桶形基础平台在海洋环境载荷作用下的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来频发的能源危机使人们把越来越多的关注投向海洋资源,尤其是海洋油气资源。而目前,我国的大型油田均已过产量峰值,这就要求要有新的油田来缓解这一矛盾。位于渤海湾的胜利油田尚有大量的浅海油田可供开发,然而这些油田很大一部分属于“边际油田”,而且位于沿海滩涂区域。这就要求开发者不仅要设计出满足软土地基的采油平台型式,而且该平台要满足“边际油田”开发所需要的经济性。因此,传统的导管架平台很难满足这些小型油田的要求了,必须设计新型的低成本、可重复利用的平台型式。
     本课题所采用的是使用桶形基础作为入泥裙板的新型重力式平台作为采油平台,针对油田产量进行平台的尺寸设计并对其构件比例进行了合理性判定。由于投产之后,平台首先要承受日常工作载荷——作用于沉箱底部的随时间均匀变化的循环储油载荷,故而首先进行桶土稳定性的判定。此外,渤海湾位于地震活跃带上,平台要承受随机地震的影响;平台安装位置的高纬度平台会受到大质量冰块或者浮冰群的撞击作用,渤海湾波浪较高,这些都可能引发平台与环境载荷的“共振作用”。因此,鉴于海洋平台在经济上和社会上的重要性,必须对其静动力稳定性进行判定。
     本文主要做了以下几方面的工作:
     (1)分别针对桶形基础和重力式平台的研究背景和国内外研究现状进行了总结和概括,提出了亟待解决的问题。
     (2)对适用于渤海湾“边际油田”的新型平台—应用桶形基础的重力式平台进行了尺寸设计和材料选择,保证控制成本,实现“边际油田”开发的经济性。
     (3)针对所设计的平台,制作了比尺为1/25的模型并使用该模型进行缩尺试验。首先,配置以黄河三角洲原状海底土作为平台的安装基础。其次,根据渗流原理布设总应力传感器和孔隙水压力传感器以分别监测模型试验中的土中应力,并通过编程实现了模型数据与原型试验数据之间的转换。再次,分别应用系列Drucker- Prager失效准则和Mohr- Coulomb强度准则,并辅以数值模拟试验(考虑“边界条件”和不考虑“边界条件”)以判定在日常循环储油载荷作用下地基土的应力状态和失效性判定。最后,根据以上结论确定出沉箱经济合理的储油量为1000吨。
     (4)此外,应用有限元方法对所设计的平台在可能遭受的海洋环境载荷作用下的结构稳定性进行了分析。首先,使用两组调幅的强震记录和一组人工地震波进行了平台的地震时程分析。从中可以看出,与水平方向相比,竖直方向上的响应量很小。通过绘制平台沿竖向各节点的位移时程曲线和最大位移包络图可以得出如下规律:平台在强震作用下的变形以第一、二阶振型为主,而且在12m高度以下,立柱节点高度越高,位移响应值越小,12m左右时达到最小,之后随高度增大,位移响应值增大,但是结构始终没有失稳。其次,使用大质量冰块简化模型和浮冰群的冰激振动模型对平台冬季可能承受的海面冰载荷进行了模拟,认为平台在浮冰群连续撞击造成的周期性激振载荷作用下的动力系数较大,其响应要远大于简化模型。最后,对平台在波浪载荷作用下的动力响应进行了模拟,认为平台在指定波浪谱的作用下可能发生“共振”,这在工程中要加以避免。
In recent years,“Energy Crisis”happened more and more frequently, which made people pay increasing attention to offshore natural resources, especially oil and natural gas. However, daily production of most fertile oil fields passed their peak yields, which makes it urgent to explore new reservation so as to settle the problem. It is reported that Shengli oil field which is located in Bohai Bay, has large area of virgin fields for exploitation. However, a large portion of them are“marginal fields”and located in muddy soft foundation. This demands the developer design offshore platform that could not only be applicable for the soft foundation, but also satisfy the economy of the whole project. Therefore, traditional jacket platform which consumes more piles and steel bar cannot meet the requirement of these small oil fields. Instead, new movable platform with lower cost should be designed and adopted.
     In this paper, a new concept of gravity platform with skirt plate is introduced as single bucket foundation, the dimensions are designed and its rationality is also analyzed according to daily yields of the oil field. When put into practice, the platform will firstly be exposed to working loads- daily oil loading exerted on the caisson bottom in vertical direction which changes evenly with time. Moreover, the Bohai bay is located on active seismic belt area where random seismic loading may affect the safety of the platform. In addition, relatively high latitude would cause the water freeze and expose the platform to ice blocks and/or ice clusters; The harsh sea wave occur everywhere in Bohai Bay, all of which would lead "structural resonance". In consideration of the economic importance, environmental significance and all possible factors mentioned above, tests should be performed to determine the static and dynamic stability, both in geotechnical meaning and structural meaning.
     The content of this text includes the following four parts:
     (1) The background and research progress about bucket foundation and gravity platform respectively are introduced separately, the current proceedings both home and abroad are summarized and the problems to solve are put forward.
     (2) Based on the practical soil conditions and productivity of oil fields in Bohai Bay, a new concept of platform- gravity platform with single bucket foundation is introduced and designed, then the dimensions and fabricating materials are initially quantified so as to control the cost and expand the profits.
     (3) A scale ratio of 1/25 is chosen for laboratory reduced-model tests. First, characteristics of soil samples selected from Bohai Bay are quantified and the foundation soil in reduce-scaled model test is formed with the original soil. Second, according to the seepage principle, total stress transducers and pore pressure transducers are pre-buried in the soil so as to monitor the stress state, and then the model test data is converted back to the prototype state through MATLAB programming. Thrid, referring to numerical simulation, a series of Drucker-Prager yield criteria and Mohr-Column strength criterion are employed respectively, so as to judge the credibility of the model data and determine the yield strength. Fourth, based on the conclusions reached above, the oil capacity of the caisson is quantified as 1000 tons.
     (4) The structural stability of the platform under possible environmental loadings is analyzed through finite element method. First, response of the platform under random seismic loading is simulated with 2 groups of amplitude-modulated actual seismic record and 1 group of artificial earthquake wave. It is seen from the analysis that in contrast with the horizontal response, the vertical response is slight. It can also be concluded from the time-history displacement and maximum nodes displacement that under random earthquakes, the deformation of the platform is mainly in accord with first and second vibration modes; In the vertical direction, absolute displacement response of the column nodes decreases with the height when the height is smaller than 12m; when greater than 12m, it increases with the height. Second, the ice loading in the winter is simulated with simplified concentrating mass model and/or ice induced vibration model of ice cluster. Through finite element analysis, we can see that dynamical amplification effect is obvious under cyclic loads induced by ice cluster and the displacement response is much bigger than the concentrated mass model, thus the ice induced vibration should be adopted for analysis. Third, the possible response of the platform under specified wave spectrum is also analyzed, which is concluded that“structural resonance”may happen under specified sea wave spectrum, this should be avoided in engineering practice.
引文
[1]武科.滩海吸力式桶形基础承载力特性研究: [博士学位论文].大连:大连理工大学,2007
    [2] Ke Wu, Mingyue Ma, Rong Chen. Numerical analysis of cyclic bearing capacity of suction bucket foundation based on elasto-plastic FEM. Electronic Journal of Geotechnical Engineering, 2010, 15 (B): 1~13
    [3]金伟良.海洋工程中的若干力学问题.科技通报, 1997, (2): 86~92
    [4]曹惠芬.世界深海油气钻井装备发展趋势.海洋工程, 2005, (237): 24~27
    [5] Dyme W, Houlsby G T. Drained behavior of suction caisson foundation on very dense sand. OTC 10994, 1999: 765~782
    [6] Senpere D, Auvergne G A. Suction anchor piles-a proven alternative to driving or drilling. OTC 4206, 1982: 483~493
    [7] Aas P M, Andersen K H. Skirted foundations for offshore structures. 9th Offshore South East Asia Conference, Singapore. Singapore World Trade Center, 1992: 1~7
    [8] Tjelta T L, Hermstad J, Andenaes E. The skirted pile gullfaks of platform installation. OTC 6473, 1990: 453~462
    [9]鲁晓兵,郑哲敏,张金来.海洋平台吸力式基础的研究和进展.力学进展, 2003, 33 (1): 27~40
    [10] Bye A, Erbrich C, Earl K, Wright, et al. Geotechnical design of bucket foundations. OTC7793, 1995:869-883.
    [11] Adam M. Luke, et al. Component of suction capacity measured in axial pullout tests. Ocean Engineering, 2005, 32: 878~891
    [12] Chairat Supachawarote. Inclined Load Capacity of suction in clay: [Doctorate Dissertation]. Australia: The University of Australia, 2006
    [13] Renzi R, Maggioni W, Smits F, et al. A centrifugal study on the behavior of suction piles. In: Ko H Y, Mclean F G, eds. Centrifuge 91, Balkema, Rotterdam, 1991: 169~176
    [14] Dyvik R, Andersen K H, Christian Madshus, et al. Model tests of gravity platforms. I: description. J Geotech Engrg, ASCE, 1989, 115(11): 1532~1549
    [15] Andersen K H, Dyvik R, Lauritzsen R, et al. Model tests of gravity platforms. II: interpretation. J Geotech Engrg, ASCE, 1989,115(11): 1550~1568
    [16] Dyvik R, Andersen K H. Svein Borg Hansen et al. Field tests of anchors in clay. I: description. J Geotech Engrg, ASCE, 1993, 119(10): 1515~1531
    [17] Andersen K H, Dyvik R, Schroder K, et al. Field tests of anchors in clay. II: predictions and interpretation. J Geotech Engrg, ASCE, 1993, 119(10): 1532~1549
    [18]刘振纹,王建华等.负压桶形基础地基竖向承载力研究.中国海洋平台, 2001, 16(2): 1~6
    [19]王志云.软土地基上吸力式沉箱基础的抗拔承载特性研究: [博士学位论文].大连:大连理工大学,2007.
    [20] Spidsoe,nils. Measured dynamic behavior of North Sea gravity platforms under extreme environmental conditions. Proceedings - annual offshore technology conference, 1983, Vol. 3: 283~300
    [21] Pliskin, L. Removal of concrete gravity platforms. Proceedings- Annual Offshore Technology Conference, 1979. 1009~1013
    [22] Booth,E.D. Response to extreme earthquakes of an offshore concrete gravity platform in the North Sea. Earthquake Engineering in Britain, Proceedings of a Conference, Norwich, Engl:1985. 321~334
    [23] Watt, B. J, Boaz, I. B; Dowrick, D. J. Response of concrete gravity platforms to earthquake excitations. Journal of Petroleum Technology, 1978, Vol. 30: 318~324
    [24] Ivar LangenaT, Otto Skjbtadb, Sverre HaverC. Measured and predicted dynamic behavior of an offshore gravity platform. Ocean Research, 1998, Vol 20: 15~26
    [25] Liera, Bernt J. Nonlinear behavior and extreme dynamic response of the troll gravity platform. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering- OMAE, 1994, Vol. 2: 131-139
    [26] Booth,E.D. Response to extreme earthquakes of an offshore concrete gravity platform in the north sea. Earthquake Engineering in Britain, Proceedings of a Conference, Norwich, Engl: 1985. 321~334
    [27] Potts, D. M. Numerical study of the foundation behavior of a proposed North Sea gravity platform. In: Behaviors of Offshore Structures, Proceedings of the 4th International Conference. Delft, Neth: Developments in Marine Technology, 1985, Vol 2. 665~672
    [28]张伟,周锡礽,余建星.滩海桶形基础平台整体模态分析.海洋技术, 2004, 23 (1): 57~61
    [29]张伟,周锡礽,刘海笑,张建辉.滩海桶形基础三维有限元静力分析.中国海洋平台, 2001, 16 (1): 9~14
    [30]曲乃泗,李林普等.海洋平台的固、液耦合地震分析.中国海上油气(工程), 1994, 6 (3): 22~28
    [31]李驰,刘振纹.大港滩海地区桶形基础平台地震响应分析.中国海洋平台, 2007, 22 (1): 38~42
    [32]韩晓双.导管架式海洋平台地震响应分析: [硕士学位论文].大连:大连理工大学, 2006
    [33] Rowe, P.W., Craig, W.H., Procter, D.C. Dynamic loaded centrifugal model foundations. Bell Laboratories Record 2, 1978:359~364
    [34] Clukey, E.C., Morrison, M.J. The response of suction caissons in normally consolidated clays to cyclic TLP loading conditions. Proceedings of the Offshore Technology Conference, Houston Texas: 1995. 909~915
    [35] Allersma, H.G.B., Plenevaux, F.J.A., Wintgens, J.F.P.C.M.E. Simulation of suction pile installation in sand in a geocentrifuge. Seventh International Offshore and Polar Engineering Conference ISOPE97, Vol. 1, 1997. 761~765
    [36] Allersma, H.G.B., Kierstein, A.A., Brinkgreve, R.B., et al., Centrifuge and numerical modeling of horizontally loaded suction piles. Ninth International Offshore and Polar Engineering Conference ISOPE99, Vol. 1, 1999. 711~717
    [37] Allersma, H.G.B., Kierstein, A.A., Maes, D., 2000. Centrifuge modeling on suction piles under cyclic and long term vertical loading. Proceedings of Tenth International Offshore and Polar Engineering Conference, Seattle:, May 28–June 2.
    [38]邓楚键,何国杰,郑颖人.基于系列M-C准则的D-P系列准则在岩土工程中的应用研究.岩土工程学报. 2006, 28 (6): 735~739
    [39]郑颖人,沈珠江,龚晓南.广义塑性力学一岩土塑性力学原理[M]
    [40]何继明.浅海重力式海洋平台抗震性能数值模拟与试验研究:[硕士学位论文].青岛:中国海洋大学土木工程系,2010
    [41]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社, 2001
    [42]中国船级社.海上固定平台入级与建造规范[S].人民交通出版社, 1992
    [43]陈新权,谭家华.导管架平台在冰载荷作用下的动力响应分析研究.中国海洋平台:2005, 20 (4): 25~28
    [44]尚晓江,邱峰,赵海峰,李文颖. ANSYS结构有限元高级分析方法与范例应用.中国水利水电出版社, 2006. 315~353
    [45]李玉成,滕斌.波浪对海上建筑物的作用.海洋出版社,2002. 250~288
    [46]董艳秋.深海采油平台波浪载荷及响应.天津大学出版社, 2005. 365~368
    [47]邓兆青,周良明,吴伦宇,郭佩芳.渤海重现期波高的数值计算.海洋湖沼通报, 2007. 8~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700