与固结方程的解耦运算,每一计算小时段初引入时段不排水孔压增量,将海床表面视为自由排水面。上述两种方法采用的土体本构模型都不能再现砂土在暴风浪等非比例加载条件下的动力特性,本文基于广义Biot理论提出了波浪作用下海床线性或非线性动力响应的耦合计算模型与稳定、高效数值算法,分别针对土的弹性、粘弹性与弹塑性本构关系,对海床的动力响应进行了有限元数值模拟与分析。
     广义Biot固结理论能够完整地描述静、动力荷载作用下多孔介质材料骨架变形与孔隙渗流的耦合作用,但其数值求解一直是土动力学中尚未很好解决的难点之一。本文针对海床动力响应边值问题,推导了广义Biot理论u~U和u~p两种形式的有限元列式,实现了通常认为很困难的u~p形式直接解法,并将交叉迭代法扩展至两种u~p形式的综合求解。详细比较广义Biot理论u~U形式直接解法、u~p形式直接解法与交叉迭代法求解弹性、弹塑性问题的收敛性、稳定性与计算效率,认为以往较少应用的u~U形式直接解法刚度阵病态性弱,求解效率高,更适合土工问题的数值模拟,
     小风浪作用下海床的动力响应特性可视为弹性的。根据所提出的广义Blot固结理论计算模型,通过线性数值分析考察了加速度项对海床动力响应的影响范围及影响程度,指出对于高频波浪下的大厚度弹性海床,忽略加速度项可能低估某些范围内的有
    
    效应力幅值,而传统的加速度作用判别准则并不总是成立的。实现了以往解析法和数
    值法不能处理的非线性波浪、成层海床和斜坡海床等复杂工况的数值模拟。通过全面、
    系统的变动参数比较研究,系统分析了海床动力响应的主要影响因素。探讨了海洋不
    透水基础下超静孔压和有效应力的分布。
     将线粘弹性本构关系引人所建立的计算模型和线性算法,考察了粘质上的粘滞性
    对海床动力响应的影响。尽管忽略了粘土海床上波浪传播过程中的能量衰减,建立的
    分析模型仍能定性解释波浪引起的淤泥质海床流动大变形。
     波浪荷载属于非比例循环加载,并导致海床土体发生主应力轴旋转现象。为此本
    文进一步采用应力增量与应变增量方向相关的亚塑性边界面模型描述波浪加载路径下
    砂土的应力一应变关系。而现有的广义Bim理论算例大多局限于线弹性本构关系或本
    构刚度阵与应变增量无关的传统弹塑性本构关系。亚塑性边界面模型增量形式的本构
    刚度阵不仅不对称,而且强烈地依赖于应变增量,将其引入计算模型,并研制了收敛
    性较好的、高效的增量一迭代算法。分析模型中不再需要采用基于土工试验的不排水
    孔压经验模式。考察两种代表性砂质海床在不同幅值波压力作用下的动力响应,弹塑
    性有限元计算得到的超静孔压和残余孔压发展规律与离心模型试验中观察到的现象定
    性上一致。
     辨析波浪作用下海床液化的两种机理解释。所提出的计算模型不需要专门的液化
    判断准则,就能够成功模拟海床液化时的三种主要表象,初步再现了液化区的渐进扩
    展过程。
     本文对海床或海洋建筑物地基的动力响应与液化分析所进行的线性和非线性数值
    分析研究不仅具有一定的学术意义,而且将为海洋工程场地和海洋地基的安全性评价
    提供技术支持。
The analysis for dynamic stability of seabed or offshore foundation under wave loading is of practical significance in the design and construction of offshore and coastal structures. When waves propagate over the ocean surface, a sequence of wave pressure is induced on the mudline or seafloor, which causes the coupling interaction between the deformation of soil skeleton and seepage movements of porous fluid. Different from cyclic loading acted on onshore foundation, the wave pressure plays double roles as: the surface loading imposed on the mudline and the boundary condition of excess pore pressure. During long-time storm, the excess pore pressures will be built up, then dissipated and re-distributed simultaneously due to partial drainage. Then it is possible the developments of excess pore pressures cause the liquefiable sandy seabed be liquefied. In this dissertation, the methods of linear and nonlinear analysis for dynamic responses of sandy seabed under waves loading are developed.
    During the past three decades, attentions have been paid to two different issues: analysis for free-field dynamic response of elastic seabed and numerical evaluation of residual pore pressure in the seabed. The former is based on Biot's consolidation theory, and the seabed soil is taken as linear-elastic material. According to this method, the distribution of amplitudes of transient pore pressures and transient effective stresses are assessed, while the residual pore pressure and accumulated deformation cannot be taken account. The latter is developed on the basis of the effective stresses analysis of dynamic response of soil structure and foundation under seismic loading in the field of earthquake engineering. The complex effective stress state of seabed soils under waves is simplified to pure shear stress. Accordingly, the parameters of equivalent visco-elastic model are determined through cyclic shear testing. The governing equation of the boundary-value issue for the response of seabed is separated into dynamic equation and consolidation equation, and the incremental excess pore pressure under undrained condition has to be included into calculation at the beginning of every time step. The mudline is treated as drained boundary. In fact, the constitutive models employed in both methods could not re-produce the dynamic behaviour of soil to non-proportional cyclic loading, such as waves loading. To simulate dynamic responses of elastic, visco-elastic and elasto-plastic sea beds, linear and/or non-linear numerical models based on generalized Biot's theory are developed together with stable and effective algorithm.
    The difficulty in numerical computation made the generalized Biot's theory be difficult to be put into practice in the field of geotechnical engineering. For the boundary-value problem,
    
    
    
    such as dynamic response of seabed, the finite element formulations of u~U and u~p forms of generalized Biot's theory are established in this dissertation. Usually the direct solution of u~p form is viewed as rather difficult. A procedure is developed by the author. In addition, the stagger solution procedure is enlarged to u~p form I and II. The direct solution for u~U and u~p form, the stagger solution for u~p form are compared in the convergency, stability and efficiency, from which it is concluded that the first solution used not widely before is characterized with weakly ill-conditioned stiffness and comparatively high efficiency. The finite element methods based on these three solving procedures are numerically implemented.
    The seabed soil under wave pressure with small amplitude can be viewed as elastic material. Depending on the numerical model proposed, the effect of accelerations of soil skeleton and porous fluid on the dynamic response of elastic seabed is examined. It is possible that the amplitudes of effective stresses in large-thickness seabed to high-frequency waves would be underestimated in some regions if the accelerations were overlooked. The responses of layered seabed, seabed with gentle slope and the sea
引文
1Andersen K H,Lauritzsen R.Bearing capacity for foundations with cyclic loads.Journal of Geotechnical Engineering,ASCE,1988,114(5) : 540-555.
    2 钱寿易,楼志刚,杜金声,海洋波浪作用下土动力特性的研究现状和发展。岩土工程学报 ,1982,4(1) : 16-22.
    3Madsen O S.Wave-induced pore pressures and effective stresses in a porous bed.Geotechnique,1978,28(4) : 377-393.
    4Ishihara K,Towhata I.Sand response to cyclic rotation of principal stress rotation in soils.Soils and Foundations,1983,23(4) : 11-26.
    5 沈瑞福,王洪瑾,动主应力轴连续旋转下砂土的动强度,水利学报,1996,(1) :27-33.
    6Wong R K S,Arthor J R F.Sand sheared by stresses with cyclic variations in direction.Geotechnique,1986,36(2) : 215-226.
    7Symes M T,Gens A,Might D W.Drained principal stress rotation in saturated sand.Geotechnique,1988,38(1) : 59-81.
    8Zen K,Yamazaki H.Mechanism of wave-induced liquefaction and densification in seabed.Soils and Foundations,1990,30(4) : 90-104.
    9 徐杨青,郭见扬,海洋土特殊工程性质的成因分析。岩土力学,1989,10(4) : 67-74.
    10Esring M I,Kirby R C.Implications of gas content for predicting the stability of submarine slopes.Marine Geotechnology,1977,2: 81-100.
    11 Bennett R H et al.In-situ porosity and permeability of selected carbonate sediment: Great Bahama Band-part 1: measures; part 2: Microfabric.Marine Geotechnology,1990,9: 1-48
    12Sills G C,Wheeler S J,Thomas S D et al.Behaviour of offshore soils containing gas bubbles.Geotechnique,1991,41(2) : 227-241.
    13Lu T,Bryant W R,Slowey N C.Regression analysis of physical and geotechnical properties of surface marine sediments.Marine Georesources and Geotechnology,1998,16(3) : 201-220.
    14Sills G C,Gonzalez R.Consolidation of naturally gassy soft soil.Geotechnique,2001,51(2) : 629-639.
    15Strachan P.Liquefaction prediction in the marine environment.In: Proceedings of IUTAM and IUGG.Edited by Denness B.Newcastle: Graham & Trotman Publication,1983,149-157.
    16Dyvik R,Andersen K H,Hansen S B et al.Field tests of anchors in clay.I: Description.Journal of Geotechnical Engineering,ASCE,1993,119(10) : 1515-1531.
    17Lee K L,Focht J A.Strength of clay subjected to cyclic loading.Marine Geotechnology,1975,1(3) : 165-185.
    
    
    18 Hyde A F L, Ward S J. The effect of cyclic loading on the undrained shear strength of a silty clay. Marine Geotechnology, 1986, 6(3): 299-324.
    19 王淑云,楼志刚.海洋粉质粘土在波浪荷载作用后的不排水抗剪强度衰化特性.海洋工程,2000,18(1):38-43.
    20 顾尧章.海底粘土的剪切模量,岩土工程学报,1995,17(2):29-35.
    21 Christopher B R, Atmatzidis D K, Krizek R J. Laboratory testing of chemically grouted sand. Geotechnical Testing Journal, 1993, 12(2): 109-118.
    22 Huang J T, Airey D W. Properties artificially cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(6): 492-499.
    23 Ismail M A, Joer H A, Randolph M F. Sample preparation technique for artificially cemented soils. Geotechnical Testing Journal, 2000, 23(2): 171-177.
    24 吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报,1997,19(5):49-55.
    25 刘崇权,杨志强,汪稔.钙质土力学性质研究现状与进展.岩土力学,1995,16(4):74-84.
    26 刘崇权,汪稔.钙质砂物理力学性质初探.岩土力学,1998,19(1):32-37,44.
    27 虞海珍,汪稔.钙质砂动强度试验研究.岩土力学,1999,20(4):6-11.
    28 黄锋,楼志刚,王世章等.排水条件对海洋粉质土动力特性的影响的试验研究.见:第四届全国土动力学学术会议论文集.杭州,1994,97-101.
    29 黄锋,楼志刚.排水条件对海洋粉质土动力特性的影响.岩土工程学报,1997,19(1):22-29.
    30 王建华,杨进良,陈诚,海洋原状软粘土不固结不排水剪切模量循环弱化特性.见:栾茂田主编.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998,109-113.
    31 王建华,要明伦,刘远锋.振动荷载作用下海洋原状软粘土不固结不排水强度特性.见:栾茂田主编.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998,114-118.
    32 王建华,陈诚,张庆河等.波浪作用下海洋浅层软土弱化与场地稳定性.水利学报,1998,(10):13-17.
    33 Luan M-T, Wang D. Dynamic response of seabed under wave-induced loading. In: Proceedings of 4th International Conference on Recent Advances in Soil Dynamics and Oeotechnical Earthquake Engineering. San Diego, 2001.
    34 李作勤.扭转三轴试验综述.岩土力学,1994,15(1):80-93.
    35 王洪瑾,沈瑞福,马奇国.双向振动下土的动强度.清华大学学报,1996,36(4):93-98.
    36 Djavid M. Behavior of clayer deposits under wave loading. In: Proceedings of 4th Canadian conference on marine geotechnical engineering. Edited by J Clark et al. 1993, 43-65.
    
    
    37Ishihara K,Yamazaki A.Wave-induced liquefaction in seabed deposits of sand.In: Seabed Mechanics.Edited by B Benness.Newcastle: Graham & Trotman Publication.1983,139-148.
    38Pradel D,Ishihara K and Gutierrez M.Yielding and flow of sand under principal stress axes rotation.Soils and Foundations,1990,30(1) : 87-99.
    39Tsui Y,Helfrich S C.Wave-induced pore pressures in submerge sand layer.Journal of Geotechnical Engineering,ASCE,1983,103(4) : 603-618.
    40Demars K R.Measurement of wave-induced pressures and stresses in a sand bed.Marine Geotechnology,1985,6(1) : 29-59.
    41Zen K and Yamazaki H.Oscillatory pore pressure and liquefaction in seabed induced by ocean waves.Soils and Foundations,1990,30(4) : 147-161.
    42 陈仲颐等,波浪作用下海底土层的稳定模型试验,见:第六届全国土力学及基础工程会议论文集,上海:同济大学出版社,1991.
    43Miura S,Kondo H,Tanaka N et al.Sand flow failure induced by ocean wave and oscillation of coastal structure.In: Earthquake Geotechnical Engineering.Edited by K Ishihara.1995,743-748.
    44Nancarrow R D,Landva J,Clark J I.Soil structure interaction under the influence of wave loading.In: Proceedings of 4th Canadian conference on marine geotechnical engineering.Edited by J I Clark et al.1993,1001-1022.
    45Sekiguchi H,Kita K,Okamoto 0. Wave-induced instability of sand beds.In: Centrifuge 94. Edited by Leung,Lee and Tan.1994,295-300.
    46Sekiguchi H,Kita K,Okamoto O.Response of poro-elastoplastic beds to standing waves.Soils and Foundations,1995,35(3) : 31-42.
    47Sekiguchi H,Kita K,Sassa S et al.Generation of progressive fluid waves in a geo-centrifuge.Geotechnical Testing Journal,1998,21(2) : 95-101.
    48Sassa S,Sekiguchi H.Wave-induced liquefaction of beds of sand in a centrifuge.Geotechnique,1999,49(5) : 621-638.
    49Sassa S,Sekiguchi H.Wave-induced liquefaction,densification and re-liquefaction of sand beds.In: Centrifuge 98. Edited by Kimura,Kusakabe,Takemura.1998,391-396.
    50 闫澎旺,邱长林,孙宝仓等,波浪作用下海底软粘土力学性状的离心模型试验研究,水利学报,1998,(9) : 66-70.
    51Liu L F.Damping of water waves over porous bed.Journal of Hydraulics,ASCE,1973,99(12) : 2263-2271.
    52Macpherson H.The attenuation of water waves over a non-rigid bed.Journal of Fluid Mechanics,1980,97(4) : 721-742.
    53Yamamoto T,Koning H L,Sellmeiher E V.On the response of a poro-elastic bed to water waves.Journal of Fluid Mechanics,1978,87(1) : 193-206.
    54Mei,C C,Foda M A.Wave-induced response in a fluid-filled poro-elastic solid with a free surface-a boundary layer theory.Geophysical Journal Royal Australia Society,1981,66:597-631.
    
    
    55Mei C C,Foda M A.Wave-induced stresses around a pipe laid on a poro-elastic sea bed.Geotechnique,1981,31(4) : 509-517.
    56Okusa S.Wave-induced stress in unsaturated submarine sediments.Geotechnique,1985,35(4) : 517-532.
    57 李向维,波浪作用下砂质海床的瞬态应力,力学与实践,1989,11(6) : 17-20.
    58Gatmiri B.Response of cross-anisotropic seabed to ocean waves.Journal of Geotechnical Engineering,ASCE,1992,118(9) : 1295-1314
    59Hsu J R C,Jeng D S,Tsai C P.Short-crested wave-induced soil response in a porous seabed of infinite thickness.International.Journal for Numerical and Analytical Methods in Geomechanics,1993,17(8) : 553-576.
    60Hsu J R C,Jeng D S.Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness.International.Journal for Numerical and Analytical Methods in Geomechanics,1994,18(11) : 785-807.
    61Hsu J R C,Jeng D S,Lee C P.Oscillatory soil response and liquefaction in an unsaturated layered seabed.International.Journal for Numerical and Analytical Methods in Geomechanics,1995,19(12) : 825-849.
    62Tsail C P.Wave-induced liquefaction potential in a porous seabed in front of a breakwater.Ocean Engineering,1995,22(1) : 1-18.
    63Seymour B R,Jeng D S,Hsu J R C.Transient soil response in a porous seabed with variable permeability.Ocean Engineering,1996,23(1) : 27-46.
    64Jeng D S,Hsu J R C.Wave-induced response in a nearly saturated sea-bed of finite .thickness.Geotechnique,1996,46(3) : 427-440.
    65Jeng D S.Wave-induced liquefaction potential at the tip of a breakwater: an analytical solution.Applied Ocean Research,1996,18: 229-241.
    66Jeng D S.Soil response in cross-anisotropic seabed due to standing waves.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(1) : 9-19.
    67Jeng D S,Seymour B R.Response in seabed of finite depth with variable permeability.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(10) : 902-911.
    68Jeng D S.Effect of cross-anisotropic behaviour on wave-induced seabed response.Geotechnique,1998,48(4) : 555-561.
    69Thomas S D.A.finite element model for the analysis of wave induced stresses,displacements and pore pressures in an unsaturated seabed,I: Theory.Computers and Geotechnics,1989,8: 1-38.
    70Thomas S D.A.finite element model for the analysis of wave induced stresses,displacements and pore pressures in an unsaturated seabed, II: Model verification.Computers and Geotechnics,1995,17: 107-132.
    71Gatmiri B.A simplified finite element analysis of wave-induced effective stresses and pore pressures in permeable sea bed.Geotechnique,1990,40(1) : 15-30.
    72. Jeng D S,Lin Y S.Finite element modeling for water waves-soil interaction.Soil Dynamics and Earthquake Engineering,1996,15(5) : 283-300.
    
    
    73 Lin Y S, Jeng D S. The effects of variable permeability on the wave-induced seabed response. Ocean Engineering, 1997, 24(7): 623-643.
    74 Jeng D S, Lin Y S. Non-linear wave-induced response of porous seabed: a finite element analysis. International. Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(1): 15-42.
    75 章根德,顾小芸.有限厚度砂床对波浪载荷的响应.力学学报,1993,25(1):56-68.
    76 邱大洪,臧军.群墩上的波浪浮托力.港口工程,1995,(5):8-12.
    77 Jeng D S, Lin Y S. Pore pressure on a submarine pipeline in a cross-anisotropic nonhomogeneous seabed under water-wave loading. Canadian Geotechnical Journal, 1999, 36(3): 563-572.
    78 Jeng D S, Lin Y S. Response of inhomogeneous seabed around buried pipeline under ocean waves. Journal of Engineering Mechanics, ASCE, 2000, 126(4): 321-332.
    79 Jeng D S, Cheng L. Wave-induced seabed response around a pipe laid on a poro-elastic seabed. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121: 227-236.
    80 竺艳蓉.海洋工程波浪力学.天津:天津大学出版社,1991.
    81 Yamamoto T. Numerical integration method for seabed response to water waves. Soil Dynamics and Earthquake Engineering, 1983, 2(2): 92-100.
    82 Yamamoto T. On the response of a Coulomb-damped poroelastic bed to water waves. Marine Geotechnology, 1983, 5(2): 93-130.
    83 朱志海.有限厚海床在波浪作用下海底砂土孔隙水压力反应[硕士学位论文).大连:大连理工大学,1999:19-22.
    84 呼和敖德,周显初,李家春等.连云港淤泥质海床上波浪衰减研究—实验、观测及理论模型比较和评价.海洋工程,1994,12(2):68-77.
    85 Huang L H, Song C H. Dynamic response of poroelastic bed to water waves. Journal of Engineering Mechanics, ASCE, 1993, 119(8): 1003-1020.
    86 Chen T W, Huang L H, Song C H. Dynamic response of poroelastic bed to nonlinear water waves. Journal of Engineering Mechanics, ASCE, 1996, 123(10): 1041-1049.
    87 Hsie H P C, Huang L H, Wang T W. Dynamic response of soft poroelastic bed to nonlinear water wave-boundary layer correction approach. Journal of Engineering Mechanics, ASCE, 2000, 126(10): 1064-1073.
    88 连继建,赵子丹.淤泥质床面上的波流运动.天津大学学报,1995,28(3):301-308.
    89 连继建,赵子丹.波流与淤泥质海床相互作用.泥沙研究,1995,(3):40-50.
    90 王栋,栾茂田,文立.波浪作用下海床动力学研究进展.见:栾茂田主编.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998,382-391.
    91 刘元雪.含主应力轴旋转的土体一般应力应变关系[博士学位论文].重庆:后勤工程学院,1997.
    92 Seed H B and Idriss I M. On the importance of dissipation effects in evaluating pore pressure change due to cyclic loading. Soil Mechanics-Transient and Cyclic Loads, Chapter 4. Edited by G N Pande, O C Zienkiewicz. John Wiley and Sons Ltd, 1982.
    
    
    93 钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    94 盛虞,卢盛松,姜朴.土工建筑物动力固结的耦合振动方程.水利学报,1989,(12):31-42.
    95 徐杨青.循环荷载作用下饱和土超孔隙水压力内时模型的研究.见:第六届全国土力学及基础工程会议论文集.上海:同济大学出版社,1991.
    96 沈瑞福,王洪瑾,周克骥等.动主应力旋转下砂土孔隙水压力发展及海床稳定性判断.岩土工程学报,1994,16(3):70-78.
    97 Seed H B, Rahman M S. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Marine Geotechnology, 1978, 3(2): 123-150.
    98 Rahman M S, Seed H B, Booker I R. Pore pressure development under offshore gravity structures. Journal of Geotechnical Engineering, ASCE, 1978, 103(12): 1419-1436.
    99 Rahman M S, Layas F M. Pore pressure in ocean-floor sands under random waves. Marine Geotechnology, 1986, 6(4): 341-358.
    100 Rahman M S, Jaber W Y. A simplified drained analysis for wave-induced liquefaction in ocean floor sands. Soils and Foundations, 1986, 26(3): 57-68.
    101 Rahman M S. Wave-induced instability of seabed: mechanism and conditions. Marine Geotechnology, 1991, 10: 277-299.
    102 Finn W D, Siddarthan R, Martin G R. Response of seafloor to ocean waves. Journal of Geotechnical Engineering, ASCE, 1982, 109(4): 556-572.
    103 Nataraja M S, Gill H S. Ocean wave-induced liquefaction analysis. Journal of Geotechnical Engineering, ASCE, 1982, 109(4): 573-590.
    104 Cheng L, Sumer B M, Fredsdxφe J. Solutions of pore pressure build up due to progressive waves. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(9): 885-907.
    105 马时冬.平台地基在波浪荷载下的循环位移和固结沉降计算.岩土力学,1991,12(4):1-10.
    106 陈仲颐,李向维.波浪引起的饱和土体残余孔压计算.见:第五届全国土力学及基础工程会议论文选集.北京:中国建筑工业出版社,1990,675-681.
    107 杨少丽,沈谓铨,杨作升.波浪作用下海底粉砂液化的机理分析.岩土工程学报,1995,17(4):28-37.
    108 盛虞,姜朴,卢盛松.波浪作用下重力式平台地基中孔隙水压力的实验研究与有限元分析.海洋工程,1989,7(4):51-58.
    109 Siddharthan R. Wave-induced displacements in seafloor sands. International Journal for Numerical and Analytical Methods in Geomechanics. 1987, 11: 155-170.
    110 Taiebat H A, Carter J P. A semi-empirical method for the liquefaction analysis of offshore foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(13): 991-1011.
    111 栾茂田,林皋,杨庆.岩土地震工程与土动力学中若干最新进展评述.见:栾茂田主编.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998.20-46.
    
    
    112 Zeghal M, Elgamal A W, Zeng X, Arulmoli K. Mechanism of liquefaction response in sand-silt dynamic centrifuge tests. Soil Dynamics and Earthquake Engineering, 1999, 18(1): 71-85.
    113 Seed H B, Tokimatsu K, Harder L F et al. Influence of SPT procedures in soil liquefaction resistance evaluation. Journal of Geotechnical Engineering, ASCE, 1985, 111(12): 1425-1445.
    114 Juang C H, Chen C J, Tang W H et al. CPT-based liquefaction analysis, part 1: Determination of limit state function. Geotechnique, 2000, 50(5): 583-592.
    115 Juang C H, Chen C J, Rosowsky D V et al. CPT-based liquefaction analysis, part 2: Reliability for design. Geotechnique, 2000, 50(5): 593-599.
    116 谢定义.饱和砂土体液化的若干问题.岩土工程学报,1992,14(3):90-98.
    117 Ishihara K. Liquefaction and flow failure during earthquake. Geotechnique, 1993, 43(3): 351-415.
    118 汪闻韶.土的动力强度和液化特性.北京:中国电力出版社,1997.
    119 Youd T L, Idriss I M, Andrus R D et al. Liquefaction resistance of soils summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(10): 817-833.
    120 王栋,栾茂田,郭莹.波浪作用下海床动力反应的有限元数值模拟与液化分析.大连理工大学学报,2001,41(2):216-222.
    121 孟祥跃,张均锋,俞善炳等.冲击载荷下饱和砂土中孔隙水压力的变化及其与液化密实的关系.岩土工程学报,1999,21(3):263-267.
    122 Zhang H, Garga V K, Zeng Q. Steady state strength of sand: concept and experiment.岩土工程学报, 1999, 21(2): 230-235.
    赵成刚,于子忠.关于“砂土的稳态强度:概念和试验”的讨论.岩土工程学报,1999,21(5):644.
    张惠明,曾巧玲.对“砂土的稳态强度:概念和试验”讨论的答复.岩土工程学报,1999,21(5):645-646.
    123 Ishihara K, Yasuda S, Yoshida Y. Liquefaction-induced flow failure of embankments and residual strength of silty sands. Soils and Foundations, 1990, 30(3): 69-80.
    124 Zen K, Yamazaki H. Field observation and analysis of wave induced liquefaction in seabed. Soils and Foundations, 1991, 31(4): 161-179.
    125 Zen K, Jeng D S, Hsu J R C et al. Wave-induced seabed instability: difference between liquefaction and shear failure. Soils and Foundations, 1998, 38(2): 37-47.
    126 Lee K L, Focht J A. Liquefaction potential at Ekofisk tank in North Sea. Journal of Geotechnical Engineering, ASCE, 1975, 101(1): 1-18.
    127 Ishihara K, Yamazaki H. Analysis of wave-induced liquefaction in seabed deposits of sand. Soils and Foundations, 24(3): 85-100.
    
    
    128 邓斌,李江.波浪荷载作用下海洋土的液化特性估价.岩土力学,1989,10(1):23-30.
    129 顾淦臣.论土石坝的地震液化验算和坝坡抗震稳定计算.岩土工程学报,1981,3(4):33-42.
    130 沈珠江.砂土动力液化变形的有效应力分析方法.水利水运科学研究,1982,(4):22-31.
    131 徐志英,沈珠江.尾矿高堆地震反应的综合分析与液化计算.水利学报,1983,(5):30-39.
    132 沈珠江,黄锦德,王钟宁.陡河水库土坝的地震液化及变形分析.水利水运科学研究.1984,(1):52-61.
    133 周健,徐志英.土(尾矿)坝的三维有效应力动力反应分析.地震工程与工程振动.1984,4(3):60-70.
    134 盛虞,孙德安.土工动力反应分析法的比较及其应用.水利水运科学研究,1990,(2):185-193.
    135 Castro G, Seed R B, Keller T O et al. Steady-state strength analysis of Lower San Fernando Dam. Journal of Geotechnical Engineering, ASCE, 1992, 118(3): 406-427.
    136 Gu W H, Morgenstern N R, Robertson P K. Progressive failure of Lower San Femando Dam. Journal of Geotechnical Engineering, ASCE, 1993, 119(2): 333-348.
    137 Gu W H, Morgenstern N R, Robertson P K. Post-earthquake deformation analysis of wildlife site. Journal of Geotechnical Engineering, ASCE, 1994, 120(2): 274-289.
    138 朱俊高,俞炯奇.松砂液化后液化区渐进扩展的计算方法初探.水利学报,1998,(9):52-56.
    139 Sladen J A, D'Hollander R D, Krahn J et al. Back Analysis of the Nerlerk Berm liquefaction slides. Canadian Geotechnical Journal, 1985, 22(4): 579-588.
    140 Law K T, Lee C F, Luan M-T, Zhai Y. Engineering behaviour of loose fill of granitic soil. In: Proceeding of the special Sino-Japanese Forum on Performance and Evaluation of Soil Slopes under Earthquake and Rainstorm. Edited by M-T Luan, K Ugai. Dalian: Dalian University of Technology Press, 1998, 18-34.
    141 Poulos S J. The steady state of deformation. Journal of Geotechnical Engineering, ASCE, 1981, 107(5): 553-562.
    142 Alarcon-Guzman A, Leonard G A, Chameau J L. Undrained monotonic and cyclic strength of sands. Journal of Geotechnical Engineering, ASCE, 1988, 114(10): 1089-1110.
    143 Been K, Jefferies M G, Hachey J. The critical state of sands. Geotechnique, 1991, 41(3): 365-381.
    144 Sladen J A, D'Hollander R D, Krahn J. The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, 1985, 22(4): 564-578.
    145 Verdugo R, Ishihara K. The steady state of sand soils. Soils and Foundations, 1996, 36(2): 81-91.
    146 Uthayakumar M, Vaid Y P. Static liquefaction of sands under multiaxial loading.
    
    Canadian Geotechnical Journal,1998,35(2) : 273-283.
    147 Zhang H,Garga V K.Quasi-steady state: a real behavior? Canadian Geotechnical Journal,1997,34(5) : 749-761.
    148 Kimer M F,Seed R B.Factors affecting apparent position of steady-state line.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1997,123(3) : 281-288.
    149 Uzuoka R,Yashima A,Kawakami T et al.Fluid dynamics based prediction of liquefaction induced lateral spreading.Computers and Geotechnics,1998,22: 243-282.
    150 Sasitharam S,Robertson P K,Sego D C et al.Collapse behavior of sand.Canadian Geotechnical Journal,1993,30(4) : 569-577.
    151 Konrad J M.Minimum undrained strength of two sands.Journal of Geotechnical Engineering,ASCE,1990,116(6) : 932-947.
    152 Konrad J M.Minimum undrained strength versus steady-state strength of sand.Journal of Geotechnical Engineering,ASCE,1990,116(6) : 948-963.
    153 Vaid Y P,Sivathayalan S.Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests.Canadian Geotechnical Journal,1996,33(2) : 281-289.
    154 Vaid V P,Sivathayalan S.Fundamental factors affecting liquefaction susceptibility of sands.Canadian Geotechnical Journal,2000,37(3) : 592-606.
    155 Been K,Jefferies M G.A State parameter for sands.Geotechnique,1985,35(2) : 99-112.
    156 Li X S,Wang Y.Linear representation of steady-state line for sand.Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1998,124(12) : 1215-1217.
    157 Hird C C,Hassona F A K.Some Factors affecting the liquefaction and flow of saturated sand in laboratory tests.Engineering Geology,1990,28: 149-170.
    158 Vaid Y P,Chung E K F,Kuerbis R H.Stress path and steady state.Canadian Geotechnical Journal,1990,27(1) : 1-7.
    159 Vaid Y P,Sayao A,Hou E et al.Generalized stress-path-dependent soil behaviour with anew hollow cylinder torsional apparatus.Canadian Geotechnical Journal,1990,27(5) : 601-616.
    160 Negussey D,Islam M S.Uniqueness of steady state and liquefaction potential.Canadian Geotechnical Journal,1994,31(1) : 132-139.
    161Orando-shelley E,Perez G B E.Undrained behaviour of clayey sands in load controlled triaxial tests.Geotechnique,1997,47(1) : 97-111.
    162 Thevanayagam S,Mohan S.Intergranual state variables and stress-strain behaviour of silty sands.Geotechnique,2000,50(1) : 1-23.
    163 Presti D C F,Puci I,Pallara O et al.Experimental laboratory determination of the steady state of sands.Soils and Foundations,2000,40(1) : 113-122.
    164 Silathayalan S,Vaid Y P.Truly undrained response of granular soils with no membrane-penetration effects.Canadian Geotechnical Journal,1998,35(5) : 730-739.
    165 Konrad J M.Sand state from cone penetrometer tests: a framework considering grain crushing stress.Geotechnique,1998,48(2) : 201-215.
    
    
    166 Li X S, Dafalias Y F, Wang Z L. State-dependent dilatancy in critical-state constitutive modelling of sand. Canadian Geotechnical Journal, 1999, 36(4): 599-611.
    167 Li X S, Dafalias Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50(4): 449-460.
    168 Konrad J M, Pouliot N. Ultimate state of reconstituted and intact samples of Deltaic Sand. Canadian Geotechnical Journal, 1997, 34(5): 737-748.
    169 Konrad J M. Undrained response of loosely compacted sands during monotonic and cyclic compression tests. Geotechnique, 1993, 43(1): 69-89.
    170 Sasitharam S, Robertson P K, Sego D C et al. State-boundary surface for very loose sand and its practical implications. Canadian Geotechnical Journal, 1994, 31(3): 321-334.
    171 Biot M A. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, 1956, (3): 91-96.
    172 Meroi E A, Schrefler B A, Zienkiewicz O C. Large strain static and dynamic semisaturated soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 81-106.
    173 门福录.波在饱含流体的孔隙介质中的传播问题.地球物理学报,1981,24(1):65-75.
    174 赵成刚,高福平,崔杰.波在饱含多孔介质与弹性固体介质交界面上的界面效应.地震工程与工程振动,1999,19(1):1-6.
    175 Sandhu R S, Wilson E L. Finite element analysis of seepage in elastic media. Journal of the Engineering Mechanics, ASCE, 1969, 95(3): 641-652.
    176 Ghaboussi J, Wilson E L. Variational formulation of dynamics of fluid saturated porous elastic solids. Journal of Engineering Mechanics, ASCE, 1972, 98(4): 947-963.
    177 Ghaboussi J, Wilson E L. Flow of compressible fluid in porous elastic media. International Journal for Numerical Methods in Engineering, 1973, 5: 419-442.
    178 张洪武,钟万勰,钱令希.饱和土动力固结分析的中的变分原理,岩土工程学报,1992,14(3):20-29.
    179 张洪武,钟万勰,钱令希.土体固结弹塑性分析的参数二次规划理论及有限元解.岩土力学,1995,16(1):35-45.
    180 Zhang H W. Parametric variational principle for elastic-plastic consolidation analysis of saturated porous media. International. Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19: 851-867.
    181 Zienkiewicz, O C, Chang C T, Bettes P. Drained, undrained, consolidation and dynamic behaviour assumptions in soils. Geotechnique, 1980, 30(4): 385-395.
    182 Zienkiewicz O C, Bet-tess P. Soils and other saturated media under transient, dynamic conditions; General formulation and the validity of various simplifying assumptions. In: Pande G N, Zienkiewicz. O C. Soil Mechanics—Transient and Cyclic Loads. New York: John Wiley and Sons Ltd, 1982, 1-16.
    183 Zienkiewicz, O C, Shiomi T. Dynamic behaviour of saturated porous media; the generalized Biot's formulation and its numerical solution. International. Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8: 71-96.
    
    
    184 Simon B R, Zienkiewicz O C, Paul D K. An analytical solution for the transient response of saturated porous elastic solids. International. Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8: 381-398.
    185 Simon B R, Wu J S S, Zienkiewicz O C et al. Evaluation of u-w and u-π finite element methods for the dynamic response of saturated porous media using one-dimensional models. International. Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10: 461-482.
    186 Simon B R, Wu J S S, Zienkiewicz O C. Evaluation of higher order, mixed and Hermitean finite element procedures for dynamic analysis of saturated porous media using one-dimensional models. International. Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10: 483-499.
    187 Zienkiewicz, O C, Paul D K, Chan A H C. Unconditionally stable staggered solution procedures for coupled soil-pore fluid dynamic problem. International. Journal for Numerical and Analytical Methods in Geomechanics, 1988, 26: 1039-1055.
    188 孙焕纯,曲乃泗,林家浩.高等计算结构动力学.大连:大连理工大学出版社,1992.
    189 Zienkiewicz O C, Chang C T, Hinton E. Nonlinear seismic response and liquefaction. International. Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2: 381-404.
    190 Park K C. Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis. International. Journal for Numerical Methods in Engineering, 1983, 19: 1669-1673.
    191 李锡夔,朴光虎,邓子辰.考虑固结效应的结构—土壤相互作用分析及其有限元解.计算结构力学及其应用,1990,7(3):1-10.
    192 张洪武,钟万勰,钱令希.土体固结分析的一种有效算法.计算结构力学及其应用,1991,8(4):389-396.
    193 林本海,谢定义.复合地基的液化检验理论及其应用.北京:中国水利水电出版社,1999.84-85.
    194 Zienkiewicz O C, Qu S, Taylor R L et al. The patch test for mixed formulation. International Journal for Numerical Methods in Engineering. 1986, 23:1873-1883.
    195 王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素分析.岩石力学与工程学报,2001,20(增1):1132-1136.
    196 栾茂田,王栋.波浪作用下海床动力反应的数值分析.海洋工程,2001,19(4):40-45.
    197 邱大洪.波浪理论及其在工程上的应用.北京:高等教育出版社,1985.
    198 赵维炳,施建勇.软土固结与流变,南京:河海大学出版社,1996.
    199 周健,吴世明,曾国熙.土石坝三维两相动力分析.岩土工程学报,1991,13(5):21-28.
    
    
    200 Zienkiewicz O C, Leung K H, Hinton E et al. Liquefaction and permanent deformation under dynamic conditions—numerical solution and constitutive relations. In: Pande G N, Zienkiewicz O C. Soil Mechanics—Transient and Cyclic Loads. New York: John Wiley and Sons Ltd, 1982, 71-103.
    201 章根德,土的本构模型及其工程应用.北京:科学出版社,1995.
    202 Barrier J P. Application of plasticity theory to sand behavior [Ph. D. Dissertation]. Pasadena: California Institute of Technology, 1983.
    203 Bardet J P. Bounding surface plasticity model for sands. Journal of Engineering Mechanics, ASCE, 1986, 112(11): 1198-1217.
    204 Dafatias Y F. Bounding surface plasticity, Ⅰ. Mathematical foundation and the concept of hypoplasticity. Journal of Engineering Mechanics, ASCE, 1986, 112(9): 966-987.
    205 Dafalias Y F. Bounding surface plasticity, Ⅱ. Application to isotropic cohesive soils. Journal of Engineering Mechanics, ASCE, 1986, 112(12): 1283-1291.
    206 Kaliakin V N, Dafalias Y F. Simplifications to the bounding surface model for cohesive soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(1): 91-100.
    207 Wang Z L, Dafalias Y F, Shen C K. Bounding surface hypoplasticity model for sands. Journal of Engineering Mechanics, ASCE, 1990, 116(5): 983-1001.
    208 Wang Z L. Bounding surface hypoplasticity model for granular soils and its application [Ph. D. Dissertation], University of California, Davis, 1990.
    209 王志良.塑性力学与土的性质模拟.见:余同希,王大钧编,塑性力学和地球动力学文集.北京:北京大学出版社,1990,23-29.
    210 徐干成,谢定义,郑颖人.饱和砂土循环动应力应变特性的弹塑性模拟研究.岩土工程学报,1995,17(2):1-12.
    211 Kabliamany K, Ishihara K. Cyclic behaviour of sand by the multiple shear mechanism model. Soil Dynamics and Earthquake Engineering, 1991, 10: 74-83.
    212 Matsuoka H, Sakakibara K. A constitutive model for sands and clays evaluating principal stress rotation. Soils and Foundations, 1987, 27(4): 73-88.
    213 Yamada Y, Ishihara K. Undrained deformation characteristics of sand in multi-directional shear. Soils and Foundations, 1983, 23(1): 61-79.
    214 Li X S. Free field soil response under multi-directional earthquake loading [Ph. D. Dissertation], University of California, Davis, 1990.
    215 李相崧,明海燕.旋转剪切对水平地层地震响应的影响.见:栾茂田主编.第五届全国土动力学学术会议论文集.大连:大连理工大学出版社,1998,53-64.
    216 Li X S, Shen C K, Wang Z L. Fully coupled inelastic site response analysis for 1986 Letung earthquake. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(7): 560-573.
    217 Arulanandan K, Li X S, Sivathasan K. Numerical simulation of liquefaction-induced deformations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(7): 657-666.
    
    
    218 Li X S, Wang Z L, Shen C K. SUMDES-A nonlinear procedure for response analysis of horizontally-layered sites subjected to multi-directional earthquake loading. Report to the Department of Civil Engineering, University of California, Davis, 1992.
    219 Abbo A J, Sloan S W. An automatic load stepping algorithm with error control. International Journal for Numerical Methods in Engineering, 1996, 39(10): 1737-1759.
    220 Zhang J-M, Shamoto Y, Tokimatsu K. Moving critical and phase-transformation stress state lines of saturated sand during undrained cyclic shear. Soils and Foundations, 1997, 37(2): 51-59.
    221 张建民,时松孝次,田屋裕次.饱和砂土液化后的剪切吸水效应.岩土工程学报,1999,21(40):398-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700