随机和非线性波浪作用下海床动力响应和液化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波浪作用下海床和海洋地基的动力稳定性是近海及海洋工程建筑物在设计和建造时必须考虑的重要问题之一。目前结合波浪荷载特点和海洋土的实际工程特性的研究和设计并不多见。作者考虑波浪和波浪荷载的随机和非线性特性,同时考虑波浪-海床相互作用,建立了求解实际波浪荷载作用下海床动力响应和液化深度的精确计算模型,对应完善了解析解法和有限元数值解法,通过大量数值计算和对比分析,着重讨论了波浪在传播过程中受多孔介质海床消能的影响,以及波浪荷载的随机和非线性特性对于海床动力响应和液化深度的定量影响程度,为实际海洋环境条件下海床液化与稳定性评价提供理论基础和技术储备。论文的主要研究内容如下:
     1.重新推导和验证了基于准静态模式和完全动力响应模式的海床响应解析解,并给出两种模型的适用条件,为后续章节的研究内容奠定了理论基础;
     2.采用复变量解析法,基于准静态模式和完全动力响应模式推导和建立了能够考虑多孔介质海床对波浪传播影响的波散方程。通过变动海床和波浪的主要特征参数,进行数值计算和对比分析,探讨和归纳了多孔介质海床对于波浪传播影响的规律和特性。结果表明,海洋土体和波浪参数的变动对波长比L/L_0和能量衰减系数e_α都有不同程度的影响;基于两种计算模式计算得到的波长比L/L_0和能量衰减系数e_α随海洋土体及波浪参数的变化趋势基本相同;相同海况下,与准静态模式计算结果相比,基于完全动力响应模式计算得到的波长比L/L_0和能量衰减系数e_α更小;水深的变化对波长比L/L_0影响相对规则,与深水区相比,浅水区内的波浪传播更容易受到海床的消能影响,深水区波浪传播几乎不受到海床消能的影响;海洋土体参数的变动对波长比L/L_0变化的影响程度基本相同,但渗透系数和剪切模量变动引起能量衰减系数e_α的变化更明显;多孔介质海床对低频波浪传播的影响明显高于对高频波浪传播的影响;
     3.应用线性叠加法,采用平均JONSWAP谱模拟随机波浪,并考虑随机波浪-海床的相互作用,建立了新的求解随机波浪荷载作用下海床动力响应和液化深度的精确数值分析模型,并采用复变量解析法进行求解。结果表明,在随机波浪荷载作用下,海床动力响应具有较强的不规则性。同时由于波压力向海床内部传播具有时滞性,海床动力响应的峰值在时程上与随机波浪幅值的瞬时峰值不同步;由随机波浪理论计算得到的海床动力响应最大幅值沿海床深度方向的分布趋势与根据线性规则波浪理论得到的分布趋势基本相同,但数值上存在差异。其中采用传统随机分析方法的计算结果幅值最大,采用传统线性规则波浪理论的计算结果幅值最小,基于改进的随机分析模型的计算结果介于两者之间,三者之间的差值比较明显;根据随机波浪理论计算得到的海床最大液化深度明显大于线性规则波浪理论的计算结果,其中基于改进的随机分析模型得到的液化深度介于其他两种分析方法的结果之间。因此在海洋地基设计和自由场地安全评估时应该合理地考虑波浪荷载的随机特性。
     4.应用一阶椭圆余弦波和二阶Stokes波等非线性波浪理论,考虑浅水区波浪传播的非线性效应,在时域上采用有限单元法对非线性波浪荷载作用下饱和砂质海床的动力响应进行了数值求解,并与线性规则波浪荷载作用下海床动力响应进行了对比分析。计算结果表明:当波浪由深部向近岸浅部传播而发生变形时,随着无量纲参数L/d与T(g/d)~(1/2)的增大,波浪的非线性程度增大,海床中孔隙水压力和有效应力的幅值明显地增大;不同波浪理论计算结果表明,海床中有效应力和孔隙水压力幅值沿海床深度方向的变化趋势基本相同,但数值存在差异,根据非线性波浪理论计算所得到的海床动力响应均大于线性规则波浪理论的计算结果;由一阶椭圆余弦波与二阶Stokes波两种非线性波浪理论所得到的海床动力响应之间相互大小关系并不唯一,具体取决于波浪和海床条件的组合。
The analysis of dynamic response of seabed due to wave loading is of practical significance in design and construction of marine structures and offshore installations. Reccently Considerable efforts for this problem have been made with growing interest by many researchers and marine engineers, and many representative results have been achieved. It is obvious that wave loading plays a significant role in the evaluation of construction safety and seabed instability. But there are few results of research and engineering design that can consider the feature of wave loading and soil parameters together. The purpose of this thesis is to establish a reasonable numerical model to simulate the characteristics of randomness and non-linearity of wave loading. The dynamic correaltion between wave and seabed can also be described through this model. Comparative parametric studies are principally made between the proposed analysis considering actual feature of ocean situation and conventional analysis based on linear theory of regular wave. The effect of randomness and non-linearity of wave loading on the dynamic response of seabed is investigated. The necessity is discussed about considering the influence of eliminating energy on propagating wave by porous seabed. The main investigations consist of the following parts:
     1. The analytical solutions based on quasic-static model and dynamic model are derived and verified. The necessary condition of adoping dynamic model is discussed. Modifed expression provides the acdemic basis for the following research.
     2. Based on quasi-static model and dynamic model, the analytical method with complex value is adopted to derive and establish wave dispertion eqaution, which can be used to consider the influence of porous seabed on wave propagating. The interactions between seabed and wave are described through numerous compared numerical resluts of parametric studies. The results show that the variation of soil parameters and wave diagnostic parameters have great effects on wave length ratio L/L_0 and the coefficient of energy attenuation e_α.The results of aforementioned two non-dimensional parameters based on dynamic solution are less than the results based on quasic-static solution. The distributions of L/L_o and e_αverus the parameters of wave and seabed are same with each other between analitcal results based on two kinds of model. When wave propagates over shallow water region, the wave energy loses much rapidly than on deep water region. It is expected that porous seabed almost has no effect on wave propagating in the region of very deep water. Among the parameters of soil, permeabilty and shear modulus have distinct effects on the coefficient of energy attenuation e_α. Compared with the sea wave of high frequence, the sea wave with low frequence is more readily to be influenced by porous seabed. The difference between proposed wave dispertion equation and traditional wave dispertion equation is checked, which is uesful for pratical marine engineering.
     3. In conventional analyses of seabed dynamics, wave loading is basically treated as a deterministic process and is usually taken into consideration by using linear theory of regular wave. In fact, ocean wave is of intrinsic randomness in both time sequences and spatial distribution. The random nature of both wave and wave-induced loading will subsequently affect dynamic behavior of seabed. In this thesis, the analyses which can consider characteristics of randomness of wave loading and dynamic interaction between seabed and wave together, are formulated in a stochastic framework. Integrated numerical analysis model is established by employing wave spectrum. The comparative studies are conducted among the methods of traditional random analysis, modified random analysis, and linear regular wave theory. The results show that the amplitudes of dynamic response of seabed subjected to random wave loading are larger than that of regular linear wave loading. Therefore the stochastic feature of wave loading has to be duly taken into account in the analysis for dynamic response of seabed.
     4. The numerical analyses adopting finite element method are performed for dynamic response of sandy seabed subjected to non-linear wave loading in the shallow water region. The non-linear wave loading is represented by second-order Stokes wave theory and first-order cnoidal-wave theory. Numerical results are calculated for comparative studiesbased on two non-dimensional parameters, L/d and T(1/2)g/d . Compared with the numericalresults from the linear wave theory, the amplitudes of dynamic responses computed by non-linear wave theories increase. It is shown that the linear theory of wave usually underestimate the dynamic response of seabed in the shallow water region. Therefore, the effect of non-linear characteristics of wave loading should be taken into consideration in planning and design of various marine or offshore constructions and facilities.
引文
1.邱大洪.海岸和近海工程学科中的科学技术问题.大连理工大学学报,2000,40(6):631-637.
    
    2.钱寿易,楼志刚,杜今声.海洋波浪作用下土动力特性的研究现状和发展.岩土工程学报,1982, 4(1):16-23.
    
    3.郑维民.中国海洋工程地质研究.工程地质学报,1994,2(1):90-96.
    
    4.顾小芸.海洋工程地质的回顾与展望.工程地质学报,2000,8(1):40-45.
    
    5. Madsen, O S. Wave-induced pore pressure and effective stresses in a porous bed. Geotechnique, 1978,28:377-393.
    
    6. Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations, 1983,23(4): 11-26.
    
    7.沈瑞福,王洪瑾.动主应力旋转下砂土孔隙水压力发展和海床稳定性判断.岩土工程学报, 1994,16(3):70-78.
    
    8. Nago, H., Maeno, S. Pore pressure and effective stress in a highly saturated sand bed under water pressure variation on its surface. Natural Disaster Science, 1987,9(1): 23-35.
    
    9. Zen, K., Yamazaki, H. Mechanism of wave-induced liquefaction and densification in seabed. Soils and Foundations, 1990, 30(4): 92-104.
    
    10.黄峰,楼志刚.排水条件对海洋粉质土动力特性的影响.岩土工程学报,1997,19(1):22-29.
    
    11.盛虞,姜朴,卢盛松.波浪作用下重力式平台地基中孔隙水压力的实验研究和有限元分析.海 洋工程,1989,7(4):51-58.
    
    12.王淑云,楼志刚.海底粉质粘土在波浪荷载作用后的不排水剪切强度衰化特性.海洋工程, 2000,18(1):38-43.
    
    13. Lee K L, Focht J A. Strength of clay subjected to cyclic loading. Marine Geotechnology, 1975,1(3): 165-185.
    
    14. Hyde A FL, Ward S J. The effect of cycle loading on the undrained shear strength of a silty clay. Marine Geotechnology, 1986, 6(3): 299-324.
    
    15.王建华,杨进良,陈诚.海洋原状软粘土不固结不排水强度特性.第五届全国土动力学学术会 议论文集,大连:大连理工大学出版社,1998,109-113.
    
    16. Luan, M T, Dong W. Dynamic response of seabed under wave-induced loading. Proceedings of 4th International Conference on Recent Advances in Soil Dynamics and Geotechnical Earthquake Engineering, San Diego, 2001.
    
    17.栾茂田,王栋,郭莹等.海床与海洋地基动力分析理论与设计方法研究进展评述.第六届土动 力学学术会议论文集,南京,北京:中国建筑工业出版社,2002,28-48.
    
    18.栾茂田,许成顺,刘占阁.一般应力条件下土的抗剪强度参数探讨.大连理工大学学报,2003, 44(2):271-276.
    
    19.郭莹,栾茂田,许成顺.复杂应力条件下饱和松砂孔隙水压力增长特性的试验研究.地震工程 与工程震动,2004,24(3):139-144.
    
    20.郭莹,栾茂田,许承顺.主应力方向变化对松砂不排水动强度特性的影响.岩土工程学报,2003, 25(6):666-670.
    21. Gourvence S, Cassidy M. Frontiers in offshore geotechnics. Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics, Perth: University of Western Australia, 2005.
    
    22. Randolph M F, O'Neill M P, Stewart D P. Performance of suction anchors in fine grained calcareous soils. Proceedings of 1998 Offshore Technology Conference, Houston, Texas, 1998, 521-529.
    
    23. Zen K, Yamazaki H. Field observation and analysis of wave-induced liquefaction in seabed. Soils and Foundations, 1991,31(4): 161-179.
    
    24. Sleath, J F A. Wave-induced pressures in beds of sand. Journal of the Hydraulics Division, ASCE, 1970, 96(2): 367-378.
    
    25. Tsui T, Helfrich S C. Wave-induced pore pressure in submerged sand layer. Journal of Geotechnical Engineering, ASCE, 1983, 109(4): 603-618.
    
    26. Maeno Y, Hasegawa T. Evaluation of wave-induced pore pressure in sand layer by wave steepness. Coastal Engineering in Japan, 1985, 28: 31-44.
    
    27. Demars K R, Vanover E A. Measurement of wave-induced pressures and stresses in a sandbed. Marine Geotechnology, 1985, 6(1): 29-59.
    
    28. Stewart D P, Chen Y R, Kutter B L. Experience with the use of methylcellulose as a viscous pore fluid in centrifuge models. Geotechnical Testing Journal, 1998: 365-369.
    
    29. Sekiguchi H, Phillips R. Generation of water waves in a drum centrifuge. Proceeding of International conference centrifuge, A. A. Blkema, 1991, 343-350.
    
    30. Sassa S, Sekiguchi H. Wave-induced liquefaction of beds of sand in a centrifuge. Geotechnique, 1999,49:621-638.
    
    31. Sassa S, Sekiguchi H. Analysis of wave-induced liquefaction of sand beds. Geotechnique, 2001, 51(2): 115-126.
    
    32. Sassa S., Sekiguchi H, Miyamoto J. Analysis of progressive liquefaction as a moving boundary problem. Geotechnique, 2001, 51(10): 847-857.
    
    33. Sassa S. Fundamental studies of wave-induced liquefaction of sand beds: (PhD thesis). Japan: Kyoto University, 2000.
    
    34. Bennett R H, Faris J. Pore-water pressure measurements: Mississippi Delta submarine sediments. Marine Geotechnology, 1979,2: 177-189.
    
    35. Bennett R H, Faris J. Ambient and dynamic pore pressures in fine-grained submarine sediments: Mississippi Delta Applied Ocean Research, 1979, 1(3): 115-123.
    
    36. Okusa S, Uchida A. Pore-water pressure change in submarine sediments due to waves. Marine Geotechnology, 1980, 4(2): 145-161.
    
    37. Okusa S, Nakamura T, Fukue M. Measurements of wave-induced pore pressure and coefficients of permeability of submarine sediments during reversing flow. Seabed Mechanics, 1983: 113-122.
    
    38. Yamamoto T. Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations. Ocean Engineering, 1981, 8: 1-16.
    
    39. Okusa S. Measurements of wave-induced pore pressure in submarine sediments under various marine conditions. Marine Geotechnology, 1985, 6(2): 119-144.
    
    40. Maeno Y, Hasegawa T. In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits. Coastal Engineering in Japan, 1987, 30(1): 99-115.
    
    41. Putnam J A. Loss of wave energy to percolation in a permeable sea bottom. Transaction, American Geophysical Union, 1949, 30(3): 349-356.
    42. Liu, P L F. Mass transport in water waves propagated over a permeable bed. 1977: 79-96.
    
    43. Yamamoto T, Koning H L, Sellmeijer H et al. On the response of a poro-elastic bed to water waves. Journal of Fluid Mechanics, 1978, 87: 193-206.
    
    44. Yamamoto T. Wave-induced instability in seabeds. Proceeding of ASCE Special Conference, Coastal Sediments 77, Charleston, SC, 1977, 898-913.
    
    45. Biot M A. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12: 155-164.
    
    46. Verruijt, A. Elastic storage of aquifer in flow through porous media, R.J.M. De Wiest, Editor. 1969, Academic Press. 331-376.
    
    47. Okusa S. Wave-induced stress in unsaturated submarine sediments. Geotechnique, 1985, 35(4): 517-532.
    
    48. Rahman M S, EL-Zahaby K, Booker J. A semi-analytical method for the wave-induced seabed response. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18: ' 213-236.
    
    49. Jeng D S, Seymour B R . Wave-induced pore pressure and effective stress in a porous seabed with variable permeability. Journal of Offshore Mechanics and Arctic Engineering, 1997, 119(4): 327-334.
    
    50. Jeng D S, Seymour B R. Response in seabed of finite depth with variable permeability. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(10): 901-911.
    
    51. Kitano T, Mase H. Effects of inhomogeneity of permeability on wave-induced pore water pressure in seabed. Canadian Coastal Conference, 1999: 611-623.
    
    52. Kitano T, Mase H. Wave-induced pore water pressure in a seabed with inhomogeneous permeability, ocean engineering, 2001,28: 279-296.
    
    53. Jeng D S. Wave-induced liquefaction potential in a cross-anisotropic seabed. Journal of Chinese Institute of Engineers, 1996,19(1): 59-70.
    
    54. Jeng D S. Soil response in cross-anisotropic seabed due to standing waves. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(1): 9-19.
    
    55. Yuhi M, Ishida H. Simplified solution for wave-induced response of anisotropic seabed. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 2002,128(1): 46-50.
    
    56. Biot M A. Theory of propagating of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. The Journal of Acoustical Society of America, 1956, 28(2): 168-178.
    
    57. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. The Journal of Acoustical Society of America, 1956, 28(2): 179-191.
    
    58. Zienkiewicz O C, Chang C T, Bettess P. Drained, undrained, consolidating and dynamic behavior assumption in soils. Geotechnique, 1980, 30(4): 385-395.
    
    59. Sakai T, Mase H, Matsumoto A. Effects of inertia and gravity on seabed response to ocean waves. In: Modeling Soil-Water-Structural Interactions. 1988. 61-66.
    
    60. Mei C C, Foda M A. Wave-induced stresses around a pipe laid on a poro-elastic sea bed. Geotechnique, 1981, 31(4): 509-517.
    
    61. Sakai T, Hattori A, Hatanaka K. Wave-induced transient porewater pressure and seabed instability in surf zone. Geo-Coast'9,1991,105-110.
    
    62. Horikawa K. Nearshore dynamics and coastal processes. Tokyo: Univ of Tokyo Press, 1988.
    63. Jeng D S, Rahman M S, Lee T L. Effects of inertia forces on wave-induced seabed response. International Journal of Offshore and Polar Engineering, 1999, 9(4): 307-313.
    
    64. Jeng D S, Rahman M S . Effective stresses in a porous seabed of finite thickness: Inertia effects. Canadian Geotechnical Journal, 2000, 37(4): 1388-1397.
    
    65. Zhang H, Jeng D S. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in porous seabed: I, A sloping seabed. Ocean Engineering, 2005, 32(5-6): 701-729.
    
    66. Jeng D S, Rahman M S. Wave-induced oscillatory soil response: Difference between quasi-static and dynamic solutions. Computer Methods and Advances in Geomechanics, 2001, 2: 1103-1106.
    
    67. Cha D H, Jeng D S, Rahman M S. Static and dynamic soil behavior on the wave-seabed interaction. 17th Australian Conf on the Mechanics of Structures and materials (ACMSM17), Gold Coast, Austrlia, 2002.
    
    68. Cha D H, JengbD S, Rahman M S. Differences of the wave-induced soil response between quasi-static and dynamic solutions. 12th International Offshore and Polar Engineering Conference (ISOPE02), 2002, 731-737.
    
    69. Huang L H, Song C H. Dynamic response of poroelastic bed to water waves. Hydraulic Engineering, 1993,119:1003-1021.
    
    70. Chen T W, Huang L H, Song C H. Dynamic response of poroelastic bed to nonlinear water waves. Engineering Mechanics, 1997, 123(10): 1041-1049.
    
    71. Hsieh P C, Huang L H, Wang T W. Dynamic response of soft poroelastic bed to linear water waves- a boundary layer correction approach. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25: 651-674.
    
    72. Mei C C. Applied dynamics of ocean surface waves. New York: Willey-Interscience, 1989.
    
    73. Yuhi M, Ishida H. Analytical solution for wave-induced seabed response in a soil-water two-phase mixture. Coastal Engineering, 1998, 40(4): 361-381.
    
    74. Jeng D S, Lee T L. Dynamic response of porous seabed to ocean waves. Computers and Geotechnics, 2001, 28(2): 99-128.
    
    75. Yamamoto T, Takahashi S. Wave damping by soil motion. Journal of Waterway, Port, Coastal and Ocean Engineering, 1985, 111: 62-77.
    
    76. Yamamoto T. On the response of a Coulomb-damping poroelastic bed to water waves. Marine Geotechnology, 1983, 5(2): 93-130.
    
    77. Lee T L, Tsia C P, Jeng D S. Ocean waves propagating over a porous seabed of finite thickness. Ocean Engineering, 2002, 29: 1577-1601.
    
    78. 林缅.波浪作用下粉土特性分析.中国科学(E辑),2001,31(1):86-96.
    
    79. Cha D H, Jeng D S, Rahman M S. Effects of dynamic soil behavior on the wave-induced seabed response. International Journal of Ocean Engineering and Technology, 2003, 16(5): 21-33.
    
    80. Huang L H, Chwang A T. Trapping and absorption of sound waves II: A sphere covered with a porous layer. Wave motion, 1990,12(12): 401-414.
    
    81. Sumer B M, Cheng N S. A random-walk model for pore pressure accumulation in marine soils. The 9th ISOPE (1999), 1999, 521-528.
    
    82. Hsu J, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785-807.
    
    
    83. Madga W. On one-dimension model of pore pressure generation in a highly saturated sandbed due to a cyclic loading acting on a sand surface, I: Theoretical description and numerical approach. Internal Report No 5,SFB-205, TPA13, Kusteningenieurwesen, University Hannover, 1990: 1-42.
    
    84. Cheng L, Sumer B M, Fredsoe J. Solution of pore pressure build up due to progressive waves. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25: 885-907.
    
    85. Gatmiri B. A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds. Geotechnique, 1990,40(1): 15-30.
    
    86. Gatmiri, B. Response of cross-anisotropic seabed to ocean waves. Journal of Geotechnical Engineering, 1992,118(9): 1295-1314.
    
    87. Lin Y S, Jeng D S. Effects of variable shear modulus on wave-induced seabed response. Journal of Chinese Institute of Engineers, 2000,24(1): 109-115.
    
    88. Tomas S D. A finite element model for the analysis of wave-seabed stresses, displacements and pore pressures in an unsaturated seabed, I: Theory. Computers and Geotechnics, 1989, 8(1): 1-38.
    
    89. Tomas S D. A finite element model for the analysis of wave-seabed stresses, displacements and pore pressures in an unsaturated seabed, II: Model verification. Computers and Geotechnics, 1995, 17(1): 107-132.
    
    90. Lin Y S, Jeng D S. Response in seabed of finite depth with variable permeability. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(10): 902-911.
    
    91. Lin Y S, Jeng D S. Response of poro-elastic seabed in front of a breakwater: A finite element analysis. Coastal Engineering in Japan, 1996, 39(2): 165-183.
    
    92. Jeng D S, Lin Y S. Finite element modeling for water waves-soil interaction Soil Dynamics and Earthquake Engineering, 1996, 15: 283-300.
    
    93. Jeng D S, Lin Y S. Non-linear wave-induced response of porous seabed: A finite element analysis. International Journal for Numerical Methods in Engineering, 1997, 21(1): 15-42.
    
    94. Jeng D S, Lin Y S. Wave-induced pore pressure in a cross-anisotropic seabed with variable soil characteristics. The 8th International Offshore and Polar Engineering Conference (ISOPE98), I, 1998, 598-604.
    
    95. Jeng D S, Lin Y S. Poroelastic analysis of the wave-seabed interaction problem. Computers and Geotechnics, 2000, 26: 43-64.
    
    96. Zienkiewicz O C, Scott F C. Short Communications on the principle of repeatability and its application in analysis of turbine and pump impellers. International Journal for Numerical Methods in Engineering, 1972,4: 445-452.
    
    97. Raman-Nair W, Sabin G C W. Wave-induced failure of poroelastic seabed slopes: A boundary element study. Proceedings of Institute of Civil Engineers, 1991, 91: 771-794.
    
    98.王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素.岩石力学与工程学报, 2001,20(增1):1132-1136.
    
    99.王忠涛,栾茂田,刘占阁.浅水区波浪非线性效应对砂质海床动力响应的影响.海洋工程,2005, 23(1):21-26.
    
    100. Wang Z T, Luan M T, Liu Z G . Numerical analysis of dynamic response of seabed under random wave loading. International symposium on frontiers on offshore geotechnics, Australia, Perth, 2005.
    
    101. Rahman M S. Instability and movement of oceanfloor sediments: a review. International Journal of Offshore and Polar Engineering, 1997, 7(3): 220-225.
    
    102. Bjerrum L. Geotechnical problems involved in foundations of structures in the North Sea Geotechnique, 1973, 23(3): 319-358.
    
    103. Nataraja M S, Singh H, Maloney D. Ocean wave-induced liquefaction analysis: a simplified procedure. International Symposium on Soils under Cyclic and Transient Loading, 1980, 509-516.
    
    104. Nataraja M S, Gill H S. Ocean wave-induced liquefaction analysis. Journal of Geotechnical Engineering, ASCE, 1983, 109(4): 573-589.
    
    105. Ishihara K, Yamazaki A. Analysis of wave-induced liquefaction in seabed deposit of sand. Soils and Foundations, 1984, 24(3): 85-100.
    
    106. Finn W D L, Siddharthan R, Martin G R. Response of seafloor to ocean waves. Journal of Geotechnical Engineering, ASCE, 1983, 109(4): 556-572.
    
    107. Umehara Y, Zen K, Hamada K. Evaluation of soil liquefaction potentials in partially drained conditions. Soils and Foundations, 1985, 25(2): 52-72.
    
    108. Zen K, Umehara Y, Finn W D L. A case study of the wave-induced liquefaction of sand layers under the damaged breakwater. Third Canadian Conference on Marine Geotechnical Engineering, 1986, 505-520.
    
    109. Rahman M S. Instability and movement of oceanfloor sediments: A Review. Offshore and Polar Engineering, 1997, 7: 220-225.
    
    110. Rahman M S. Wave-induced instability of seabed: Mechanism and conditions. Marine Geotechnology, 1991, 10:277-299.
    
    111. Jeng D S. Wave-induced seabed instability in front of a breakwater. Ocean Engineering, 1997,24(10): 887-917.
    
    112. Jeng D S, Zhang H. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in porous seabed: II, breaking waves. Ocean Engineering, 2005, 32: 1950-1967.
    
    113. Tsai C. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Engineering, 1995, 22(1): 1-18.
    
    114. Rahman M S, Jaber W Y. A simplified drained analysis for wave-induced liquefaction in ocean floor sands. Soils and Foundations, 1986,26(1): 57-68.
    
    115. Jeng D S. Wave-induce seafloor dynamics. Applied Mechanics Review, 2003, 56: 407-429.
    
    116. Jeng D S, Cha D H. Effect of dynamic soil behavior and non-linearity on wave-induced pore pressure and effective stresses in porous seabed. Ocean Engineering, 2003, 30: 2065-2089.
    
    117. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Journal of Acoustical Society of America, 1960, 12: 168-178.
    
    118. Fenton J D, McKee W D. On calculating the lengths of water waves. Coast Engineering, 1990, 14: 499-513.
    
    119. Jeng D S. Wave-induced seabed response in front of a breakwater: (Ph.D. Thesis). Perth: The University of Western Australia, 1997.
    
    120. Lee J F, Lan Y J . Wave propagating over poro-elastic bed. Proceedings of Eighth International Offshore and Polar Engineering Conference, Montreal, Canada, 1998.
    
    121. Jeng D S. On calculating the length of a short-crested wave over a porous seabed. Applied Ocean Research, 2000, 22: 63-73.
    
    122. Jeng D S. Wave dispersion equation in a porous seabed. Ocean Engineering, 2001,28: 1585-1599.
    
    
    123.俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2000.
    
    124. Rahman M S, Seed H B, Booker J R. Pore pressure development under offshore gravity structures. Journal ofGeotechnical Engineering Division, ASCE, 1978,103(12): 1419-1436.
    
    125. Sumer B M, Fredsoe J, Christensen S et al. Sinking/Floatation of pipelines and other objects in liquefied soil under waves. Coastal Engineering, 1999,38: 53-90.
    
    126.别社安,赵子丹,王光纶.波浪作用下的海床响应及其对建筑物稳定性的研究.清华大学学报 (自然科学版),1998,38(11):95-98.
    
    127. Meroi E A, Schrefler B A, Zienkiewicz O C. Large strain static and dynamic semisatuated soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 81-106.
    
    128. Sandhu R S, Wilson E L. Finite-element analysis of seepage in elastic media Journal of Engineering Mechanics Division, ASCE, 1969, 95(3): 641-652.
    
    129. Ghaboussi J, Wilson E F. Variational formulation of dynamics of fluid saturated porous elastic solids. Journal of Engineering Mechanics, ASCE, 1972, 98(4): 947-963.
    
    130.张洪武,钟万勰,钱令希.饱和土动力固结分析的变分原理.岩土工程学报,1992,14(3):20-29.
    
    131. Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: The generalized biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984,8:71-96.
    
    132. Simon B R, Wu J S S, Zienkiewicz O C. Evaluation of higher order, mixed and hermitean finite element procedures for dynamic analysis of saturated porous media using one-dimensional models. Numerical and Analytical Methods in Geomechanics, 1986,10:483-499.
    
    133.邱大洪.波浪理论及其工程中的应用.北京:高等教育出版社,1986.
    
    134. Korteweg D J, Vries D G On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos Mag, 1895, 39(5): 422-443.
    
    135. Keulegan G H, Patterson G W. Mathematical theory of irrotational translation waves. Journal of Research National Bureau of Standards, 1940.
    
    136. Keller J B. The solitary wave and periodic waves in shallow water. Communications on Pure and Applied Mathematics, 1948,1(4): 323-329.
    
    137. Wiegel R L. A presentation of cnoidal wave theory for practical application. Journal of Fliud Mechanics, 1960, 7: 273-286.
    
    138.孙昭晨,邱大洪.浅水区海底埋设管线上非线性波浪力.大连理工大学学报,2000,40(增刊1): 95-98.
    
    139.邹志利.水波理论及其工程应用.北京:科学出版社,2005.
    
    141. Zienkiewicz O C, Bettess P. Soils and other saturated media under transient, dynamic conditions: General formulation and validity of various simplifying assumptions. Soil Mechanics-transient and Cyclic Loads: New York: John wiley and Sons Ltd, 1982,
    
    142.王栋.波浪作用下海床动力响应与液化的数值分析:(博士学位论文).大连:大连理工大学, 2002.
    
    143. Smith W. A non-reflecting plane boundary for wave propagation problem. Journal of Computational??Physics,1974,15(4):492-503.
    
    144.张洪武,何杨,李锡奎.饱和多孔介质半无限域动力-渗流动力分析中的非反射边界法.岩土工 程学报,1990,12(4):49-56.
    
    145. Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media. Journal of Engineerig Mechanics Division, ASCE, 1969, 95(4): 859-877.
    
    146. Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 1977, 67(6): 1529-1540.
    
    147. Modaressi H, Benzenati I. An absorbing boundary element for dynamic analysis of two-phase media. Earth-quake Engineering, Tenth World Conference, Balkema, Rotterdam, 1992, 1157-1161.
    
    148. Degrande G, Roeck G D. An absorbing boundary condition for wave propagation in saturated poroelastic media, Part I: Formulation and efficency evaluation. Soil dynamics and earthquake engineering, 1993,12: 411-421.
    
    149. Akiyoshi T, Fuchida K, Fang H L. Absorbing boundary conditions for dynamic analysis of fluid-saturated porous media Soil Dynamic and Earthquake Engineering, 1994, 13: 387-397.
    
    150. Akiyoshi T, Sun X, Fuchida K. General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media Soil Dynamic and Earthquake Engineering, 1998, 17: 397-406.
    
    151. Gavoli D, Hagstrom T, Patlashenko I. Finite element formulation with high-order absorbing boundary conditions for time-dependent waves. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 3666-3690.
    
    152.廖振鹏.工程波动理论导论.北京:科学出版社,2002.
    
    153. Steen K. Unified formulation of radiation conditions for the wave equation. International Journal for Numerical Methods in Engineering, 2002, 53: 275-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700