基于半物理仿真的海上平台沉浮运动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台是海上钻井采油的必备设施之一。为了适应各种不同的油田地质状况和海况条件,开发了各种不同结构形式的海洋平台,如导管架式平台、重力式平台、自升式平台以及张力腿平台等。随着各国对石油需求的日益增加,以及现有大型油田开采的日益衰竭,人们已经逐渐把目光转向储量小、地址条件恶劣、但数量庞大的边际油田。边际油田由于特殊的地质条件,其开采设施与开采方法也有其特殊性。一个共同的要求就是开采边际油田的海洋平台要有可移动性、结构形式简单、最好有储油功能等。
     为了满足边际油田开采的需要,目前国际上研制成功一种新形式的海洋平台,即桶形基础海洋平台。这种平台是依据负压桩原理,通过调节桶形基础内的压力实现平台的沉贯与拔出,国内外已对桶形基础的工作机理有了很深入的研究。随着此类平台逐渐被各国重视并投入使用,有一个越来越突出的问题摆在面前,那就是,由于桶形基础平台的可移动性,其从水底上浮到水面和从水面下沉到水底以及拖航这一系列环节应该以怎样的方式来进行?传统的方法是通过浮吊等大型海上施工机具来实现平台的沉浮和拖航,这对于需要经常移动的平台来说,无疑是大幅度的增加了施工成本,从而造成边际油田开发总体效益的下降。更主要的是,在浅水区域,大型施工机具根本无法进入。为了解决这一难题,本课题提出了通过抽注水的方法实现平台的自主沉浮,为桶形基础平台沉浮过程的实现提供了一个切实可行的技术方案,从而达到简化平台施工过程,降低平台施工成本的目的。平台自主沉浮是通过向各容腔(桶形立柱或经过密封处理的桶形基础)中注水或抽水的方法得以实现,即通过调节注水或抽水的总体流量实现平台的下沉或上浮,通过把总体流量适当分配给平台各容腔(即调节平台的质量分布),实现平台的平稳沉浮。
     为了验证这一策略的可行性,本文提出应用半物理仿真技术研究海上平台的沉浮过程。为了验证半物理仿真试验结果的可信度,本文以实验室一平台物理模型为研究实例,通过半物理仿真试验与物理模型试验结果的对比,充分证明了海上平台沉浮运动研究中应用半物理仿真技术是切实可行的,以抽注水的方法实现平台自主沉浮的控制策略是可以实现的,并且达到了纵向运动控制精度在±2°以内。
     本文总体目标是构筑海上平台沉浮过程半物理仿真试验系统,然后进行试验,并对试验结果进行深入分析研究,得出相应的结论。为了实现这一半物理仿真试验系统,需要建立平台沉浮过程的数学模型、研究沉浮过程的实时控制方法以及半物理仿真系统中其它各环节的实现。所以,总体上,本文分为三大块,即平台沉浮过程数学建模(第二
    
    摘要
    章)、半物理仿真系统设计与试验(第三章),以及试验结果比较分析与结论(第四、
    第五章以及结论部分)。具体各章研究重点如下:
     本文的第一章通过分析目前边际油田开发的技术现状、平台沉浮过程的研究进展,
    以及半物理仿真技术应用状况与前景,提出了本文的研究内容。
     第二章论述了半物理仿真试验系统中最重要的一环:平台沉浮过程的数学建模。首
    先是根据海洋平台沉浮过程的机理,给出了具有一定普遍意义的参数计算思路和方法,
    其中主要包括平台浮心、重心计算,稳心高以及回复力矩等参数。然后把平台的沉浮运
    动过程分解为横向运动和纵向运动,并对纵向运动按静力学原理进行建模与仿真,横向
    运动按动力学原理进行建模与仿真,并建立相应的数学模型,在横向运动建模中同时考
    虑了相关模态的祸合与非线性情况。
     第三章提出了应用半物理仿真方法对平台沉浮过程进行系统仿真的总体构想,并进
    一步分析平台半物理仿真系统各个环节之间的接口关系,通过适当简化使整个半物理仿
    真系统达到可实际操作的程度。根据仿真运算的具体情况,提出了在平台半物理仿真系
    统中,把平台纵向运动数学模型进行实时仿真,而对横向运动数学模型进行间歇仿真策
    略,有效解决了半物理仿真系统的实时性问题。较详细的论述了平台半物理仿真系统的
    控制软件与仿真软件,并给出了二者的通讯方法。并对平台半物理仿真系统中的一些关
    键环节进行了概述,包括水路设计、传感器布置以及虚拟仪器技术的应用状况。为了对
    平台半物理仿真结果进行校验,在进行半物理仿真试验的同时,也同时进行了模型试验,
    根据模型试验的结果可以用来进一步修改数学仿真模型。
     第四章对平台沉浮过程中的稳性进行研究。通过分析平台的初稳性和大倾角稳性,
    得出了平台初稳性在沉浮过程中的变化规律,并依据大倾角稳性分析,提出了平台施工
    前稳性校核的具体方法。
     第五章对平台沉浮过程中横向运动和纵向运动半物理仿真结果进行了分析研究,并
    与模型试验的结构进行了比较。给出了平台横倾角、纵倾角随吃水涤度变化关系,并得
    出相应的结论。对平台半物理仿真结果的可信度进行分析,并提出对模型进一步修改的
    意见。
     第六章对全文进行了总结,并给出本文的研究结论、创新之处以及对未来的展望。
Offshore platform is one of the most necessary equipments for oil extraction in the ocean. Many series of platforms have been developed in recent years, such as gravity platform, jacket platform, self-elevation platform and tension leg platform, etc., to meet different geologic and marine conditions. As the increase of the world oil demand and decrease of the large oil field reserves , people have to give their attentions to the thousands of small oil fields whose geologic conditions are generally bad. The extraction method and equipments needed in these kinds of oil fields are distinctive from those in normal oil field. Most basic requirements are that the platform can be used repeatedly, has the ability to store oil and has simple structure.
    For the need of extracting more marginal oil fields, a new-style platform has been developed, which is called bucket foundation offshore platform. This kind of platform has the pull-out and suction capability based on principle of suction pile. Much research work on bucket foundation mechanism has been done recently. As the recognition and use of this kind of platform, a question must be emphasized, that is how to make platform lower from marine surface to bed and raise from marine bed to surface. The raising and lowering procedures should be considered because of the platform's mobility. Traditional method is to depend on floating crane, On one hand, which increases the installation expenses, so that the total benefits of the oil exploitation decrease, on the other hand, which can not be carried out in shallow sea because of no way to offer enough sea gauge. In order to resolve this difficult problem, a new feasible method for the raising and lowering procedures of the platform is presented in this disserta
    tion. This method is called pumping-out-and-pumping-in method which means that self-raising or self-lowering of the platform is implemented by pumping water into the cavity or pumping water out of the cavity. The cavity is the bucket columns and/or sealed bucket foundations. That is to say, die raising or lowering procedure of the platform is controlled by regulating the total flow pumped in or pumped out of the cavity, and the platform stability is controlled by regulating every cavity flow.
    In fact, the platform is very large. If the test is performed in field, the cost must be high, and the test period is also very long, at the same time, there is danger in the test. In order to testify the feasibility of the method, hardware-in-the-loop simulation is used for analyzing the raising and lowering procedures of the platform in this dissertation. To validate the reliability
    
    
    
    
    of the hardware-in-the-loop simulation results, a platform model is bulit as the research example, and furthermore, model test and hardware-in-the-loop simulation test are performed synchronously. By this means, feasibility of the hardware-in-the-loop simulation applied in the research on the raising and lowering procedure of the bucket foundation platform, and the pumping-out-and-pumping-in method can be realized. Precision of the controlled longitudinal motion is less than ±2 degree.
    The final goal of this paper is to build hardware-in-the-loop simulation test system for the raising and lowering procedures of the platform, and to do the experimentation, then carefully to study the experimentation results so that conclusions are drawn at last. To build this system, the mathematic model during raising and lowering should be established firstly, then real-time control arithmetic must be carried out during test secondly, and the other part of the system also should be studied at last. So, there are three parts in this paper, which are establishment of the mathematic model(the second chapter), design and test of the hardware-in-the-loop simulation system(the third chapter), and analysis and conclusions of the experimentation results(the fourth, fifth and sixth chapter).
    The first chapter: based on the development of technology of the marginal oil fields, studies on the procedure of th
引文
1.朱世强,武星军,金波.半物理仿真——种事半功倍的工程设计方法.西北大学学报,1999,2
    2.陈鹰,谢英俊,徐立.液压仿真技术的新进展.液压与气动,1997,
    3.黄柯棣,等.系统仿真技术.长沙:国防科技大学出版社,1998
    4.邱大洪,王永学.21世纪海岸和近海工程的发展趋势.自然科学进展,2000,10(11)
    5.严世华.论海上边际油气田的开发.中国海洋平台,1996,11(1)
    6.陈惠民.海上边际油气田的意义和发展.中国海洋平台,1996,11(1)
    7.李书臣,赵礼峰.仿真技术的现状及发展.自动化与仪表,1999,14(6)
    8.王恒霖,曹建国.系统仿真的发展沿革与展望.系统仿真学报,1997,9(1)
    9.李伯虎,文传源.系统仿真技术新动向.计算机仿真,1996,13(3)
    10. Muhittin Soylemez. Motion response simulation of a TWIN-hulled semi-submersible. Ocean Engineering, 1998, 25(4,5)
    11. Z Yu, J Falnes. State-space modelling of a vertical cylinder in heave. Applied Ocean Research, 1995, 17
    12. C Shumin, A S J Swamidas, J J Sharp. Similarity method for modeling hydroelastic offshore platforms. Ocean Engineering, 1996,23(7)
    13.杨恒,蒋东方,范东远,等.虚拟仪器技术及其在激光陀螺稳频控制系统中的应用.测控技术.1998,17(5)
    14.季春群,黄祥鹿.海洋工程模型试验的要求及试验技术.中海洋平台,1996,11(5)
    15.陆严.潜水设备调节器的仿真研究.中国海洋平台,1996,11(2)
    16. K F Cheung, A C Phadke, D A Smith, S K Lee, L H Seidl. Hydrodynamic response of a pneumatic floating platform. Ocean Engineering, 2000, 27
    17. Christopher J Damaren. Time-domain floating body dynamics by rational approximation of the radiation impedance and diffraction mapping. Ocean Engineering, 2000, 27
    18. JAE CHUL CHUNG, ZEUNGNAM BIEN, YOUNG SEOG KIM. A note on ship-motion prediction based on wave-excitation input estimation. IEEE Journal of Ocean Engineering, 1990, 15(3)
    19. Soylemez M. Motion tests of a twin-hulled semi-submersible. Ocean Engineering, 1995, 22
    
    
    20. Soylemez M. A general method to calculate hydrodynamic force. Ocean Engineering, 1996, 23
    21.朱世强,武星军,林建亚.海浪模拟的三维仿真研究.船舶工程,1999,3
    22. Neves M, Perez N, Valerio L. Stability of small fishing vessels in longitudinal waves. Ocean Engineering, 1999,26(12)
    23. Francescutto Alberto, Contento Giorgio. Bifurcations in ship rolling: experimental results and parameter. Ocean Engineering, 1999,26(11)
    24. Xie N, Cheng J, Gao H. Simulation of motion time histories for ship in the seaway. Chuan Bo Li Xue/Journal of Ship Mechanics, 1998, 2(6)
    25. Gao H, Xie N, Shen W, Qian Y. Experimental study on effect of sloshing on ship roll motion. Chuan Bo Li Xue/Journal of Ship Mechanics, 1998, 2(6)
    26. Headland John R, POOh Ying-Keung. Numerical modeling of long wave ship motions. Proceedings of the Coastal Engineering Conference, 1998, 2
    27. Vassalos, Dracos. Shaping ship safety: The face of the future. Marine Technology, 1999, 36(2)
    28.武星军,朱世强,林建亚.RAN网络及其应用研究.仪器仪表学报.2001,22(1)
    29.沈曦.国外海洋工程高技术发展状态.中国海洋平台,1996,11(1)
    30.许肖梅.海洋技术概论.北京:科学出版社,2001,1
    31.黄新生.我国滩海油田开发中海工技术的发展.中国海洋平台,1996,11(4)
    32.张文洪,田中玮,张琪娜.滩海科移动钢制桶形负压基础平台.中国海洋平台,2001,16(1)
    33.王泉,任贵永,等.海上桶形基础采油平台结构分析.中国海洋平台,2000,11(6)
    34.彭军生,刘声蓉.自立式独柱平台的发展概况.中国海洋平台,1998,13(5、6)
    35.盛振邦,黄祥鹿.船舶横浪倾覆试验及其数值模拟.中国造船,1996,3
    36.林焰.船舶在波浪中的横摇运动及其稳性.中国造船,1993,3
    37.余音,胡毓仁,金咸定.船舶在波浪中非线性横摇研究的现状和发展.船舶力学,2000,1
    38.欧阳茹荃,朱继懋.船舶非线性横摇运动与混沌.中国造船,1999,1
    39.邱文昌.船舶近满载液体舱自由液面对稳性影响地修正方法.上海海运学院学报,1996,17(4)
    40.杨盐生.船舶在不规则风浪中地横摇运动.大连海运学院学报,1990,16(2)
    41.董艳秋,张延峰,唐友刚,等.总浪上船舶的动稳性研究.中国造船,1998,4
    42.杜度,张纬康.船舶非线性横摇运动方程的主参数共振.武汉造船,1999,2
    
    
    43.钟声扬,左其华.垂直桩柱上总波浪力地试验研究.海洋工程,1987,5(1)
    44. Wu Chong, Utsunomiya Tomoaki, Watanabe Eiichi. Harmonic wave response analysis of elastic floating plates by modal superposition method. Structural Engineering/Earthquake Engineering, 1997, 14(1)
    45. Suzuki H, Yoshida K. A consideration on the dynamic behavior and the structural design of large scale floating structure. Nihon Zosen Gakkai Ronbunshu/Journal of the Society of Naval Architects of Japan, 1995, 175
    46. Yoshida K, Iijima K, Suzuki H, Oka N. Analyses of response of large floating structures in waves and hydrodynamic interaction effects on their design. Nihon Zosen Gakkai Ronbunshu/Journal of the Society of Naval Architects of Japan, 1995, 178
    47. Murai M, Fujino M, Kagemoto H. On the predictions of hydroelastic behaviours of a huge floating structure in waves: A pontoon-type floating structure. Nihon Zosen Gakkai Ronbunshu/Journal of the Society of Naval Architects of Japan, 1995, 178
    48.俞修缪.波浪作用于垂直桩柱上的横向力.海洋学报,1989,11(2)
    49.戚心源,林吉如,何承渊,等.张力式平台在波浪中地性能.海洋工程,1986,4(3)
    50.王仲捷.海上座底式平台防冲刷实验研究.天津大学学报,1998,31(5)
    51.郑俊武,唐友刚,董艳秋,等.船舶横摇与纵摇运动地非线性耦合方程.天津大学学报,1998,31(6)
    52.钟铁毅,林哲,赵德有.船体波激振动频率地计算方法.大连理工大学学报,1995,35(2)
    53.严似松,黄根余.拖航系统大偏荡模型试验.上海交通大学学报,1996,30(10)
    54.王刚,陈铁云,唐文勇.圆柱壳在水下冲击载荷下的塑性动力屈曲分析.上海交通大学学报,1996,30(10)
    55.张绍文,倪汉根.水中悬臂结构振动与水动力特性研究.大连理工大学学报,1996,36(3)
    56.王惠秋,司媛春,周雅夫,等.大型储罐液位精确检测方法的研究.大连理工大学学报,1996,36(3)
    57.俞修缪,杜满海.波群地数值模拟和物理模拟.大连理工大学学报,1998,38(1)
    58. Wang Yanying, Qian Kun, Wang Dazheng. Effect of motion phases on wave load encountered by oceangoing ships, 大连理工大学报,1998,38(4)
    59.邢殿录,邓燕萍,周美.限制水域二维浮体水动力特性试验研究.大连理工大学学报,
    
    1998,38(4)
    60.刘鹰,赵琳.潜艇仿真数学模型的推导求解.哈尔滨工程大学学报,1999,20(2)
    61.张怀新,缪国平,刘应中,等.三维振荡船体贴体网络的生成.上海交通大学学报,1996,30(10)
    62.黄国樑,刘天威,严乃长,等.船舶在规则波中回转运动的研究.上海交通大学学报,1996,30(10)
    63.郑治国,赵德有,王镐章.螺旋浆的流固耦合分析.大连理工大学学报,1996,36(2)
    64.沈华,王少新,黄鼎良.超浅吃水箱工程船横摇及减摇研究.大连理工大学学报,1998,38(1)
    65.钟铁毅,赵德有.波浪中船体振动固有频率及响应计算研究.大连理工大学学报,1998,38(4)
    66.王言英,朱仁传,苗杰.波浪中航行浮体设计载荷与运动计算.大连理工大学学报,1998,38(4)
    67.潘永皓,苏兴翘,王日新.船舶水弹性的反对称波激响应.天津大学学报,1992,2
    68.尤学一,陶建华.流影响下非线性波对大尺度物体的载荷.天津大学学报,1992,2
    69.杨万禄,梁立华,滕桂兰.非线性系统稳定性问题分析.天津大学学报,1995,28(6)
    70.任冰,王永学.非线性波浪对结构物的冲击作用.大连理工大学学报,1999,39(4)
    71.王正欧,王康斌,韩建勋.神经网络在控制中的应用.天津大学学报,1995,28(5)
    72.季春群,J.E.W.WICHERS.转塔式锚泊系统的动力分析.上海交通大学学报,1999,33(3)
    73. P R Payne. Recent Development in "Added-Mass" Planing Theory. Ocean Engineering, 1994, 21(3)
    74. G Deleuil. Non Linear Spectral Method for Dynamic Analysis of Deep Water Platforms-Comparison with Time Domain Analysis. Offshore Engineering, 1989, 7
    75. Kagemoto Hiroshi, Fujino Masataka, Zhu Tingyao. On the estimation method of hydrodynamic forces acting on a very large floating structure. Applied Ocean Research, 1997, 19(1)
    76.朱荣,莫友声,张炎华.多变量耦合系统——三轴转台的稳定性.上海交通大学学报,1999,33(11)
    77.林青山,缪国平,李谊乐.潜体在不同浪向的双色波中受到的二阶慢漂力.上海交通大学学报,2000,34(1)
    78.岳宝增,刘延柱,王照林.求解液体大幅晃动问题的数值方法述评.上海交通大学学
    
    报,1999,33(6)
    79.李谊乐,刘应中,缪国平.舱内晃荡对船舶横摇影响的数值分析.上海交通大学学报,2000,34(1)
    80.余音,金咸定,胡毓仁,等.船舶横摇垂荡非线性耦合的动力不稳定区域.上海交通大学学报,2000,34(1)
    81.缪国平,李谊乐,刘应中.大数量圆柱绕射问题递推算法的理论基础.上海交通大学学报,2000,34(1)
    82.王秀勇,肖熙,潘建明.桶形基础强度分析.上海交通大学学报,2000,34(1)
    83.肖龙飞,季春群,彭涛,等.转塔式系泊生产储油轮低频振荡运动阻尼实验.上海交通大学学报,2000,34(1)
    84.黄衍顺,郭振邦,王立新,等.散货船破舱稳性计算.天津大学学报,1999,32(6)
    85.竺艳蓉编著.海洋工程波浪力学.天津:天津大学出版社,1991
    86.任贵永主编.海洋活动式平台.天津:天津大学出版社,1989.11
    87.黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社,1992
    88.李远林.波浪理论及波浪载荷.广东:华南理工大学出版社,1994
    89.梅中强.水波动力学.北京:科学出版社,1984
    90. Morgan W B, Lin W C. Predicting ship hydrodynamic performance in today's world. Naval Engineers Journal, 1998, 110(5)
    91. Tzeng, Ching-Yaw. Analysis of the pivot point for a turning ship. Journal of Marine Science and Technology, 1998, 6(1)
    92. Zhang W, Chen Y. Local and global bifurcations in the rolling motions of the ship. Proceedings of the International Conference on Nonlinear Mechanics, 1998
    93. Storti M, D'Elia J, Idelsohn S. Computing ship wave resistance from wave amplitude with a non-local. Communications in Numerical Methods in Engineering, 1998, 14(11)
    94. Sclavounos Paul D. Computational method as an advanced tool of ship hydrodynamic design. Transactions - Society of Naval Architects and Marine Engineers, 1998, 105
    95. Haddara M R, Xu J. On the identification of ship coupled heave-pitch motions using neural Networks. Ocean Engineering, 1999, 26(5)
    96. Chen P C. Variable stiffness spar (VSS) approach for aircraft maneuver
    
    enhancement. Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures. Structural Dynamics and Materials Conference, 1999,3
    97. El-Agooz Salah. Error rate of coherent modulation techniques for land mobile satellite. National Radio Science Conference, 1998
    98. Mancosu F. New methodology to get reliable input data for handling simulations. Tire Science and Technology, 1999,27(3)
    99. A Nestegard, M Mejlander-Larsen. Hydrodynamic added mass of a floating vibrating structure. Proceedings of the International conference on Hydroelasticity in Marine technology, 1994
    100. Maeda H, MiyajimaS, Masuda K, IkomaT. Hydroelastic responses of pontoon type very large floating offshore structure. Ninon Zosen Gakkai Ronbunshu/Journal of the Society of Naval Architects of Japan, 1995,178
    101. Murai Motohiko, Zhu Tingyao, Kagemoto Hiroshi, Fujino Masataka. Hydrodynamic and hydroelastic analyses of a very large floating structure in waves. Ocean Space Utilization Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, 1997,6
    103. Kota Ravikiran S, Falzarano Jeffrey M, Vakakis Alexander. Survival analysis of a deep-water floating offshore platform about its critical axis including coupling. Proceedings of the International Offshore and Polar Engineering Conference,1997,3
    104. Hoshino Kunihiro, Kato Shunji, Koterayama Wataru. Estimation method of viscous forces acting on floating offshore structures. Proceedings of the International Offshore and Polar Engineering Conference, 1997,3
    105. Hirayama T, Ma N. Dynamic response of a very large floating structure with active pneumatic control. Proceedings of the International Offshore and Polar Engineering Conference, 1997,1
    106. Sne11 R O, Gudmestad O T, Bunce JW. Offshore structures technology: research & development. Structural Engineer, 1997,75(5)
    107. Nayfeh A H, Fung J, Hajj M R, Mook D T. Parametric identification for a roll instability in a series S60-70 ship. Proceedings of the International Offshore and Polar Engineering Conference, 1998,3
    108. Francescutto A, Contento G, Biot M, Schiffrer L, Caprino G. Effect of excitation modeling in the parameter estimation of nonlinear rolling.
    
    Proceedings of the International Offshore and Polar Engineering Conference, 1998,3
    109. Yeung R W, Liao S W, Roddier D. On roll hydrodynamics of rectangular cylinders. Proceedings of the International Offshore and Polar Engineering Conference, 1998, 3
    110. Hua Shen, Dingliang Huang. Roll motion and stabilizing of a box-shaped ship with extra shallow draft. International Shipbuilding Progress, 1998, 45(443)
    111. Sparrevik P. Development of new platform foundation concept through instrumentation. Publikasjon-Norges Geotekniske Institutt/Norwegian Geotechnical Institute, 1996, 196
    112. Sparrevik Per. Suction in sand - new foundation technique for offshore structures. Publikasjon - Norges Geotekniske Institutt/Norwegian Geotechnical Institute, 1996, 196
    113.黄柯棣,等.系统仿真技术.北京:国防科技大学出版社,1998
    114.M.G.哈勒姆,等.海洋建筑物动力学.北京:海洋出版社,1981
    115.R.巴塔查雅.海洋运载工具动力学.北京:海洋出版社,1982
    116.王行仁.面向二十一世纪,发展系统仿真技术.系统仿真学报,1999,11(2)
    117.王东木.寻的制导导弹半物理仿真中的自动化综合测试.系统仿真学报,1997,9(3)
    118.赵玉清,张新邦,夏全.卫星半物理仿真系统实时接口研究与实现.系统仿真学报,1995,2
    119.李世保,刘常波,彭达胜,等.潜艇六自由度运动仿真器.计算机仿真,1996,13(1)
    120.施内克鲁特著,咸培林译.船舶水动力学.上海:上海交通大学出版社,1997
    121.姚新宇,黄柯棣.半实物仿真系统中的实时控制技术.计算机仿真,2000,17(1)
    122.董居忠,康凤举.某无人驾驶飞机的半实物仿真.航空学报,1997,18(2)
    123.王绍棣,谢涛,王汝传,等.一种基于虚拟现实技术的分布式半实物仿真平台研究和实现.系统仿真学报,2001,13(3)
    124.武星军.新型可移动桶形基础平台下沉上浮过程半物理仿真研究.浙江大学博士学位论文,2000,1
    125. P M Aas, K H Andersen. Skirted foundations for offshore structures. Offshore Southeast Asia 9th Conference & Exhibition World Trade Centre Singapore, 1992
    126. Roger J Webster. A Random number generator for ocean noise statistics. IEEE Journal of Ocean Engineering, 1994, 19(1)
    127. X J Wu, W G Price. An equivalent box approximation to predict irregular
    
    frequencies in arbitrarily-shaped three-dimensional marine structures. Applied Ocean Research, 1986, 8(4)
    128. W Koterayama. Wave forces acting on a submerged horizontal circular cylinder in oblique waves and on a vertical cylinder in deep waves. Ocean Engineering, 1980, 7
    129. A W Lipsett. A perturbation solution for nonlinear structural response to oscillatory flow. Applied Ocean Research, 1986, 8(4)
    130. Y S Li, S Zhan, S L Lau. In-line response of horizontal cylinder in regular and random waves. Journal of Fluids and Structures, 1997, 11
    131. H T Cuong, A W Troesch, T G birdsall. The generation of digital random time histories. Ocean Engineering, 1982, 9(6)
    132. S A Mavrakos, Koumoutsakos. Hydrodynamic interaction among vertical axisymmetric bodies restrained in waves. Applied Ocean Research, 1987, 9(3)
    133. E R Jefferys. Directional seas should be ergodic. Applied Ocean Engineering, 1987, 9(4)
    134. P-T D Spanos. Filter approaches to wave kinematics approximation. Applied Ocean Engineering, 1986, 8(1)
    135.李元.利用相似理论来指导建模.计算机仿真,1999,16(1)
    136.孟庆津.船舶在纵倾状态下进行倾斜试验时重心位置的计算方法.船舶工程,1981,6
    137.左远源.侧壁式气垫船初稳性的探讨.船舶工程,1981,6
    138. Cheli A Roberts, Yasser M Dessouky. An overview of objected simulation. Simulation, 1998, 70(6)
    139. Robert M Cubert, Paul A Fishwick. OOPM: an object-oriented multimodeling and simulation application framework. Simulation, 1998, 70(6)
    140. Huang Yen, Kim M H. Motion analysis of a new semi-dode multi-purpose offshore platform. Proceeedings of the 10th International Offshore and Polar Engineering Conference, 2000, 1
    141. Mendes Antonio C, Kishev Roumen, Chaplin John R, Tomchev Stefan. Experimental determination of the hydrodynamic loading on a model of offshore platform in waves and current, Proceeedings of the 10th International Offshore and Polar Engineering Conference, 2000, 1
    142. Yamamoto Ikuo, Terada Yuuzi. Development of inverse LMI method and its application
    
    to dynamic positioning system. Proceedings of the 1999 IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), 1999, 2
    143. Buford Jim A, Offutt Ancel M Jr, Reynolds Terry M. Development of a real-time Sensor Emulator System for Hardware-in-the-Loop testing. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4027
    144. McKee Douglas C. Advances in the Universal Programmable Interface. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4027
    145. Makar Robert J, Howe Daniel B. Real-time IR/EO scene generation utilizing an optimized scene rendering subsystem. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4027
    146. Soylemez, Muhittin. Non-linear restoring forces of an offshore platform. Ocean Engineering, 1998, 25 (2-3)
    147. Roitman Ney, Viero Paula F, Magluta Carlos, Rosa Luis Fernando Lomba. Identification of fixed offshore platform damage using numerical simulation. Proceedings of the 1998 17th International Conference on Offshore Mechanics and Arctic Engineering, 1998
    148. Pawsey S, Driver D, GebaraJ, Bole J, WestlakeH. Characterization of environmental loads on subsiding offshore platforms. Proceedings of the 1998 17th International Conference on Offshore Mechanics and Arctic Engineering, 1998
    149. Kawano Kenji , Venkataramana Katta, Hashimoto Tutomu. Dynamic response evaluations of offshore platform with huge deck loads. Proceedings of the 1998 8th International Offshore and Polar Engineering Conference, 1998
    150. Kota Ravikiran S, Falzarano Jeffrey M, Vakakis Alexander. Survival analysis of a deep-water floating offshore platform about its critical axis including coupling. International Journal of Offshore and Polar Engineering, 1998, 8 (2)
    151. Magluta Carlos, Lomba Rosa Luiz Fernando, Roitman Ney. Modal parameter estimation of a small scale model of an offshore platform: A comparison of two different algorithms. Proceedings of the 1997 10th International Symposium on Offshore Engineering, 1997
    152. Smith C E. Response of a steel-jacket platform subject to measured seafloor seismic ground motions. Proceedings of the 1996 Offshore Technology Conference, 1996
    153. 戴金海,半实物仿真系统的帧同步控制,计算机仿真,1995, 3
    154. 陈运涛,系统仿真应用与新发展,船电技术,2001, 1
    
    
    155.黄新生.滩海油田建设中桶形基础的开发和应用.中国海洋平台,1996,11(5)
    156.潘斌.座底式平台的沉浮稳性.中国海洋平台,1996,11(5)
    157.潘斌.自升式平台实际操作中的稳性问题.中国海上油气(工程),1997,9(1)
    158.冯铁城,俞湘三,戴李民.海洋固定平台导管架浮运过程分析.上海交通大学学报,1985,19(3)
    159.朗需英.三轴惯导测试台.系统仿真学报,2001,13(2)
    160.韩志强.移动平台拖航作业准备及校验.中国海洋平台,2001,16(1)
    161.冯长清.自升式平台的拖航稳性检验.中国海洋平台,1998,13(5,6)
    162.杨宗英.移动式钻井稳性交叉曲线的计算.上海交通大学学报,1981,2
    163.陈宗基.虚拟原型技术及其应用.测控技术,1998,17(1)
    164.刘卫东,高立娥,徐德民,等.水下航行器控制系统半实物仿真.计算机仿真,1999,16(1)
    165.李钢,刘正元,宋云露.新型潜艇运动仿真器的设计与实现.计算机仿真,1996,13(3)
    166.石波,陈淑珍,沈海鸿.VC与Matlab接口方法的剖析.计算机工程,2000,26(3)
    167.康凤举,杨惠珍.水下航行器半实物仿真系统的数字化和一体化设计.系统仿真学报,1999,11(2)
    168.康凤举,杨惠珍.一种数控式多圈回转三轴转台的设计与实现.船舶工程,1999,(2)
    169.康凤举,张海军.一种提高水压仿真器精度的新方法.系统仿真学报,1995,7(4)
    170.康凤举,何军红,等.水下航行器系统分布交互仿真技术研究.系统仿真学报,2001.13(2)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700