波流共同作用下海床动力响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋岩土工程的研究中,海床,结构物,波浪的相互作用问题,一直是研究的热点之一。海床结构物稳定性的影响因素,主要是海床基础的稳定性,开展对海床稳定性的研究非常重要。海床土体为饱和土,处于复杂的应力作用环境,其稳定性主要表现在受力以后的表面位移,剪切模量的变化,超孔隙水压力响应规律,导致液化致使海床承载力的急剧减小。本文重点研究海床液化问题,基于u-p场控制方程,对固相和液相分别采用有限元法和有限差分法进行离散,推导了两相体耦合动力有限元方程,开发了水土耦合动力有限元计算程序,并在程序中加入了应力诱导各向异性弹塑性模型。随后建立一个多孔介质弹塑性海床模型,通过数值模拟计算,输出海床超孔隙水压力响应结果,按照有效应力理论,判断海床液化深度,分析得到波流共同作用下砂质海床动力响应规律。本文首先对模型进行了试算,通过对计算结果收敛性的分析,验证了程序有限元计算的正确性和可靠性。计算分析了波流共同作用下,砂质海床瞬时振荡孔隙水压力与残余孔隙水压力累积的响应规律,获得了海床液化深度的变化特性,对比了采用弹性与弹塑性砂土本构模型时,海床在波流作用下的动态响应差异。对于不同的波流参数,包括潮流流速,波浪周期以及波浪的相对水深,进行了参数分析,得出了不同的波流荷载对海床液化的影响规律。文中对不同的海床条件对海床液化深度的影响规律进行了参数分析,包括海床厚度,海床渗透系数,海床相对密度的影响。本文研究了粉土与粘土在波流共同作用下的液化或者弱化问题,并通过对采用日本阪神地震液化土计算参数的海床液化分析,对弹塑性参数对海床液化的影响,做了简单地分析研究。通过以上的研究内容,得出基于上下负荷面剑桥模型,可以有效的模拟在波流共同作用下的砂质海床液化响应规律,包括振荡孔隙水压力响应和累计孔隙水压力响应,海床渗透系数决定了海床孔隙水压力响应差异,海床厚度,相对密度对海床液化影响较小。波浪周期越大,潮流流速越大,相对水深越小,海床液化深度也就越小。本文研究成果对我国近海海岸安全,海洋结构物建设与设计以及其安全性,提供了理论指导。
In the study of marine geotechnical engineering, the seabed-structures -wave interaction has been the focus of the current research. The main factor that affects the seabed structure’s stability is the stability of the seabed foundation, so the research of the stability of the seabed is essential in this field. The seabed soil, which is mainly saturated soil and the stress environment is complex, its stability performance mainly include the surface displacement, the shear modulus of elasticity and changes in responses of excess pore water pressure and the seabed’s liquefaction. The liquefaction of the seabed will lead to a sharp decrease of the capacity of the seabed foundation. So, the seabed liquefaction is the focus of this paper. Based on the u-p dynamic theory, the dynamic FEM equations are deduced using the finite element method for the solid phase and the finite difference method for the fluid phase. Then a fully coupled dynamic FEM program can be developed, in which the stress induced anisotropic elastoplasticity constitutive model is implemented. The poro-elastoplastic model for a sandy seabed can be established to conduct the numerical simulation. Subsequently, the excess pore pressure can be obtained to compute the liquefaction depth of the seabed according to the theory of effective stress. Firstly, a confirmatory case is conducted and the program is proved to be valid and reliable by analyzing the numerical results’convergence. The mechanics of oscillatory excess pore water pressure in seabed and residual excess pore pressure due to wave/current are discussed and the liquefaction depth which changes correspondingly is obtained. A comparison between the elastic and elatoplastic sandy seabed’s dynamic responds to wave/current loading is also presented. The influence of parameters of the wave/current on the liquefaction of the seabed is also studied in this paper, including current velocity, wave period and relative water depth. This paper studies the impacts of the seabed conditions on the seabed’s liquefaction depth including seabed thickness, permeability coefficient of the seabed and the relative density of the seabed. In this paper, the silt and clay seabed response to wave/current loadings are studied to conclude that this constitutive model can simulate the silt and clay seabed dynamic responses. To study the influence of the elastic-plastic parameters on the seabed’s liquefaction depth, the Japan's Kobe soil, which is a representative soil which experienced dramatic liquefaction during earthquake, is used. Through the above researches, we can conclude that: this constitutive model, which is based on the super/sub-loading surface and anisotropy, can effectively simulate the behavior of the seabed under wave/current loadings and the liquefaction depth is larger than the elastic seabed. The seabed’s permeability coefficient determines the response of pore water pressure, and the seabed thickness and relative density have less impact on the seabed liquefaction. The bigger the current velocity is, the longer the wave period is and the smaller the relative seawater depth is, the liquefaction depth of the seabed is smaller. The conclusions of this thesis can contribute to the design and construction of the offshore structures and the safety of the costal line as theoretical guidance.
引文
[1]刘占阁.波浪作用下海床累积孔隙水压力响应与液化分析[D].大连理工大学,2008
    [2]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报, 2000, 8(l): 40-45.
    [3]俞幸修.波浪对建筑物和海底的作用[J].港工技术, 2001, (2):1-6.
    [4] Rendulic L. Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Der Baunginenieur, 1937, 18:459-467.
    [5] Atkinson J H, Bransby P L. The mechanics of soils. An introduction to critical state soil mechanics. London: McGraw-Hill, 1978.
    [6] Lambe T W, Whitman R V. Soil Mechanics[M]. New York: John Wiley and Sons Inc., 1969.
    [7] Lade V P. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977, 13(11): 1019-1035.
    [8] Vermeer P A. A double hardening model for sand[J]. Geotechnique, 1978, 28(4): 413-433.
    [9] Poorooshasb H B, Pietruszezak S. A generalized flow theory for sand[J]. Soils and Foundations, 1986, 26(2): 1-15.
    [10] Wroth C P, Bassett N. A stress-strain relationship for the shearing behavior of sand[J]. Geotechnique, 1965, 15(1): 32-56.
    [11] Been K, Jefferies M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-102.
    [12] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands[J]. Geotechnique, 1997, 47(2): 255-272.
    [13] Li X S, Dafalias Y F. Dilatancy for cohesionless soils[J]. Geotechnique, 2000, 50(4): 449-460.
    [14] Collins I F, Pender M J, Wang Y. Cavity expansion in sands under drained loading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(2): 2-23.
    [15] Vaid Y P, Chern J C. Cyclic and monotonic undrained response of saturatedsands[J]. Proceedings of Advances in the Art of Testing Soils Under Cyclic Loading, 1985, New York, 120-147.
    [16] Vaid Y P, Thomas J. Liquefaction and postliquefaction behavior of sand[J]. Journal of Geotechnical Engineering, 1995, 121(2): 163-173.
    [17] Riemer M F, Seed R B. Factors affecting apparent position of steady-state line[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(3): 281-288.
    [18] Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.
    [19] Li X S, Dafalias Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(10): 868-880.
    [20] Yu M H. Advance in strength theories for materials under complex stress state in the 20th Century[J]. Applied Mechanics Reviews, 2002, 55(3): 169-218.
    [21]沈珠江.关于破坏准则和屈服函数的总结[J].岩土工程学报, 1995, 17(1): 1-8.
    [22] Hoek E, Brown ET. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, ASCE, 1980, 106(9): 1013-1036.
    [23] Wiebols G, Cook N. An energy criterion for the strength of rock in ploy axial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1968, 5(2): 529-549.
    [24] Matsuoka H, Nakai T. Stress deformation and strength characteristics of soil under three difference principal stresses[J]. Proceedings of the Japanese Society of Civil Engineers, 1974, 232(1): 59-70.
    [25]侯悦琪.砂土本构关系与LS-DYNA二次开发[D].上海交通大学硕士论文,上海,2010
    [26] Wang Z L, Dafalias Y F. Simulation of post-liquefaction deformation of sand[C]. Proceeding of ASCE 15th Engineering Mechanics Conference, New York, 2002.
    [27] Shamoto Y, Zhang J M, Goto S. Mechanism of large post-liquefaction deformation[J]. Soils and Foundations, 1997, 37(2): 71-80.
    [28]张建民,王刚.评价饱和砂土液化过程中小应变到大应变的本构模型[J].岩土工程学报, 2004, 26(4): 546-552.
    [29]王刚.砂土液化后大变形的物理机制与本构模型研究[D].清华大学博士学位论文,北京, 2005.
    [30]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报, 2006, 28(7): 835-840.
    [31]王刚,张建民.砂土液化后大变形的弹塑性循环本构模型[J].岩土工程学报, 2007, 29(1): 51-59.
    [32]王刚,张建民.液化变形的数值模拟[J].岩土工程学报, 2007, 29(3): 403-409.
    [33] Hashiguchi K. Subloading surface model in unconventional plasticity, International Journal of Solids and Structures, 1989, 25(3): 917-945
    [34] Hashiguchi K. Fundamental requirements and formulation of elastoplastic constitutive equations with tangential plasticity[J]. International Journal of Plasticity, 1993, 9(2): 525-549
    [35] Hashiguchi K, Chen Z P. Elasto-plastic constitutive equations of soils with the subloading surface and the rotational hardening[J]. International journal for numerical, 1998, 22(3): 197-227
    [36] Asaoka A, Nakano M, Noda T. Super loading yield surface concept for the saturated structured soils[C]. Proc. Of the Fourth European Conference on Numerical Methods in Geotechnical Engineering-NUMGE98, 1998, 232-242
    [37] Asaoka A, Nakano M, Noda T. Super loading yield surface concept for highly structured soil behavior[J]. Soils and Foundations, 2000a, 40(2): 99-110
    [38] Asaoka A, Nakano M, Noda T. Delayed compression/consolidation of naturally clay due to degradation of soil structure[J]. Soils and Foundations, 2000b, 40(3): 75-85
    [39] Zhang F, Ye B, Noda T and et al. Explanation of cyclic mobility of soils: approach by stress-induced anisotropy[J]. Soils and Foundations, 2007, 47(4): 635-648
    [40] Ye B. Experiment and numerical simulation of repeated liquefaction -consolidation of sand[ D]. Gifu University, 2007.
    [41] Zhang F, Jin Y, Ye B. A try to give a unified description of Toyoura sand[J]. Soils and Foundations, 2010, 50(3): 679-693
    [42] Asaoka A, Noda T, Yamada E and et al. An elastoplastic description of two distinct volume change mechanisms of soils[J]. Soils and Foundations, 2002, 42(5): 47-57
    [43] Gibson R E. Some results concerning displacements and stresses in a non-homogeneous elastic half-space[J]. Geotechnique, 1967, 17(1): 58-67.
    [44] Putnam J A. Loss of wave energy due to percolation in a permeable sea bottom[J].Transaction of American Geophysics Union, 1949, 30(3): 349-356.
    [45] Sleath J F A. wave-induced pressures in beds of sand[J]. Journal of the Hydraulics Division, ASCE, 1970, 96(2): 367-378.
    [46] Liu P L F. Damping of water waves over porous bed[J]. Journal of the Hydraulics Division, ASCE, 1973, 99(12): 2263-2271.
    [47] Madsen O S. Wave-induced pore pressure and effective stresses in a porous bed[J]. Geotechnique, 1978, 28(4): 377-393.
    [48] Yamamoto T. Wave-induced instability of seabed[C]. Proeeeding of ASCE. Speeial Conferenee, Coastal Sediments 77, Charleston, SC, 1977.
    [49] Okusa S. Wave-induced stress in unsaturated submarine sediments[J]. Geotechnique, 1985, 35(4): 517-532.
    [50] Thomas S D. A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed[J]. Model Verification. Computers and Geotechnics, 1995, 17(1): 107–132.
    [51] Jeng D S, Lin Y S. Finite element modelling for water waves-soil interaction [J]. Soil Dynamics and Earthquake Engineering, 1996, 15(5): 283–300.
    [52] Seed H B, Rahman M S. Wave induced pore pressure in relation to ocean floor stability of cohesionless soils[J]. Marine Geotechnology, 1978, 3(2): 123-150.
    [53] Seed H B, Idriss I M. Evaluation of liquefaction potential using field performance data [J]. Journal of Geotechnical Engineering, 1973, 109(3): 458-482.
    [54]章根德,顾小芸.有限厚度砂床对波浪荷载的响应[J].力学学报,1993, 25(1): 56-68
    [55] Raman-Nair W, Sabin G C. Wave-induced failure of poroelastic seabed slopes: A boundary element study[J]. Proeeedings of Institute of Civil Engineers, 1991, 91(4): 771-794
    [56] Jeng D S, Seymour B R, Li J. A new approximation for pore pressure accumulation in marine sediment due to water wave[J]. Numerical and Analytical Methods in Geomechanics, 2007, 31(1): 53-69
    [57] Jeng D S. Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review[J]. Ocean Engineering, 2001, 28(5): 537-570.
    [58]别杜安等,波浪作用下砂床中的孔隙水压力响应模型试验研究[J].海洋通报, 1997, 16(5): 55-65
    [59]陈仲颐,李向维.波浪作用下海底土层的稳定性模型试验[C].第六届土力学及基础工程学术会议论文集,上海:同济大学出版社, 1991: 855- 858
    [60]李安龙,杨荣民,杨少丽等.波浪加载下海底土质特性变化的研究[J].青岛海洋大学学报, 2003, 33(1): 101-106
    [61]栾茂田等,波浪作用下海床孔隙水压力发展过程与液化的数值分析[J].水力学报2004, 2(1): 94-100.
    [62]王立忠等,波浪对海床作用的试验研究[J].土木工程学报, 2007, 40(9): 101-110.
    [63] Seed H B, Rahman M S. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils[J]. Marine geotechnology, 1978, 3(2): 123-150.
    [64] Sekiguchi H, Kita K, Okamoto O. Response of poro-elastoplastic beds to sanding waves[J]. Soils and Foundations, 1995, 35(3): 31-42.
    [65] Yang Q S,Poorooshasb H B. Seabed response to wave loading[C]. Proceeding of 7th International Offshore and Polar Engineering Conference, Honolulu, 1997.
    [66] Li X,Zhang J,Zhang H. Instability of wave propagation in saturated poroelastoplastic media[J]. Numerical and Analytical Methods in Geomechanics, 2002, 26(6): 563-578.
    [67] Vun P L. Experimental and Numerical Studies on wave-induced liquefaction to soils around Marine Structures founded in the seabed[C]. Birmingham, England: University of Birmingham, 2005.
    [68] Zienkiewicz O C, Shimoi T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96.
    [69] Sassa S,Sekiguchi H,Miyamoto J. Analysis of progressive liquefaction as a moving-boundary problem[J]. Geotechnique, 2001, 51(10): 847-857.
    [70] Medougal W G, Tsai Y T, Liu P L. Wave-induced pore water pressure accumulation in marine soil[J]. Journal of offshore Mechanics and Arctic Engineering,1989, 111(2): 1-11.
    [71] Cheng L,Sumer B M,Fredsoe J. Solutions of pore pressure build into progressive waves[J]. Numerical and Analytical Methods in Geomechanics, 2001, 25(9): 885-907.
    [72]沈瑞福,王洪瑾,周可骥等.动主应力旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报,1994, 16(3): 70-78.
    [73]陈仲颐,李向维.波浪引起的饱和土体残余孔隙水压力计算[C].第五届全国土力学及基础工程会议论文集,北京, 1990
    [74]盛虞,姜朴,卢盛松.波浪作用下重力式平台地基中孔隙水压力的实验研究与有限元分析[J].海洋工程, 1959, 7(4): 51-55.
    [75]杨少丽,沈渭栓,杨作升.波浪作用下海底粉砂液化的机理分析[J].岩土工程学报, 1995, 17(4): 28-37.
    [76]张晨明.波浪作用下海床动力响应与液化分析(D).大连理工大学硕士学位论文, 2002
    [77]吴梦喜,楼志刚.波浪作用下海床的稳定性与液化分析[J].工程力学, 2002, 19(5): 97-102.
    [78]张峰.计算力学[M].北京:人民交通出版社,2007
    [79]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000
    [80]夏志凡.基于完全耦合理论的饱和土地基上结构动力响应研究[D].上海交通大学博士论文, 2009
    [81]蒋明镜,沈珠江.岩土类软化材料的柱形孔扩张统一解问题[J].岩土力学, 1996, 17(1): 1-8.
    [82] Hsu J R C, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geo mechanic, 1994, 18(11): 785–807.
    [83] Biot M A. Mechanics of deformation and acoustic propagation in porous media [J]. ApplPhys, 1962, 33:1482-1498.
    [84] Ishihara K. Liquefaction and flow failure during earthquake[C]. The 33rd Rankine Lecture, Geotechnique, 1993, 43(3): 351-415
    [85] Hsu H C, Chen Y Y, Hsu J R C et al. Non-linear water waves on uniform current in lagrangian coordinates[J]. Journal of Nonlinear Mathematical Physics, 2009, 16(2):, 47–61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700