复杂应力条件下饱和松砂的不排水动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工建筑物与地基中土体的初始应力状态是复杂多样的,在主应力大小发生变化的同时,主应力的方向也在不断地变化。在如此复杂的初始应力状态下,当进一步承受波浪、地震等复杂循环荷载作用时,土的动力特性与本构关系将变得更加复杂。因而在实验室研制、开发能够模拟复杂初始应力条件和复杂循环剪切荷载状态的先进土工设备,并依此进行复杂波浪荷载环境或地震荷载条件下土的动力特性研究,是深入研究复杂荷载条件下土工建筑物与地基的静、动力响应与稳定性分析的基础与前提。这一问题不仅是土动力学与岩土地震工程研究中至关重要的基本课题,而且也是海洋平台等重大工程设施设计中首要解决的实际问题。
     本项研究力图能够考虑多种复杂初始固结条件与多种循环荷载条件及其组合影响,为研究复杂应力条件下土体的动力特性与本构关系,研制与开发静、动三轴—扭剪多功能剪切试验设备,发展实用的试验测试技术。并在此基础上,针对福建标准砂,着重系统地研究主应力方向对饱和砂土在多种复杂循环荷载条件下动力特性的影响,探讨了动力变形特性与应力—应变关系及动强度与孔隙水压力增长规律和残余应变发展模式,从而为土工动力稳定评价发展合理而实用的分析理论与计算方法提供了必要的试验基础。开展这项研究不仅对促进土动力学与海洋土力学学科的发展奠定坚实的试验基础具有很强的理论意义,而且对于改进重大工程结构及地基设计具有较大的实际参考价值。
     为了研究波浪与地震等复杂荷载条件下土的动力变形与强度特性,必须研制与开发能够实施复杂应力路径试验的先进的土工设备。在对设备设计有关的各类问题进行了广泛而深入研究的基础上,根据学校211工程重点学科“海洋和近海工程”建设计划,全面提出了这种设备的各种功能要求和技术参数,由日本诚研舍株式会社进行具体设计并加工制造,共同研制与开发了“土工静力—动力液压三轴—扭转多功能剪切仪”。进而完成了该设备的调试和运行及完善工作,该设备能够实现均等固结、多种不同初始条件下的非均等固结、K_0固结等多种复杂固结条件,静、动三轴拉压剪切与静、动扭转剪切以及静、动耦合剪切等多种静力与循环剪切的复杂应力路径试验,而且能够同时满足土的动力变形特性与动强度及孔隙水压力等特性两方面研究的精度需要,具有相当广泛的适用性。试验结果表明:竖向—扭转双向耦合循环剪切试验能够较好地模拟主应力轴连续旋转的复杂应力路径条件;采用内置式的荷载传感器和微小位移传感器,能够显著地提高试验测试精度。通过变化两向荷载的幅值、相位差和频率绘出的理想应力路径可以看出,该设备还能够实现更多种复杂应力路径的剪切试验,为开展更系统、深入的研究工作打下了良好的基础。
     利用新研制的多功能剪切仪,在均等固结条件和不同的三向非均等固结条件下,进行了循环三轴和循环扭剪、不同应力路径的竖向与扭转双向耦合循环剪切等12种类型循环剪切试验,采用内置于三轴室的轴力及扭矩双出力传感器和非接触式微小位移传感
    
    器测量荷载与位移,系统地研究了在复杂应力条件下饱和松砂的动力变形特性,包括应
    力一应变关系与动剪切模量、动等效变形模量和阻尼比变化规律,探讨了不同应力状态
    对松砂动力变形参数的影响。试验结果表明:均等固结条件下,应力一应变关系基本上
    不受循环剪切荷载方式的影响:石崛沪残或G/’G。一冷关系与循环荷载方式无关;不同循
    环剪切条件下的最大动剪切模量参数粉、nG和动变形模量参数概、nE基本一致;阻尼
    比随应变幅值的变化规律基本不受循环荷载剪切方式影响。因而,在均等固结条件下的
    复杂循环荷载条件基本上可以采用简单应力条件下所取得的动力变形参数。在非均等固
    结条件下,初始大主应力方向角对应力一应变关系、动模量和阻尼比随应变幅值的变化
    规律以及动变形模量参数掩、彻均具有较显著的影响;初始偏应力比的影响并不显著;
    各种应力路径试验所获得的剪切模量参数基本相近,而得到的变形模量稍有差别与初始
    大主应力方向角有关。但是采用弹性力学理论由变形模量换算得到的剪切模量与试验直
    接得到的剪切模量存在差别。
     针对饱和松砂(Dr=30%),分别在均等固结条件下和具有不同初始大主应力方向角的
    三向非均等固结条件下,分别进行了单独循环竖向、单独循环扭剪以及三种藕合循环应
    力路径等14种循环剪切试验。通过系统的分析分别研究了初始主应力方向、振动中主
    应力方向变化和振动荷载模式对松砂动强度的影响。研究表明:在均等固结条件下,振
    动中主应力方向不同变化方式对松砂的动强度具有较显著的影响;在均等固结和三向非
    均等固结条件下,圆形祸合循环剪切试验所得到的动强度普遍低于循环扭剪试验所得到
    的动强度,相对降低量约在10一30%之间;初始主应力方向对松砂的动强度具有非常显
    著的影响,随着初始大主应力方向角的增加,动强度降低;在循环扭剪和圆形祸合剪切
    两种类型的循环剪切试验中,松砂动强度随初始大主应力方向角的增大而非线性地降低
    的规律有所不同。主应力方向交替突变的不同循环应力路径在均等固结条件下的动强度
    普遍低于非均等固结条件下的动强度;?
The initial stress conditions for soil elements beneath the foundation under the building are usually rather complex. Before subjected to complicated cyclic loading induced by ocean wave and earthquake shaking, the principal stresses of subsoil element under the different places of building are not equal generally on three directions. The initial direction angle of maximum principal stress axe changes. Under this condition, the dynamic behavior of soils and the constitutive relation are very complicated. It is necessary to develop the experimental apparatus that can simulate complex condition of initial consolidation and cyclic shear and use it to investigate the correlation problem. It is not only basic problems of dynamic soils and geotechmcal earthquake engineering, but also the problems that have to solve for important project.
    In order to simulate complex stress path influences combined by initial consolidation condition and shear loading, the soil static and dynamic universal triaxial and torsional shear apparatus is developed. The effect of direction of principal stress on dynamic characteristic of saturated Fujian standard sand under complex stress condition is studied, such as dynamic deformation behavior of small strain, the relation of stress and strain, dynamic strength and the variations of pore water pressure and remaining strain. The findings based on this fundamental study will be instructive for improving design of important structures and foundation subjected to complex loading.
    On the basic of investigating the many problems about the design of the apparatus, the function demands and skill parameters are proposed. The apparatus is designed and newly facilized in Dalian University of Technology under the cooperation of Seiken Inc., Japan. The debugging and running of the complex and big apparatus has been finished. This apparatus can reproduce isotropic consolidation, anisotropic consolidation with different initial conditions, K consolidation. It can be used for complex stress conditions and stress path including static and dynamic triaxial test, static and dynamic torsional test, the cintinuous rotation of principal stress axes and can be used to perform various soil experimental tests of sands or clays. It is fulfilled the precision requirement for small strain behavior and large strain behavior. The results of experiment indicated that it is possible for this apparatus to simulate the complex stress path including rotation of principal stress axes. The precision of experiment ca
    n be improved by using with the loading sensors and small displacement sensors installed in the triaxial cell. It can be made out that the apparatus can realize many other kinds cyclic shear tests of stress path by changing the amplitude of vibration, phase difference and frequency of two cyclic loading.
    The apparatus is used to perform experimental tests of sand subjected to simple triaxial shear, simple trosional shear and verticalandtorsional coupling cyclic shear with different stress path. 12 types of test are perfomed under isotropic consolidation and third-directional anisotorpic consolidation with different effective consolidation pressures, different initial direction angle of principal stress, different initial deviator stress ratio to study the dynamic modulus and damping ratio behavior of small strain of sand under complex stress condition. The experimental results for different combination of various relevant parameters are reported
    
    
    and systematically analyzed. It is shown through comparative studies that the relations between stress and strain and the variations of damping ratio with strain under isotropic consolidation are not influence by the manner of cyclic loading, the relations of E/E or G/Go~X/r also. The parameters of and are consistent under different cyclic shear test, E and 獷 too. Under anisotropic consolidation, it has been shown that the initial orientation of principal stress axes has a considerable influence on relations between stress and strain, the variations of modulus and damping
引文
[1]郑维民.中国海洋工程地质研究.工程地质学报,1994,2(1):90-96.
    [2]顾小芸.海洋工程地质的回顾与展望.工程地质学报,2000,8(1):40-45.
    [3]邱大洪.海岸和近海工程学科中的科学技术问题.大连理工大学学报,2000,40(6):631-637.
    [4]Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed. Geotechnique, 1978, 28(4): 377-393.
    [5]Ishihara K and Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 1983, 23(4): 11-26.
    [6]王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素分析.岩石力学与工程学报,2001,20(增刊1):1132-1136.
    [7]Dakoulas P and Sun Y H. Behavior of fine sand under cyclic rotation of principal using the hollow cylinder apparatus. Proceeding of 2th Int. Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 1991. 535-542.
    [8]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度.水利学报,1996,(1):27-33.
    [9]沈瑞福,王洪瑾,周克骥,周景星.动主应力连续旋转下砂土孔隙水压力发展及海床稳定性判断.岩土工程学报,1994,16(3):70-78.
    [10]Ishihara K and A Yamazaki. Analysis of wave—induced liquefaction in seabed deposits of sand. Soils and Foundations, 1984, 24(3): 85-100.
    [11]姚仰平.真三轴应力条件下土动力非线性本构模型的新探讨.西安:西安理工大学,1995.
    [12]栾茂田,郭莹,李木国,王静,王栋,崇金著等.土工静力-动力液压三轴-扭转多功能剪切仪研制中若干问题探讨.见:刘汉龙,土动力学与岩土地震工程.北京:中国建筑工业出版社,2002.546-522.
    [13]钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展.岩土工程学报,1982,4(1):16-23.
    [14]Arthur J R F, Chua K S Dunstan T and Rodriguez D C. Principal stress rotation: a missing parameter. Journal of the Geotechnical Engineering Division, Proc. ASCE, 1980, 106 (GT4) : 419-433.
    [15]Symes M J, Gens A and Hight D W. Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique, 1984, 34(1): 11-27.
    [16]Rarham M S, Seed H B and Booker J R. Pore pressure development under offshore gravity structures. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT12): 1419-1436.
    [17]扬少丽,沈渭铨,杨作升.波浪荷载作用下海底粉砂液化的机理分析.岩土工程学报,1995,
    
    17(4):25-37.
    [18]魏峰先.大圆筒结构承载力的极限分析及有限元分析.大连理工大学硕士论文,2003.
    [19]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析.西安:陕西科学技术出版社,1995.
    [20]徐杨青,郭见扬.海洋土特殊工程性质的成因分析.岩土力学,1989,10(4):67-74.
    [21]吴京平,褚瑶,搂志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报,1997,19(5):49-55.
    [22]刘崇权,杨志强,汪稔.钙质土力学性质研究现状与进展.岩土力学,1995,16(4):74-84.
    [23]刘崇权,汪稔.钙质砂物理力学性质初探.岩土力学,1998,19(1):32-37,44.
    [24]虞海诊,汪稔.钙质砂动强度试验研究.岩土力学,1999,20(4):6-11.
    [25]Mao X, Fahey M, Randolph M F. Cyclic loading behavior of fine-grained calcareous soils: effect of mean and cyclic stress level. Proceeding of the 9th International Offshore and Polar Engineering Conference, Brest, 1999, 1: 548-555.
    [26]Christopher B R, Atmatzidis D K, Krizek R J. Laboratory testing of chemically grouted sand. Geotechnical Testing Journal, 1993, 12(2): 109-118.
    [27]Huang J T, Airey D W. Properties artificially cemented carbonate sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(6): 492-499.
    [28]Ismail M A, Joer H A, Randolph M F. Sample preparation technique for artificially cemented soil. Geotechnical testing Journal, 2000, 23(2): 171-177.
    [29]余跃,郭见扬.海洋土力学特性的实验研究.岩土力学,1987,8(1):19-29.
    [30]王淑云,楼志刚.海洋粉质粘土在波浪荷载作用后的不排水抗剪强度衰化特性.岩土工程学报,2000,18(1):39-43.
    [31]Hyodo M, Yamamato Y, Sugiyama M. Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress. Soils and Foundations, 1994, 34(4): 1-11.
    [32]王建华,要明伦,刘远峰.振动荷载作用下海洋原状软粘土不固结不排水强度特性.见:栾茂田,土动力学理论与实践.大连:大连理工大学出版社,1998.114-118.
    [33]王建华,陈诚,张庆河.波浪作用下海洋浅层软土弱化与场地稳定性.水利学报,1998,(10):13-17.
    [34]Hyodo M, Ito S Yamamoto T Fujii T. Cyclic shear behavior of marne clay. Proceeding of the 10th International Offshore and Polar Engineering Conference, Seattle, 2000, Ⅱ: 606-611.
    [35]Mukaitani M, Ichiinose E, Yatabe R, Yagi N. Shear strength characteristics of undisturbed and disturbed marine clays in Japan. Proceeding of the 9th International Offshore and Polar Engineering Conference, Brest, 1999, Ⅰ: 480-484.
    [36]Lee K L, Focht J A. Liquefaction potential at Ekofisk tank in North Sea. ASCE, 1975, 101(GT1): 1-18.
    [37]Breth H, Schwab H H. Liquefaction of a fully saturated sand under anisotropic initial state of stress in a controlled drainage system. Proceeding of DMSR 77, 1977, 2:149-159.
    
    
    [38]Umehara Y, Zen K, Hamada K. Evaluation of soil liquefaction potentials in partially drained conditions. Soils and Foundations, 1985, 25(2): 57-72.
    [39]李玉蓉,吴再光.饱和砂土部分排水振动三轴试验.见:全国土工建筑物与地基抗震学术讨论会仪论文汇编.1988.243-246.
    [40]黄锋,楼志刚,王世章,刘惠清.排水条件对海洋粉质土动力特性的影响的试验研究.见:第四届全国土动力学学术会议论文集,1994.97-101.
    [41]黄锋,楼志刚.排水条件对海洋粉质土动力特性的影响.岩土工程学报,1997,19(1):22-29.
    [42]Tatsuoka, F. Som recant developments in triaxial systems for cohessionless soils. Advanced Triaxial Testing of Soil and Rock, ASTM STP 977 (Edited by Robert T D, Ronald C C, Marshall L S), AETM, Philadelphia, 1988.7-67.
    [43]薛守义,王思敬.小浪底工程中原状泥化夹层的动三轴试验.岩土工程学报,1997,19(2):89-94.
    [44]朱腾明,张万昌,王幼青,张克绪.塔中油田沙漠砂动力特性试验研究.岩土工程学报,1998,20(3):97-101.
    [45]Chen Y C, Liao T S. Dynamic properties and state parameter of sand. Proceeding of the 9th International Offshore and Polar Engineering Conference, Brest, 1999, Ⅰ:: 529-538.
    [46]Chien L K, Oh Y N. Effects of pre-cyclic loading on strength resistance and liquefaction induce settlement of reclaimed soil. Proceeding of the 9th International Offshore and Polar Engineering Conference, Brest, 1999, Ⅰ: 575-582.
    [47]衡朝阳,何满潮,裘以惠.含粘粒砂土抗液化性能的试验研究.工程地质学报,2001,9(4):339-344.
    [48]Uchida K, Stedman J D. Liquefaction behavior of Toyoura sand under cyclic strain controlled triaxial testing. Proceeding of the 11th International Offshore and Polar Engineering Conference, Stavanger, 2001, Ⅱ: 530-536.
    [49]Cooling L F, Smith D B. The shearing resistance of soils. Proceeding Institution of Civil Engineering, London, 1936, 3: 333-343.
    [50]Broms B B, and Casbarian A O. Effects of rotation of the principal stress axes and of the intermediate principal stresses on the shear strength. Proceeding 6th International Conference on Soil Mechanics and Foundation Engineering, 1965, Ⅰ: 18-23.
    [51]Saada A S Testing of anisotropic clay soils. Journal of the Soil Mechanics and Foundations Division, ASCE. 1970, 96(SM5), Proceeding. Paper 7502:1847-1852.
    [52]Saada A S, Ou C D. Strain-stress relationship and failure of anisotropic clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM12): 1091-1111.
    [53]Ishihara A S, Sherif M A. Soil liquefaction by torsional simple shear device. Journal of Geotechnical Engineering Division, ASCE, 1974, 100(GT8): 871-887.
    [54]Ishihara A S, Yasuda S. Sand liquefaction in hollow cylinder torsion under irregular excitation. Soils and Foundations, 1975, 15(1): 45-59.
    [55]Lade P V. Torsion shear tests on cohessiless soil. Proceeding 5th Pan. Amarican Conference on
    
    Soil Mechanic, Buenos Aires, 1975, 1: 117-127.
    [56]Arthur J R F, Chua K S Dunstan T, Rodriguez D C. Principal stress rotation: a missing parameter. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(GT4): 419-433.
    [57]Hight D W, Gens A and Symes M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique, 1983, 33(4): 355-384.
    [58]Vaid Y P, Sayao A etal. Generalized stress-path-dependent soil behavior with a new hollow cylinder torsional apparatus. Canadian Geotechnical Journal, 1990, 27(5): 601-616.
    [59]Sayao A, Vaid Y P. A critical assessment of stress nonuniformities in hollow cylinder test spacimens. Soils and Foundations, 1991, 31(1): 60-72.
    [60]Nakata Y, Yamamoto O, et al. Development of automatically hollow cylinder torsional shear apparatus and its application to strain controlled test. Journal of Geotechnical Engineering, JSCE, 1994, (505/29): 329-332 (in Japanese).
    [61]Nakata Y, Hyodo M, Murata H, Yasufuku N. Flow deformation of sands subjected to principal stress rotation. Soils and Foundations, 1998, 38(2): 115-128.
    [62]中田幸男.主应力方向变动下異方性砂变形强度特性(?)研究.日本山口大学博士论文,1995.
    [63]李万明,周克骥,周景星.用扭剪仪研究主应力轴偏转的影响.见:第三届全国土动力学学术会议,上海,1990.239-242.
    [64]李万明,周景星.初始主应力轴偏转对粉土动力特性的影响.见:第四届全国土动力学学术会议论文集,杭州,1994.47-50.
    [65]李万明,周景星.扭剪与三轴试验中孔压不均匀性的研究.岩土力学,1991,12(4):33-39.
    [66]张国平,王洪谨,周克骥.内外室压力不等的空心圆柱扭剪仪的研制.见:第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994.65-70.
    [67]王伟胜.拉压与扭剪双向振动三轴仪微机控制系统研究.陕西机械学院硕士论文,1993.
    [68]胥洪远.拉压扭剪三轴仪微机控制系统研制.西安理工大学硕士论文,1994.
    [69]刘汉龙,周云龙,余湘娟,Nakasono Takeshi.静动多功能振动、扭剪三轴仪研制.见:刘汉龙,土动力学与岩土地震工程(第六届全国土动力学学术会议论文集).北京:中国建筑工业出版社,2002.540-545.
    [70]李作勤.扭转三轴试验综述.岩土力学,1994,15(1):80-93.
    [71]谢定义.土动力学.西安:西安交通大学出版社,1988.
    [72]Hardin B O, Richart F E. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1963, 89(1): 603-624.
    [73]Tokimatsu K, Yamazaki T, Yoshimi Y. Soil liquefaction evaluations by elastic shear module Soils and Foundations, 1986, 26(1): 25-35.
    [74]张建民,王稳祥.振动频率对饱和砂土动力特性的影响.岩土工程学报,1990,12(1):89-97.
    [75]Shiwakoti D R, Tanaka H, Tanaka M, Mishima O. A study on small strain shear modulua of undisturded soft marine clays. Proceeding of the Tenth International Offshore and Polar
    
    Engineering Conference, Seattle, USA, 2000. 455-460.
    [76]黄博,陈云敏,殷建华,吴世明.控制试样初始剪切模量的动三轴液化试验.岩土工程学报,2000,22(6):682-685.
    [77]顾尧章.海底粘土的剪切模量.岩土工程学报,1995,17(2):29-35.
    [78]王建华,杨进良,陈诚.海洋原状软粘土不固结不排水剪切模量循环弱化特性.见:栾茂田,土动力学理论与实践.大连:大连理工大学出版社,1998.109-113.
    [79]何昌荣.动模量和阻尼的动三轴试验研究.岩土工程学报,1997,19(2):39-48.
    [80]简连贵,张(?)君,胡渊南.初始剪应力对外海回填土壤动态特性之影响.岩土工程学报,1999,21(4):420-426.
    [81]王桂萱.土非排水操返断举动损失(?)基础的研究.日本东京工业大学博士论文.1998.
    [82]阮永芬,巫志辉.饱和粉土的若干动力特性研究.岩土工程学报,1995,17(4):100-106.
    [83]郭中华,余湘娟,严蕴.循环荷载作用软土计算模型初探.河海大学学报,2002,30(1):109-112.
    [84]孔宪京,贾革续,邹德高,娄淑莲,韩国城.微小应变堆石料的变形特性.岩土工程学报,2002,23(1):32-37.
    [85]孔宪京,娄淑莲,邹德高,贾革续,韩国城.筑坝堆石料的等效动剪切模量与等效阻尼比.水利学报,2001,8:32-37.
    [86]郭莹,栾茂田,董秀竹,王栋.不同应力条件下砂土动模量特性的试验对比研究.水利学报,2003,(5):41-45.
    [87]郭莹,董秀竹,栾茂田,王栋,李木国,王静.波浪荷载作用下砂土动力变形特性的试验研究.见:刘汉龙,土动力学与岩土地震工程(第六届全国土动力学学术会议论文集).北京:中国建筑工业出版社,2002.622-627.
    [88]Burland J B. Ninth Laurits Bjerrum Memorial lecture: "Small is beautiful" —the stiffness of soils at small strain. Canadian Geotechnical Journal, 1989, 26:499-516.
    [89]Puzrin A M, Burland J B. Non-liner model of small-strain behavior of soils. Geotechnique, 1998, 48(2): 217-233.
    [90]Puzrin A M, Burland J B. Kinematic hardening plasticity formulation of small strain behavior of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24:753 -781.
    [91]伊颖锋,施建勇.土体小应变特性的研究进展.工程勘察,2002,(2):12-13.
    [92]Yamamoto T, Koning H L, Spellmeigher H, Hijum E V. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, 1978, 78: 193-206.
    [93]Towhata I, and Ishihara K. Undrained strength of sand undergoing cyclic rotation of principal stress axes. soils and foundations, 1985, 25(2): 135-147.
    [94]Towhata I, and Ishihara K. Shear work and pore water pressure in undrained shear. Soils and Foundations, 1985, 25(3): 73-84.
    
    
    [95]Ladd R. Preparaing test specimens Using undercompaction. Geotechnical Testing Journal, 1978, 1(1): 16-23.
    [96]Lade P. Single hardening model with application to NC clay. Journal of the Geotechnical Engineering Division, ASCE, 1990, 116(3): 394-414.
    [97]Ishihara K, Yamazaki A, Haga K. Liquefaction of K_0-consolidation sand under cyclic rotation of principal stress direction with lateral constraint. Soils and Foundations, 1985, 25(4): 63-74.
    [98]Pradel D, Ishihara K, Gutierrez M. Yielding and flow of sand under principal stress axes rotation. Soils and Foundation, 1990, 30(1): 87-99.
    [99]Yamada Y, Ishihara K. Undrained deformation chracteristics of loose sand under three-dimensional stress conditions. Soils and Foundations, 1981, 21(1): 97-107.
    [100]Symes M J, Shibuya S, Hight D W, Gens A. Liquefaction with cyclic principal stress rotation. Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, 1985, 4: 1919-1922.
    [101]Vaid Y P, Uthayakumar M, Sivathayalan S, Robertson P K, Hofmann B. Laboratory testing of Syncrude sand. Proceeding of 48th Canadian Geotechnical Conference, 1995, 1: 223-232.
    [102]Vaid Y P, Sivathayalan S, Uthayakumar M, Ediadorani A. Liquefaction potential of reconstituted Syncrude sand. Proceeding of 48th Canadian Geotechnical Conference, 1995, 1: 319-330.
    [103]Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on unrained shear behavior of sand. Soils and Foundations, 1998, 38(3): 179-188.
    [104]Sato K, Yasuhara K, Higuchi T, Yoshida N. Effect of principal stress direction on undrained cyclic shear behavior of dense sand. Journal of Geotechnical Engineering, JSCE, 1996, 41/Ⅲ-35: 199-213 (In Japanese).
    [105]Sato K, Yasahara K, Yoshida N. Effect of drainage with pre-shearing on undrained cyclic shear behavior of dense sand. Proceeding of the 8th Intemational Conference on the Behavior of Off-Shore Structure, 1997, 1 : 85-97.
    [106]Sato K, Yoshida N. Effect of principal stress direction on undrained cyclic shear behavior of dense sand. Proceedings of the 9th International Offshore and Polar Engineering Conference, 1999, 1: 542-547.
    [107]Ishihara K, Yamazaki F. Cyclic simple shear tests on saturated sand in multi-directional loading. Soils and Foundations, 1980, 20(1): 45-59.
    [108]Yamada Y, Ishihara K. Undrained deformation chracteristics of sand in multi-direction shear, Soils and Foundations, 1983, 23(1): 61-79.
    [109]李相菘,明海燕.旋转剪切对水平地层地震响应的影响.见:栾茂田,土动力学理论与实践.大连:大连理工大学出版社,1998.53-64.
    [110]王洪瑾,马奇国,周景星,周克骥.土在复杂应力状态下的动力特性研究.水利学报,1996,(4):57-64,72.
    [111]付磊,王洪瑾,周景星.主应力偏转角对砂砾料动力特性影响的试验研究.岩土工程学报,
    
    2000,22(4):435-440.
    [112]王洪瑾,沈瑞福,马奇国.双向振动下土的动强度.清华大学学报(自然科学版),1996,36(4):93-98.
    [113]Oda M. The mechanics and their relations to mechanical properties of granular materials. Soils and Foundations, 1972, 12(2): 1-18.
    [114]Oda M. Deformation mechanism of sand in triaxial compression tests. Soils and Foundations, 1972, 12(4): 45-63.
    [115]Arthur J R F, Menzies B K. Inherent anisotropy in a sand. Geotechnique, 1972, 22(1): 115-128.
    [116]Oda M. Anisotropic strength of cohensionless sands. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(GT9): 1219-1231.
    [117]龙岡文夫,朴春植.砂变形·强度特性異方性Ⅰ-要素试验强度異方性.土基础,1993,41(7):79-87.
    [118]Miura S, ToKi D. A simple preparation method and its effect on static and cyclic deformation-strength properties of sand. Soils and Foundations, 1982, 22(1): 51-77.
    [119]Miura S, Toki D. Anisotropy in mechanical properties and its simulation of sand samples from natural deposits. Soils and Foundations, 1984, 24(3): 69-84.
    [120]Haruyama M, Kitamura R. Anisotropic deformation-strength properties of soft sedimentary rock 'Shirasu' originated from pyroclastic flows. Soils and Foundations, 1984, 24(4): 84-94.
    [121]Tatsuoka F, Sakamoto M, Kawamura T, Fukushima S. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils and Foundations, 1986, 26(1): 65-85.
    [122]Symes M J, Hight D W, Gens A. Investigating anisotropy and the effects of principal stress rotation and of the intermediate principal stress a hollow cylinder apparatus. Proceedings of IUTAM Conference on Deformation and Failure of Granular Materials, Delft, 1972:441-449.
    [123]Vaid Y P, Sivathayalan S. Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 2000, 37(3): 592-606.
    [124]Arthur J R F, Chua K S, Dunstan T. Dense sand weakened by continuous principal stress direction rotation. Geotechnique, 1979, 29(1): 91-96.
    [125]Shibuya S, Hight D W. A bounding surface for granular materials. Soils and Foundations, 1987, 27(4): 123-136.
    [126]Wong R K S, Arthur J R F. Sand sheared by stresses with cyclic variations in direction. Geotechnique, 1986, 36(2): 215-226.
    [127]Pradel D, Ishihara K, Gutierrez M. Yielding and flow of sand under principal stress axes rotation. Soils and Foundations, 1990, 30(1): 87-99.
    [128]Pradhan T B S, Tatsuoka F, Horii N. Simple shear testing on sand in a torsional shear apparatus. Soils and Foundations, 1988, 28(2): 95-112.
    [129]王洪谨,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响.岩土
    
    工程学报,1996,18(3):1-10.
    [130]殷宗泽.土的侧胀性及其对土石坝应力变形的影响.水利学报,2000,(7):49-54.
    [131]殷宗泽,徐志伟.土体各向异性及近似模拟.岩土工程学报,2002,24(5):547-551.
    [132]李广信,黄永男,张其光.土体平面应变方向上主应力.岩土工程学报,2001,23(3):358-361.
    [133]孙红,袁聚云,赵锡宏.软土的真三轴试验研究.水利学报,2002,(12):74-78.
    [134]王明洋,赵跃堂,钱七虎.饱和砂土动力特性及数值分析方法研究.岩土工程学报,2002,24(6):737-742.
    [135]王栋.波浪荷载作用下海床动力响应与液化的数值分析.大连理工大学博士论文,2002.
    [136]马时冬.平台地基在波浪荷载的循环位移和固结沉降估算.岩土力学,1991,12(4):1-10.
    [137]栾茂田,王栋,郭莹,王飞,刘占阁,许成顺等.海床与海洋地基的动力分析理论与设计方法研究进展评述.见:刘汉龙,土动力学与岩土地震工程(第六届全国土动力学学术会议论文集).北京:中国建筑工业出版社,2002.28-47.
    [138]刘颖,谢君斐.砂土震动液化.北京:地震出版社,1984.
    [139]Seed H B, Pyke R M, Martin G R. Effect of multidirectional shakeing on pore pressure development in sands. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(GT2): 27-44.
    [140]Ishihara K, Nagase H. Multi-direction irregular loading test on sand. Soil Dynamics and Earthquake Engineering, 1988, 7(4): 201-212.
    [141]谢定义,姚仰平.轴、扭振耦合三轴试验成果及其动力非线性模拟计算.见:栾茂田,土动力理论与实践.大连:大连理工大学出版社,1998.
    [142]Finn W D L. Liquefaction potential: developments since 1976. Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1981.
    [143]Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(GT5): 423-438.
    [144]Seed H B, Martin P P, Lysmer J. Pore-pressure changes during soil liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(GT4): 323-346.
    [145]石桥等.孔隙水压力上升机理与土的液化.地基基础译文集.北京:中国建筑工业出版社,1979.
    [146]Bjerrum L. Geotechnical problems involved in foundations of structures in the north sea. Geotechnique, 1973, 23(3): 319-358.
    [147]徐杨青,郭见扬.波浪荷载下海洋土孔隙水压力内时模型的研究.岩土力学,1991,12(3):43-52.
    [148]Seed H B, Idriss I M. On the importance of dissipation effect in evaluating pore pressure change due to cyclic loading. Soils Mechanics-Transient and cyclic loads, Chapter 4, 1982.
    [149]Seed H B, Rahman M S. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Marine Geotechnology, 1978, 3(2): 123-150.
    
    
    [150]Rahman M S, Seed H B, Booker J R. Pore pressure development under offshore gravity structures. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT12): 1419-1436.
    [151]Rahman M S, Layas F M. Pore pressure in ocean-floor sands under random waves. Marine Geotechnology, 1986, 6: 341-358.
    [152]陈仲颐,李向维.波浪引起的饱和土体残余孔压计算.见:第五届全国土力学与基础工程会议论文集.北京:中国建筑工业出版社,1990.675-681.
    [153]盛虞,姜朴,卢盛松.波浪作用下重力式平台地基中孔隙水压力的实验研究与有限元分析.海洋工程,1989,7(4):51-58.
    [154]Sekiguchi H. Kita K, Okamoto O. Response of poro-elastoplastic bed to standing waves. Soils and Foundations,. 1995, 35(3): 31-42.
    [155]黄文熙.土的工程性质.北京:水利电力出版社,1983.
    [156]Wijewickreme D, Vaid Y P. Stress nonuniformities in hollow cylinder torsional specimens. Geotechnical Testing Journal, 1991, 14(4): 349-362.
    [157]Ishihara K, Towhata I. Cyclic Behavior of sand during rotation of principal stress axes. Proceeding of the U S-Japan Seminar on New Models and Constitutive Relation in the Mechanics of Granular Materials, Ithaca, New York, 1982: 53-73.
    [158]Hardin B O, Dmevich V P. Shear modulus and damping in soils: design equation and curves. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, 1972, 98(7): 667-680.
    [159]王钟宁,俞培基.特性曲线归一化对土体动力反应的影响.见:中国土木工程学会第五届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1990.270-274.
    [160]Viggiani G, Atkinson J H. Stiffness of fine-grained at very small strains. Geotechnique, 1995, 45(2): 249-265.
    [161]郭莹,栾茂田,许成顺,何杨,史旦达,李木国.主应力方向变化对松砂不排水动强度特性的影响.岩土工程学报,2003(已录用,待发表).
    [162]钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [163]李广信,殷宗泽,闫明礼.土的基本性质和测试技术.见:第七届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1994.1-7.
    [164]陈愈炯.土工测试的现状及其改进.岩土工程学报,1997,19(4):119.
    [165]魏汝龙.室内试验和原位试验相辅相成不可偏废.岩土工程学报,1997,19(1):102-103.
    [166]沈珠江.关于土力学发展前景的设想.岩土工程学报,1994,16(1):110-111.
    [167]沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [168]谢定义.21世纪土力学的思考.岩土工程学报,1997,19(4):111-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700