滩海吸力式桶形基础承载力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸力式桶形基础是一种新型的海洋平台结构基础型式,它是伴随着边际油开发的需要应运而生的。这种新型的基础型式弥补了传统的导管架平台和重力式平台等固定式浅海海洋工程结构自重大、工程造价随水深大幅度地增加等不足;比较适宜于软土地基和恶劣的海洋环境,而且具有造价低、可重复使用等优势,被海洋石油专家誉为“导管架平台基础工程技术新时代的曙光”。随着我国在渤海以及近海海洋油气田的开发,桶形基础结构为软黏土地区海洋平台的建设提供了一条新路。然而,吸力式桶形基础在正常工作中,不仅受到上部海洋平台结构巨大自重及其设备所引起的竖向荷载的长期作用,而且一般往往遭受波浪与地震等所引起的水平荷载、力矩荷载的共同作用。目前,针对多种荷载分量共同作用的复合加载模式下吸力式桶形基础承载力特性的研究,尚缺乏被广泛认可的理论体系与计算方法,在我国进行实际工程应用还需要做大量的工作。因此,有必要针对复合加载模式下吸力式桶形基础结构的变形机理及其承载力特性,开展深入而系统的理论分析与数值计算等方面的综合研究,发展和完善深厚软黏土地基上吸力式桶形基础结构的有关设计理论体系与计算方法,为我国海洋平台吸力式桶形基础结构的设计与应用提供理论依据和技术支持。为此,本文着重围绕复合加载模式下软基上吸力式桶形基础结构的失稳破坏机制及其承载力特性等方面进行了比较系统而深入的探索,论文的主要研究工作包括下列方面:
     1.针对吸力式桶形基础负压沉贯安装过程形成的桶体内外渗流场,采用改变桶内海床泥面水头边界条件可以模拟不同的负压条件,从而建立了吸力式桶形基础负压沉贯渗流场数值分析模型,确定了沉贯过程中地基土性参数对渗流场水头分布及渗流水头损失等渗流场特性的作用。
     2.针对深厚软黏土等不良地基,提出了符合海洋地基稳定性分析的计算分析方法;进而,基于大型通用有限元分析软件ABAQUS,建立了软黏土地基上单桶结构及周围土体共同作用体系的三维弹塑性有限元数值分析模型,采用位移控制方法,通过系统地有限元数值计算,研究了不同荷载分量单独作用下吸力式桶形基础的失稳破坏模式及极限承载力特性,阐述了能够反映吸力式桶形基础地基极限承载力特性的经验计算关系式,为桶形基础的设计提供了重要的参考依据。
     3.根据有限元分析所得到的竖向荷载、水平荷载作用下软黏土地基上吸力式桶形基础失稳破坏模式,基于塑性极限分析原理,分别提出了竖向荷载、水平荷载作用下的三维极限分析上限解法。以此为基础,将本文所提出的极限分析上限解法所得到的极限承载与有限元分析所得到的相应结果进行了对比。根据对比结果的一致性,验证了本文所建议的极限分析上限解法的合理性。
     4.针对多种荷载分量共同作用的复合加载模式下吸力式桶形基础的承载性能,采用Swipe试验加载方法分别探讨了软黏土地基上单桶基础的承载力特性。
     首先,在大型通用有限元分析软件ABAQUS上,通过大量的三维弹塑性有限元数值分析,确定了不同的复合加载模式下地基的各种失稳破坏机制,绘制了不同荷载组合空间内地基的破坏包络面,进而基于Taiebat与Carter所提出的地基三维破坏包络面的经验数学表达形式,对其进行修正,提出了适合不同长径比的桶形基础在不同荷载空间内的地基破坏包络面数学表达式,结合有限元分析所得到的V-H-M荷载空间内单桶基础地基三维破坏包络面,以此评价复合加载模式下单桶基础的稳定性。进一步,针对国内外缺乏考虑倾斜荷载作用下桶形基础承载力特性的现状,通过考虑力矩荷载M=0情况下倾斜荷载作用对单桶基础承载力的影响,探讨了竖向倾斜荷载与水平倾斜荷载共同作用下偏心距e与倾斜荷载的相互关系,以此绘制了偏心距e与倾斜荷载V-H荷载空间内的三维破坏包络面。
     其次,基于ABAQUS二次开发,通过考虑软黏土不排水抗剪强度的横观各向异性和非均质性,分别探讨了不排水抗剪强度的横观各向异性和非均质性对吸力式桶形基础承载力特性的影响。
     最后,基于ABAQUS二次开发,通过考虑软黏土地基的循环累积变形以及荷载的循环特征,结合Andersen等所提出的软黏土循环强度概念,建立了一种变值(循环)复合加载模式下吸力式桶形基础的三维弹塑性拟静力循环有限元计算模型,针对不同循环次数,通过大量的的变值(循环)复合加载有限元数值计算,阐明了单桶基础在循环荷载作用下地基中应力状态变化特点和地基破坏模式,得到了单桶基础受不同循环荷载作用下循环极限承载力的变化规律;进而把变值(循环)复合加载模式与复合加载模式下桶形基础的不同荷载空间内的破坏包络面进行了对比分析。
     5.通过研究双桶、四桶组合基础在复合加载模式下的地基承载力特性,探讨了桶间距对双桶基础地基承载力的影响;进一步,结合我国第一座吸力式桶形基础采油平台CB20B实际工况,探讨了四桶基础结构的稳定性,通过绘制地基破坏包络面,对实际工况中的CB20B采油平台稳定性进行了评价。
As a novel type of foundation in beach-shallow sea, suction bucket foundation emerges in the need of exploration of boundary oil fields. The new kind of foundation makes up the defects of traditional pile platform and gravity platform, such as great gravity and high engineering cost. Bucket foundation is circular plate with skirts and has some advantages, for example, saving investment and iterative use. It is especially suitable for complex condition such as marine soft soil ground and worse sea environments, which has been praised as the dawn of skirted foundation. With the development of our national marine exploitations in Bohai Bay, suction bucket foundation is possible to construct platform in soft clay area. However, bucket foundation is not only subjected to the long-term action of vertical load induced by all weights of platform and equipment, but also is imposed by both horizontal load and moment caused by wind and wave as well as current. So far, the studies of bearing capacity behavior of bucket foundation in soft clay subjected to combined loads have been not well clarified and there are a lot of work to be done for our engineering use. Therefore it will be theoretically important and practically significant to examine the working mechanism and failure pattern and to work out effective methods for evaluating bearing capacity behavior of suction bucket foundation in soft ground under combined loads. In this dissertation, the studies are emphasized on numerical methods for evaluating the bearing capacity behavior and failure mechanism of suction bucket foundation in soft ground under combined loads. The main investigations consist of the following parts.
     1. To investigate the feature of seepage fields during the suction penetration of bucket foundation, the seepage field correspondent to different suction pressure can be simlutated by changing the boundary conditions based on the general-purpose FEM analysis package ABAQUS. It is addressed that the regulations of seepage field at one time are uniform during installation and the fluid fields are influenced by soil parameters and permeability.
     2. To evaluate the bearing capacity behavior of ocean foundation in thick soft ground, the rational analysis method is addressed. Based on general-purpose finite element software ABAQUS, the three-dimensional elasto-plastic finite element model for single suction bucket foundation and the surrounding soil is established. Moreover, the ultimate bearing capacity of suction bucket foundation subjected to monotonic load such as horizontal, vertical and moment load is evaluated by displacement-controlled method. The failure mechanisms of bucket foundation subjected to vertical load, horizontal load or moment load are investigated. Finially, the effect factors of ultimate bearing capacity of bucket foundation are confirmed through comparative study.
     3. Based on the failure mechanisms of FEM, the failure mechanism of bucket foundation under vertical load and horizontal load are assumed by the upper-bound limit analysis respectively. Comparison with results from FEM analyses based on ABAQUS shows that the proposed method is applicable. The upper-bound limit analysis of plasticity results can agree with that from the FEM within an acceptable accuracy.
     4. Based on the loading procedure of Swipe test, the bearing capacity behaviors of single bucket foundation under combined loads are investigated by FEM.
     Firstly, failure mechanisms of suction bucket foundation subjected to combined loads on homogeneous soft ground are evaluated by a lot of numerical analysis. Based on the failure envelopes in different load spaces and the experimental calculated equations about failure envelopes by Taiebat and Carter, the experimental calculated equations about failure envelopes are presented, which can be suitablitiy for any ratios of suction bucket foundations. With the failure envelope in V-M-H load space by FEM, the stability of bucket foundation is evaluated. Moreover, the bearing behavior of suctin bucket foundation under inclined loading is lack of studies in the nation and foreign. Considering M-0, a finite element method for assessing bearing capacity of offshore foundations or structures under eccentric and inclined loads is numerically implemented in the framework of the general-purpose FEM software package ABAQUS.
     Secondly, a series of numerical calculations are applied to investigate the bearing capacity behavior of bucket foundation in anisotropic or inhomogeneous soft clay and embedded into the finite element software ABAQUS through second-phase development.
     Thirdly, Based on the finite element software ABAQUS through second-phase development, a three-dimensional elasto-plastic quasi-static finite element model for assessing cyclic bearing capacity behavior of suction bucket foundation subjected to varied combined loads is developed, which is combining the concept of cyclic shear strength proposed by Andersen to consider cyclic softening behavior of soft clay seabed. The variation of stresses and failure mechanisms of bucket foundation under varied combined loads are investaged and the rules of cyclic ultimate strength are obtained. Moreover, based on the relationship of bearing capacity of foundation under combined loads and varied combined loads, the failure envelope under varied combined loads can be extrapolated according to that under combined loads.
     5. Based on studying the bearing behavior of double bucket foundation and four bucket foundation, the effection of distance between two foundations on double bucket foundations is investigated. Moreover, according to some actual work conditions of CB20B platform, the stability of four bucket foundations is evaluated and failure envelopes are plotted to assess the work conditions of CB20B platform.
引文
[1] 张志勇.海洋工程发展环境分析与市场投资预测[J].海洋工程,2005,(237):28-30.
    [2] 金伟良.海洋工程中的若干力学问题[J].科技通报,1997,(2):86-92.
    [3] 曹惠芬.世界深海油气钻进装备发展趋势[J].海洋工程,2005,(237):24-27.
    [4] 邱大洪.海岸和近海工程学科中的科学技术问题[J].大连理工大学学报,2000,40(6):631-637.
    [5] 顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40-45.
    [6] 栾茂田等.长江口深水航道治理工程大圆筒结构整体稳定性分析[R].大连理工大学岩土工程研究所研究报告(提交中交第四航务工程勘察设计院),2003年8月.
    [7] 刘振纹.软土地基上桶形基础稳定性研究[博士学位论文][D].天津:天津大学,2002.
    [8] 鲁晓兵,郑哲敏,张金来.海洋平台吸力式基础的研究与进展[J].力学进展,2003,33(1):27-40.
    [9] Partha, P S. Ultimate capacity of suction caisson in normally and lightly overconsolidated clays[PH.D][D]. Texas A & M University, 2004.
    [10] 李驰.软土地基桶形基础循环承载力研究[硕士学位论文][D].天津:天津大学,2006.
    [11] Tjelta T I. Geotechnical experience from installation of the Europipe jacket with bucket foundations. OTC7795, 1995, 897-908.
    [12] 施晓春,徐日庆,龚晓南,陈国祥,袁中立.桶形基础发展概况[J].土木工程学报,2000,33(4):68-92.
    [13] Senpere D, Auvergne G A. Suction piles-A proven alternative to driving or drilling[A]. OTC4206, 1982, 483-493.
    [14] Aas P M, Andersen K H. Skirted foundations for offshore structures[A]. The 9th Offshore South East Asia Conference, 1992, 1-7.
    [15] Bye A, Erbrich C, Tjelta T I. et al. Geotechnical Design of Bueket Foundations[A]. OTC7793, OTC'27, 1995, 869-883.
    [16] 张伟.滩海桶形基础三维弹塑性数值分析与模型试验研究[博士学位论文][D].天津:天津大学,2002.
    [17] 齐剑锋.粉质土中桶基负压沉贯过程及其土塞发展的研究[硕士学位论文][D].青岛:中国海洋大学,2003.
    [18] 张士华.海上桶形基础平台负压沉贯渗流场有限元分析[博士学位论文][D].青岛:中国海洋大学,2001.
    [19] 丁红岩,张明,李铁,陈星.筒型基础系缆平台沉/拨过程侧摩阻力原型测试[J].天津大学学报,2003,36(1):63-67.
    [20] Barheim M. Development and structural design of the bucket foundation for the Europipe Jacket[A]. OTC7792, 1995.
    [21] 施晓春,徐日庆,俞建霖,龚晓南,袁中立,陈国祥.桶形基础简介及试验研究[J].杭州应用工程技术学院学报,20000(12):39-42.
    [22] 朱儒弟,张亭健,胡福辰,孙东昌,徐松森.桶形基础模型负压沉贯的土工技术试验研究[J].海岸工程,1999,18(1):37-42.
    [23] 何炎平,谭家华.筒型基础的发展历史和典型用途[J].中国海洋平台,2002,17(6):10-14.
    [24] 王靖,许涛.海上桶形基础采油平台综合分析[J].海洋技术,2003,(3):27-28.
    [25] 王秀勇,肖熙,亓和平.负压原理在海洋工程中的应用[J].中国海洋平台,1999,14(5):1-6.
    [26] 李德堂,张爱恩,徐常胜.海上负压沉降与液压控制技术的应用[J].中国海洋平台,1998,13(5,6):28-31.
    [27] 何炎平,蒋如宏,谭家华.筒型基础总体尺寸初步设计方法[J].海洋工程,2001,19(2):18-22.
    [28] 王泉,任贵永,杨树耕.浅海桶基平台桶形基础结构设计分析[J].黄渤海海洋,2000,18(4):85-90.
    [29] 张伟,刘海笑,周锡初.挪威桶形基础平台计算理论综述[J].中国海洋平台.2000,15(2):24-25.
    [30] Steensen-Bach J O. Recent model tests with suction piles in clay and sand[A]. OTC6844, 1992, 323-330.
    [31] Wang M C, Nacci V A. Applications of the suction anchors in offshore technology[A]. OTC3203, 1975, 1311-1320.
    [32] Baerheim M, Statoil Hoberg L, Aker Engineering, et al. Development and structural design of the bucket foundations for the Europipe Jacket. OTC7792, 1995, 859-867.
    [33] 杨少丽,李安龙,齐剑锋.桶基负压沉贯过程模型试验研究[J].岩土工程学报,2003,25(2):236-238.
    [34] 杨少丽,Las Grande,齐剑锋.桶基负压沉贯下粉土中水力梯度的变化过程[J].岩土工程学报,2003,25(6):662-665.
    [35] 吴海滨,朱世强,陈鹰.基于半物理仿真的桶形基础平台沉浮过程研究[J].仪器仪表学报,2002,23(6):635-637.
    [36] 吴海滨,朱世强,陈鹰.桶形基础平台沉浮过程稳定性分析[J].浙江大学学报,2001,35(6):651-654.
    [37] 武星军.新型可移动桶形基础平台下沉上浮过程半物理仿真研究[博士学位论文][D].浙江:浙江大学,2000.
    [38] 刘振纹,王建华,秦崇仁,袁中立,陈国祥.负压桶形基础地基水平承载力研究[J].岩土工程学报,2000,22(6):691-695.
    [39] 施晓春,徐日庆,俞建霖,龚晓南,陈国祥,袁中立.桶形基础单桶水平承载力的试验研究[J].岩土工程学报,1999,21(6):723-726.
    [40] 张伟,周锡礽,余建星.滩海桶形基础极限水平承载力研究[J].海洋技术,2003,22(4):54-57.
    [41] 王庚荪,孔令伟,杨家岭.单桶负压下沉过程中土体与桶形基础的相互作用[J].岩土力学,2003,24(6):877-821.
    [42] Deng W, Carter J P. Inclined uplift capacity of suction caisson in sand[A]. OTC 12196, 2000.
    [43] Watson P G, Randolph M F. Combined lateral and vertical loading of caisson foundation[A]. OTC12195, 2000, 797-808.
    [44] Aubeny C P, Han S W, Randolph M F. Inclined load capacity of suction caisson[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27:1235-1254..
    [45] Clukey E C, Aubeny C P, MurffI D. Comparison of analytical and centrifuge model tests for suction caissons subjected to combined loads[A]. Proceedings of 22nd International Conference on Offshore and Arctic Engineering[C]. Mexico:OMAE, 2003, 37503.
    [46] 任贵永,许涛,孟昭瑛,徐松森,刘志安,初新杰.海上平台桶基负压沉贯阻力与土体稳定数值计算研究[J].海岸工程,1999,18(1):1-6.
    [47] Tjelta T I, Aas P M and Herstad J. The skirt piled Gullfaks C platform installation[A]. Offshore Technology Conference, 6473[C], 1990, 453-462.
    [48] Dyvik R, Andersen K H, Christian Madshus, et al. Model tests of gravity platforms I: description[J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(11): 1532-1549.
    [49] Andersen K H, Dyvik R, Lauritzsen R, et al. Model tests of gravity platforms II: interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(11):1550-1568.
    [50] Watson P G, Randolph M F. Combined lateral and vertical loading of caisson foundations[A]. Offshore Technology Conference, 12195[C], 2000, 797-808.
    [51] Dyvik R, Andersen K H, Svein Borg Hansen et al. Field tests of anchors in clay I: description[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10):1515-1531.
    [52] Andersen K H, Dyvik R, Schroder K et al. Field tests of anchors in clay II: predictions and interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(10): 1532-1549.
    [53] George B, Whitman R V, Marr W A. Permanent displacement of sand with cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(11): 1606-1623.
    [54] George B, Marr W A, John T C. Analyzing permanent drift due to cyclic loading[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(6):579-593.
    [55] Eide O, Andersen K H. Foundation engineering for gravity structures in the northern north sea[R]. Norweigen Geotechnical Institute, 1997,200:1-47.
    [56] Erbrich C T, Tjelta T I. Installation of bucket foundation and suction caissons in sand- geotechnical performance[A]. Offshore Technology Conference, 10990[C], 1999, 725-735.
    [57] Burgess I W, Hird C C. Stability of installation of marine caisson anchors in clay[J]. Canadian Geotechnical Journal, 1983,20:385-393.
    [58] Gharbawy S E, Olson R E. Laboratory modeling of suction caisson foundations[A]. Proceedings of the 8~(th) International Offshore and Polar Engineering Conference[C], Montreal, Canada, 1998, 537-542.
    [59] Gharbawy S E, Olson R E. Suction anchor installations for deep gulf of mexico applications[A]. Offshore Technology Conference, 10992[C], 1999, 747-754.
    [60] Gharbawy S L, Iskander M G, Olson R E. Application of suction caisson foundations in the gulf of mexico[A]. Offshore Technology Conference, 8832[C], 1998, 531-538.
    [61] House A R, Randolph M F, Borbas M E. Limiting aspect ratio for suction caisson installation in clay[A]. Proceedings of the 9~(th) International Offshore and Polar Engineering Conference[C], Brest, France, 1999,676-683.
    [62] Allersma H G B, Plenevaux F J B, Wintgens J. Simulation of suction pile installation in sand in a geocentrifuge[A]. Proceedings of the 7~(th) International Offshore and Polar Engineering Conference[C], Honolulu, 1997, 761-765.
    [63] Andersen K H, Jostad H P. Foundation design of skirted foundations and anchors in clay[A]. Offshore Technology Conference, 10824[C], 1999,383-392.
    [64] Andersen K H, Lauritzsen R. Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(5): 540-555.
    [65] Dyson G J, Randolph M F. Monotonic lateral loading of piles in calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(4): 346-352.
    
    [66] 洪学福,刘志安,陈学春等.桶形基础海上中间实验研究[J].海岸工程,1999,18(1):56-59.
    [67] 张亭健,朱儒弟,胡福辰,刘志安,徐松森.单只桶基安全负压沉贯操作方法物模试验初探[J].海岸工程,1999,18(1):25-32.
    [68] 何生厚,孙东昌.桶形基础采油平台负压沉贯阻力计算分析[J].中国海洋平台,2000,15(1):16-23.
    [69] 杨树耕,孟昭瑛,许涛,任贵永.海上筒基平台负压沉贯阻力的数值计算研究[J].海洋学报,1999,21(6):94-101.
    [70] 齐剑峰,冯秀丽,林霖,李安龙,杨少丽,周松望,刘涛.桶形基础及其作用下的粉质土海床失稳机制研究的试验设计[J].青岛海洋大学学报,2002,32(6):949-955.
    [71] 何厚生,徐松森,李卫星等.桶形基础沉贯室内模型试验研究[J].海岸工程,1999,18(1):18-24.
    [72] Hansen J B. A revised and extended formula for bearing capacity[J]. Danish Geotechnical Institute Bulletin, 1970, 28:5-11.
    [73] Vesic A S. Bearing capacity of shallow foundations[J]. Foundation Engineering Handbook Van Nostrand Reinhold, 1975, 121-147.
    [74] Meyerhof G G. Limit equilibrium plasticity in soil mechanics[A]. Proc. Application of plasticity and generalised stress-strain in geoteclmical engineering ASCE, 1980, 7-24.
    [75] Terzaghi K. Theoretical soil mechanics[M]. New York, 1943.
    [76] Nakase A. Bearing capacity of rectangular footings on clays of strength increasing linearly with depth[J]. Soils and Foundations, 1981, 21 (4): 101-108.
    [77] Tani K, Craig W H. Bearing capacity of circular foundations on soft clay strength increasing with depth[J]. Soils and Foundations, 1995, 35(4):21-35.
    [78] Houlsby G T, Wroth C P. Calculation of stresses on shallow penetrometers and footings[A]. In: Denness B. Seabed Mechanics[C]. London: Graham & Trotman, 1983, 107-112.
    [79] Green A P. The plastic yielding of metal junctions due to combined shear and pressure[J]. Journal of the Mechanics and Physics of Solids, 1954, 2:197-211.
    [80] 栾茂田,金崇磐,林皋.非均质地基上浅基础的极限承载力[J].岩土工程学报,1988,10(4):14-27.
    [81] 赵少飞.复合加载条件下海洋地基承载力特性数值分析方法研究[博士学位论文][D].大连:大连理工大学,2005.
    [82] 栾茂田,赵少飞,袁凡凡,吕爱种,武科.复合加载模式作用下地基承载性能数值分析[J].海洋工程,2006,24(1):34-40.
    [83] Meyerhof G G. The ultimate bearing capacity of foundations[J]. Geotechnique, 1951, 2:301-332.
    [84] Meyerhof G G. Some recent research on the bearing capacity of foundations[J]. Canadian Geotechnical Journal, 1963, 1:16-31.
    [85] Salencon J, Pecker A. Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, part Ⅰ: purely cohesive soil[J]. European Journal of Mechanics A-Solids, 1995, 14(3):349-375.
    [86] Salencon J, Pecker A. Ultimate bearing capacity of shallow foundations under inclined and eccentric loads, part Ⅱ: purely cohesive soil without tensile-strength[J]. European Journal of Mechanics A-Solids, 1995, 14(3):377-396.
    [87] Paolucci R, Pecker A. Soil inertia effects on the bearing capacity of rectangular foundations on cohesive soils[J]. Engineering Structures, 1997, 19(8):637-643.
    [88] Ukritchon B, Whittle A J, Sloan S W. Undrained limit analyses for combined loading of strip footings on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(3):265-276.
    [89] Ukritchon B, Whittle A J, Sloan S W. Undrained limit analyses for combined loading of strip footings on clay -disscussion[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(11): 1028-1029.
    [90] Ukritchon B, Whittle A J, Sloan S W. Undrained limit analyses for combined loading of strip footings on clay -closure[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(11):1028-1029.
    
    [91] Sloan S W. Lower bound limit analysis using finite-elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988,12(1):61-77.
    [92] Sloan S W, Kleeman P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 293-314.
    [93] Murff J D. Limit analysis of multi-footing foundation systems[A]. Proceedings International Conference on Computer Methods and Advances in Geomechanics[C], 1994,233-244.
    [94] Martin C M. Physical and numerical modeling of offshore foundations under combined loads[Ph.D Thesis][D], Wellington Square: The University of Oxford, 1994.
    [95] Bransby M F, Randolph M F. The effect of embendment depth of the response of skirted foundations to combined loading[R]. Department of Civil Engineering, The University of Western Australia, 1998.
    [96] Bransby M F, Randolph M F. Combined loading of skirted foundations[J]. Geotechnique, 1998, 48: 637-655.
    [97] Byrne B W, Houlsy G T. Experimental investigations of the cyclic response of suction caissons in sand[A]. Offshore Technology Conference, 12194[C], 2000, 787-795.
    [98] Sherif E G, Olson R. The pullout capacity of suction caisson foundations for tension leg platforms[A]. Proceedings of the. 8~(th) International Offshore and Polar Engineering Conference[C], Ottawa, Canada, 1998, 531-536.
    [99] Allersma H G B, Kierstein A A, Maes D. Centrifuge modeling on suction piles under cyclic and long term vertical loading[A]. Proceedings of the. 10~(th) International Offshore and Polar Engineering Conference[C], Seattle, USA, 2000,334-341.
    [100] Allersma H G B, Brinkgreve R B J, Simon T. Centrifuge and numerical modeling of horizontally loaded suction piles[J]. International Journal of Offshore and Polar Engineering, 2000, 10(3):223-235.
    [101] Deng W, Carter J P. A theoretical study of the vertical uplift capacity of suction caissons[A]. Proceedings of the. 10~(th) International Offshore and Polar Engineering Conference[C], Seattle, USA, 2000, 342-349.
    
    [102] Gharbawy S E, Olson R. The cyclic pullout capacity of suction caisson foundations[A]. Proceedings of the 9~(th) International Offshore and Polar Engineering Conference[C], Brest, France, 1999, 660-663.
    [103] Narasimha S, Ravi R, Ganapathy C. Pullout behaviour of model suction anchors in soft marine clays[A]. Proceedings of the 7~(th) International Offshore and Polar Engineering Conference[C], Honolulu, 1997, 740-744.
    [104] Takatani T, Maeno Y H. Dynamic response of caisson with suction and its foundation due to wave[A]. Proceedings of the 7th International Offshore and Polar Engineering Conference[C], Honolulu, 1997, 861-867.
    [105] Takatani T, Maeno Y H. Dynamic response of caisson with suction soft seabed[A]. Proceedings of the 6th International Offshore and Polar Engineering Conference[C], Los Angeles, USA, 1996, 536-543.
    [106] Clukey E C, Mordson M J, Gamier J, et al. The response of suction caisson in normally consolidated clays to cyclic tip loading conditions[A]. Offshore Technology Conference, 7796[C], 1995, 909-918.
    [107] Randolph M F, O'Neill M P, Stewart D P and Erbrich C T. Performance of suction anchors in fine grained calcareous soils[A]. Offshore Technology Conference, 8831 [C], 1998, 521-529.
    [108] Renzi R, Maggioni W, Smits F, et al. A centrifugal study on the behaviour of suction piles[A]. Centrifuge 91 [C], Balkema, Rotterdam, 1991, 169-176.
    [109] Fuglsang L D, Steensen-Baeh J O. Breakout resistance of suction piles in clay[A]. Centrifuge 91[C], Balkema, Rotterdam, 1991, 153-159.
    [110] Byrne B W, Houlsy G T. Experimental investigations of the response of suction caissons to transient combined loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3):240-253.
    [111] Gottardi G, Houlsby G T, Butterfield R. Plastic response of circular footings on sand under general planar loading[J]. Geotechnique, 1999, 49(4): 453-469.
    [112] Martin C M, Houlsby G T. Combined loading of spudcan foundations on clay: laboratory tests[J]. Geotechnique, 2000, 50(4):325-328.
    [113] 鲁晓兵,王义华,张建红,孔国亮,时忠民.水平动载下桶形基础变形的离心机实验研究[J].岩土工程学报,2005,27(7):789-791.
    [114] 施晓春,龚晓南,俞建霖,陈国祥.桶形基础抗拔力试验研究[J].建筑结构,2003,33(8):49-56.
    [115] 施晓春.水平荷载作用下桶形基础的性状[博士学位论文][D].杭州:浙江大学,2000.
    [116] 王晖,王乐芹,周锡礽,肖任宝.软黏土中桶形基础的上限法极限分析模型及其计算[J].天津大学学报,2006,39(3):273-279.
    [117] Meyerhof G G. An investigation of the bearing capacity of shallow footings on dry sand[A]. Proc. Second Int. Conf. Soil Mech., 1948, 1:237-242.
    [118] Deng W, Carter J P. A theoretical study of the vertical uplift capacity of suction caissons[A]. Proceedings of the 10th International Offshore and Polar Engineering Conference, 2000, 342-349.
    [119] Murff J D, Hamilton J M. P-ultimate for undrained analysis of laterally loaded piles[J]. ASCE Journal of Geotechnical Engineering, 1993, 119(1):91-107.
    [120] Aubeny C P, Murff J D, Moon S K. Lateral undrained resistance of suction caisson anchor[J]. International of Offshore and Polar Engineering, 2001, 11(3):211-219.
    [121] Aubeny C, Han S, Murff J D. Suction caisson capacity in anisotropic, purely cohesive soil[J]. International Journal of Geomechanics, ASCE, 2003, 3(2):225-235.
    [122] Bang S, Cho Y. Ultimate horizontal loading capacity of suction piles[J]. International Journal of Offshore and Polar Engineering, 2002, 12(1):56-63.
    [123] 薛万东.浅海桶形基础平台抗拔力与抗倾稳定分析[J].黄渤海海洋,2001,19(3):87-92.
    [124] 孟昭瑛,梁子冀,刘孟家.浅海桶形基础平台水平承载力与抗滑稳定分析[J].黄渤海海洋,2000,18(4):1-5.
    [125] 吴梦喜,时钟明.桶形基础承载力计算的极限反力法[J].中国海洋平台,2004,19(4):476-480.
    [126] 吴梦喜,王梅,楼志刚.吸力式沉箱的水平极限承载力计算[J].中国海洋平台,2001,4:12-15.
    [127] 张伟,周锡礽,余建星.滩海桶形基础极限水平承载力研究[J].海洋技术,2003,22(4):54-57.
    [128] 果会成.浅海桶形基础采油平台承载力计算分析与试验研究[硕士学位论文][D].天津:天津大学,2000.
    [129] 严驰,李亚坡,袁中立.桶形基础竖向承载力理论计算方法及土性参数的敏感性分析[J].中国海洋平台,2004,19(1):31-36.
    [130] 严驰,李亚坡,袁中立.土性参数对桶形基础竖向地基承载力影响的敏感性分析[J].水运工程,2003(12):12-16.
    [131] 范庆来,栾茂田,杨庆.横观各向同性软基上深埋式大圆筒结构水平承载力分析[J].岩石力学与工程学报,2007,26(1):94-101.
    [132] Cassidy M J, Airey D W, Carter J P. Numerical modeling of circular footings subjected to monotonic inclined loading on uncemented and cemented calcareous sands[J]. Journal of Geoteehnical and Geoenvironmental Engineering, 2005, 131 (1):52-63.
    [133] Martin C M, Houlsby G T. Combined loading of spudcan foundations on clay: numerical modeling[J]. Geotechnique, 2001, 51 (8):687-699.
    [134] Martin C M. Physical and numerical modeling of offshore foundations under combined loads[D]. London: University of Oxford, 1994.
    [135] Bransby M F, Randolph M F. The effect of skirted foundation shape on response to combined V-M-H loadings[J]. Int. Journ. of Offshore and Polar Engineering, 1999, 9(3):214-218.
    [136] Hu Y X, Randolph M F. H-adaptive FE analysis of beating capacity of skirted foundations[A]. Proceedings of the Eighth International Offshore and Polar Engineering Conference, 1998, 549-556.
    [137] Bell R W, Houlsby G T, Burd H J. Finite element analysis of axisymmetric footings subjected to combined loads[J]. Computer Methods and Advances in Geomeehanics, 1992, 1765-1770.
    [138] Cao J, Phillips R, Popescu R. Numerical analysis of the behavior of suction caissons in clay[J]. International Journal of Offshore and Polar Engineering, 2003, 13(2): 154-159.
    [139] Zhao S F, Luan M T, Lu A Z. Numerical analysis of bearing capacity of foundation under combined loading[A]. Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics (ISFOG), 2005, 499-505.
    [140] 刘振纹,王建华,袁中立,陈国祥.负压桶形基础地基竖向承载力研究[J].中国海洋平台,2001,16(2):1-6.
    [141] 刘振纹.软土地基上桶形基础的稳定性研究[博士学位论文][D].天津:天津大学,2002.
    [142] 施晓春,龚晓南,徐日庆.水平荷载作用下桶形基础性状的数值分析[J].中国公路学报,2002,15(4):49-52.
    [143] 张伟,周锡礽,刘海笑,张建辉.滩海桶形基础平台三维有限元静力分析[J].中国海洋平台,2001,16(1):9-14.
    [144] 钱荣,周锡礽,孙克俐,张伟.桶形基础平台三维有限元稳定性分析[J].海洋技术,2003,22(4):49-53.
    [145] 王秀男,王泉,张亭键.有限元无限元接触单元耦合法在桶形基础结构与土壤相互作用分析中的应用[J].黄渤海海洋,2000,18(4):56-61.
    [146] 栾茂田,范庆来,杨庆.非均质软土地基上吸力式沉箱抗拔承载力数值分析[J].岩土工程学报,2007,29(7):1054-1059.
    [147] Hyodo M, Hyde A F L, Yamamoto Y, Fuji T. Cyclic shear strength of undisturbed and remoulded marine clays[J]. Soils and Foundations, JGS, 1999, 39(2):45-58.
    [148] Andersen K H, Pool J H, Brown S F, Rosenbrand W F. Cyclic and static laboratory tests on Drammen clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(5):499-529.
    [149] Andersen K H, Kleven A, Heien D. Bearing capacity for foundation with cyclic loads[J]. Journal of the Geotechnical Engineering Division, ASCE, 1988, 114(5):540-555
    [150] Yasuhara K. Postcyclic undrained strength for cohesive soils[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120(11): 1961-1979.
    [151] Matsui T. Cyclic stress-strain history and shear characteristics of clays[J]. J. Geotechnical engineering, ASCE, 1980, 106(10):1101-1120.
    [152] Matsui T, Bahr M A, Abe N. Estimation of shear characteristics degradation and stress-strain relationship of saturated days after cyclic loading[J]. Soils and Foundations, 1992, 32(1):161-172.
    [153] 周建,龚晓南.循环荷载作用下饱和软黏土应变软化研究[J].土木工程学报,2000,33(5):75-78.
    [154] Wang J H, Li C, Moran K. Cyclic undrained behavior of soft clays and cyclic beating capacity of a single bucket foundation[A]. Proceedings of 15th International Offshore and Polar Engineering Conference[C], Seoul, Korea, 2005, 2:377-383.
    [155] 刘海笑,王世水.改进的等效线性化计算模型及在结构海床耦合系统动力分析中的应用[J].中国港湾建设,2006,(1):12-15.
    [156] Wang Y Z, Zhu Z Y, Zhou Z R. Dynamic response analysis for embedded large-cylinder breakwaters under wave excitation[J]. China Ocean Engineering, 2004, 18(4):585-594.
    [157] 王淑云,楼志刚.海洋粉质黏土在波浪荷载作用后的不排水抗剪强度衰化特性[J].海洋工程,2000,18(1):38-43.
    [158] 闫澍旺,杨昌民,范期锦,谢世楞.波浪荷载作用下防波堤地基软化特性的试验研究[J].港工技术,2006,2:44-47.
    [159] 闫澍旺,邱长林,孙宝仓,章为民.波浪作用下海底软黏土力学性状的离心机模型试验研究[J].水利学报,1998,9:66-70.
    [160] 栾茂田,齐剑锋,聂影.循环应力下饱和黏土剪切变形特性试验研究[J].海洋工程,2007,25(1):43-49.
    [161] Guo W D, Zhu B T. Static and cyclic behavior of laterally loaded piles in calcareous sand[A]. Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics (ISFOG), 2005, 373-379.
    [162] Wang Y H, Lu X B, Wang SH Y, Shi ZH M. The response of bucket foundation under horizontal dynamic loading[J]. Ocean Engineering, 2006, 33:964-973.
    [163] 全伟良,宋志刚.水平循环荷载作用下单桩动力特性的数值模拟[J].海洋工程,2003,21(1):13-18.
    [164] 范庆来,栾茂田,杨庆,齐剑锋.考虑循环软化效应的软基上深埋大圆筒结构承载力分析[J].大连理工大学学报,2006,40(5):702-706.
    [165] 丁红岩,张浦阳.海上吸力锚负压下沉渗流场的特性分析[J].海洋技术,2003,22(4):44-48.
    [166] 孙东昌,张士华,徐松森,杨树耕,许涛,孟昭瑛,任贵永.海上桶基平台负压沉贯阻力与土体稳定数值计算研究[J].中国海洋平台,2000,15(2):20-23.
    [167] Hibbitt, Karlson and Sorrenson (HKS). ABAQUS user's manual 6.3[M]. Pawtucket, RI, USA. 2002.
    [168] 崔春义.桩-筏基础共同作用体系的时间效应数值分析与研究[博士学位论文][D].大连:大连理工大学,2007.
    [169] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1980.
    [170] 毛昶熙.渗流计算分析与控制[M].北京:水利水电出版社,1990.
    [171] 孙钧,汪炳鉴.地下结构有限元解析[M].上海:同济大学出版社,1988.
    [172] 何炎平,谭家华.筒型基础渗流场的有限元模拟与分析[J].中国海上油气(工程),2002,14(4):22-27.
    [173] 杜延龄,许国安.渗流分析的有限元法和电网络法[M].北京:水利水电出版社,1992.
    [174] 张士华,杨树耕.海上桶形基础平台负压沉贯渗流场有限元分析[J].黄渤海海洋,2000,18(4):18-22.
    [175] 丁红岩,杜杰,戚兰.吸力锚下沉过程中土塞高度计算[J].天津大学学报,2002,35(4):439-442.
    [176] Ngo-tran C L. The analysis of offshore foundations subjected to combined loading [Ph. D Thesis][D]. London: University of Oxford, 1996.
    [177] 洪学福,沈琪,郭景松.桶形基础平台桶基安装误差检测方法探讨[J].黄渤海海洋,2000,18:78-80.
    [178] 范庆来.软土地基上深埋式大圆筒结构稳定性研究[博士学位论文][D].大连:大连理工大学,2007.
    [179] Hesar M, KBR. Geotechnical design of the Barracuda and Caratinga suction anchors[A]. OTC15137, 2003, 1-9.
    [180] Vesic A S. Analysis of ultimate loads of shallow foundations[J]. Journal of the soil mechanics and foundations division, 1973, 99(Sm1):45-73.
    [181] Butterfield R, Houlsby G.T. and Gottardi G. Standardised sign conventions and notation for generally loaded foundations[J]. Geoteehnique, 1997, 47(5): 1051-1054.
    [182] Randolph M F, House A R. Analysis of suction caisson capacity in clay[A]. OTC14236, 2002, 2-12.
    [183] Wang ZH Y, Luan M T, Wang D, et al. Ultimate bearing capacity of suction caisson foundations in undrained soils[A]. Recent Development of Geotechnieal and Geoenvironmental Engineering in Asia, 2006, 229-234.
    [184] Deng W, Carter J P. Analysis of suction caissons in uniform soils subjected to inclined uplift loading[R]. Report No. R798, Department of Civil Engineering, The University of Sydney, Australia.
    [185] Taiebat H A, Carter J P. Interaction of forces on caissons in undrained soils[A]. Proceedings of the 15th International Offshore and Polar Engineering Conference[C], Seoul, Korea, 2005, 2:625-632.
    [186] Sukumaran B, Meearron W O, Jeanjean P, Abomeeda H. Efficient finite element techniques for limit analysis of suction caisson under lateral loads[J]. Computers and Geotechnics, 1999, 24(2):89-107.
    [187] Andersen K H, Murff J D, Randolph M F et al. Suction anchors for deepwater applications[A]. In: Gourvenec S and Cassidy M (Edited). Frontiers in Offshore Geoteehnics[C] (Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics, University of West Australia, Perth, Sept. 19-21, 2005), The Netherlands: Taylor and Francis/Balkema, 2005, 3-30.
    [188] 陈福全,龚晓南,竺存宏.大直径圆筒码头结构土压力性状模型试验[J].岩土工程学报,2002,24(1):72-75.
    [189] 徐光明,章为民,赖忠中.沉入式大圆筒结构码头工作机理离心模型试验研究[J].海洋工程,2001,19(1):38-44.
    [190] 年廷凯.桩—土—边坡相互作用数值分析及阻滑桩简化设计方法研究[博士学位论文][D].大连:大连理工大学,2005.
    [191] Shields R T, Drucker D C. The application of limit analysis to punch-indentation problems[J]. Jour. Appl. Mech., 1953, 20:435-460.
    [192] Brand E W,Brenner R P,叶书麟,宰金嶂等.软黏土工程学[M].北京:中国铁道出版社,1991.
    [193] Kusakabe O, Suzuki H, Nakase A. An upper bound calculation on bearing capacity of a circular footing on a non-homogeneous clay[J]. Soils and Foundations, 1986, 26(3): 143-148.
    [194] 范庆来,栾茂田,杨庆.软基上沉入式大圆筒结构的水平承载力分析[J].岩土力学,2004,25(增2):191-195.
    [195] 王元战,王海龙,付端清.沉入式大直径圆筒码头稳定性计算方法研究[J].岩土工程学报,2002,24(4):417-420.
    [196] 吴梦喜.软土地基中深埋式大圆筒结构的承载机制与稳定性分析方法[A].第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社.2003,593-598.
    [197] Randolph M F, Houlsby G T. The limiting pressure on a circular pile loaded laterally in cohesive soil[J]. Geotechnique, 1984, 34(4):613-623.
    [198] Tan F S. Centrifuge and theoretical modeling of conical footings on sand[D]. London: Cambridge University, 1990.
    [199] ISO. Petroleum and natural gas industries: Offshore structures: Part 4: Geotechnical and foundation design considerations, International Organisation for Standardisation 19900, 2002.
    [200] Taiebat H A, Carter J P. Numerical studies of the beating capacity of shallow foundations on cohesive soil subjected to combined loading[J]. Geotechnique, 2000, 50(4):409-418.
    [201] Bolton M. A guide to soil mechanics[M]. MacMillan Publishers, London, 1979.
    [202] Senders M, Kay S. Geotechinical suction pile anchor design in deep water soft clays[A]. Conference Deepwater Risers Mooring and Anchorings, London, 2002.
    [203] Bransby M. F. Failure envelopes and plastic potentials for eccentrically loaded surface footings on undrained soil[J]. International Journal for Numerical and Analytical Methods in Geomechanies, 2001, 25:329-346.
    [204] 袁凡凡,栾茂田,闫澍旺,林源.倾斜荷载作用下层状非均质地基的极限承载力[J].岩土力学,2004,25(增2):564-573.
    [205] Casagrande A, Carillo N. Shear failure in anisotropic materials[A]. Contributions of soil mechanics, Boston Society of Civil Engineering, 1944, 74-87.
    [206] Hill R. The mathematical theory of plasticity[D]. London: Oxford University, 1950.
    [207] Davis E H, Christian J T. Beating capacity of anisotropic cohesive soil[J]. J. Soil Mech. Found Div., Am. Soc. Civ. Eng., 1971, 75(5):753-769.
    [208] Ladd C C. Stability evaluation during staged construction[J]. Journal of the Geotechnical Engineering Division, ASCE, 1991, 117(4):540-615.
    [209] Andersen K H, Jostad H P. Foundations design of skirted foundations and anchors in clay[A]. Offshore Technology Conference[C], Houston, Texas, 1999, 383-392.
    [210] Gourvenec, S., Randolph, M.F. Three-dimensional finite element analysis of combined loading of skirted foundations on non-homogeneous clay[J]. Numerical Models in Geomechanics, 2002, 3:439-444.
    [211] Davis, E. H. and Booker, J. R. The effect of increasing strength with depth on the bearing capacity of clays[J].. Geotechnique, 1973, 23(4):551-563.
    [212] Houlsby, G. T. and Wroth, C. P. Calculation of stresses on shallow penetrometers and footings[A]. Proc. IUTAM/IUGG Seabed Mechanics[A], Newcastle, 1983, 107-112.
    [213] 刘振纹,秦崇仁,王建华.软黏土地基上循环承载力的计算模型研究[J].岩土力学,2004,25(增2):405-408.
    [214] 何生厚,洪学福.浅海固定式平台设计与研究[M].北京:中国石化出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700