变电站开关瞬态场及其对二次电缆的耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网向特高压、集约化方向发展和微电子技术在二次设备中的广泛应用,变电站电磁环境日趋恶化,二次设备的电磁兼容问题日益突出,研究变电站开关瞬态场及其对二次电缆的耦合机理具有重要的理论意义和应用价值。本论文基于时域有限差分(FDTD)方法,研究了变电站开关瞬态场的时域仿真方法,变电站土壤中和电缆沟内的瞬态电磁场分布,有界波电磁脉冲(EMP)模拟器的传输线设计,近场对有限长线缆的耦合机理,以及瞬态电磁场耦合电缆的数值计算方法。论文主要研究成果如下:
     1.建立了变电站开关瞬态场的时域仿真模型,基于火花放电理论,提出了隔离开关操作时电弧放电通道的时变电阻和电感公式。通过拟合典型变电站开关瞬态场实测数据获得了开关电弧放电通道时变电阻的变化范围。基于该模型研究了影响开关瞬态场强度和上升时间的多种参数,为超高压和特高压变电站开关瞬态场研究提供了理论基础。
     2.针对变电站电缆沟内瞬态电磁场分布,提出了非均匀网格FDTD法,获得了变电站土壤中和电缆沟内不同截面上的开关瞬态场分布规律。深入研究了盖板参数对电缆沟内开关瞬态场强度的影响,为电缆沟设计和二次电缆布线提供了理论依据。
     3.针对变电站电磁脉冲(EMP)模拟技术,首次研究了有界波EMP模拟器的传输线部分的长度、宽度以及有耗大地介电常数、电导率对其工作区间内电磁波传播模式的影响,结果表明传输线宽度是主要影响因素。该结论可指导有界波EMP模拟器传输线设计。
     4.提出了近场对有限长线缆耦合的时域计算方法,系统地推导了与多种细导线相交的网格面上的电磁场分量的FDTD差分方程,该方法的优点是直接在时域内对近场和传输线进行整体建模计算。本论文比较了研究场线耦合问题的时域近场方法和远场方法。基于该方法研究了电场分量和磁场分量对线缆的耦合机理和不同回路间的串扰问题。
     5.提出了瞬态电磁场对电缆耦合的区域分解时域有限差分(DD-FDTD)计算方法,基于法拉第定律的积分形式推导出了圆柱坐标系下三角形网格内磁场分量的FDTD差分方程。初步研究表明快速瞬态电磁场难以透过电缆屏蔽层耦合电缆芯线,缝隙耦合可能是瞬态电磁场耦合电缆的主要途径。
With the grid is developing for UHV/compactness and microelectronic technology is used in secondary equipment, transient electromagnetic environment is becoming more and more complex, and electromagnetic compatibility problem of secondary equipment is more and more severe in substations. It is provided with important theoretical meaning and applied value to investigate switching transient field and the mechanism of it coupling to secondary cable. In this paper, on the base of finite-difference time-domain (FDTD) Method, time-domain simulating method of switching transient field is investigated, transient electromagnetic environment in the soil and in the cable tunnel is analyzed, the design of the transmission line of bounded-wave electromagnetic pulse simulator, coupling mechanism of near-field to finite-length wire and cable, and computing method of transient electromagnetic field coupling to shielding cable are investigated. The main achievements are as follows:
     1. Time-time model of simulating switching transient field is founded, according to the theory of spark discharge, time-dependant resistance and inductance expression of arc discharging channels are put forward while the insulating switch is operated. The range of time-dependant resistance is achieved by fitting the measured datum of switching transient field in typical substations. Using the founded model, the factors of influencing switching transient field are studied, which can be used to investigate switching transient field in EHV/UHV substations.
     2. Aiming at the distribution of transient electromagnetic field in the cable tunnel, uneven mesh FDTD Method is put forward. The switching transient field is systematically analyzed in the soil and in the cable tunnel in substation, and distribution rule is achieved. The factors of cover board which influence the distribution of switching transient field in the cable tunnel are analyzed, which supply the qualification of designing the cable tunnel and laying secondary cable.
     3. Aiming at simulating technology of EMP in substations, the influencing parameters of transmitting mode of electromagnetic wave in the workroom of bounded-wave EMP simulator are investigated, including the width and length of the transmission line of bounded-wave EMP simulator、the dielectric constant and conductance of the soil, the results indicate the width of transmission line is primary parameter, which can be used to help design the transmission line of bounded-wave EMP simulator.
     4. Time-domain method of near-field coupling to finite length thin wire is put forward, the FDTD discrete equations of electromagnetic fields on the surface of the mesh which intersect the different thin wires are deduced, the merit of the time-domain method is that near-field and thin wire are regarded as one whole to be directly computed in the time-domain. In this paper, near-field method and far-field method for investigating the field-to-wire coupling are compared. Using the time-domain method, coupling mechanism of field-to-wire is investigated, and mutual interference of different loop is also investigated.
     5. Domain decomposition FDTD algorithm is firstly put forward which be used to investigate transient electromagnetic field coupling to shield cable, on the base of integral expression of Faraday law, FDTD discrete equation of magnetic component in triangle mesh is deduced. Elementary investigation indicates that fast transient electromagnetic field is difficult to penetrate the shield of the cable; aperture is primary possible pass of transient electromagnetic field coupling to the core of the cable.
引文
[1]刘振亚.特高亚电网.北京:中国经济出版社,2005
    [2]张章奎.国内外特高压电网技术发展综述.华北电力技术,2006, 1(1):1-3
    [3] C.M.Wiggins, D.E.Thomas, F.S.Nickel, et al. Transient Electromagnetic Interference in Substations. IEEE Transactions on Power Delivery, 1994, 9(4): 1869-1884
    [4]杨吟梅.变电站内电磁兼容问题(二)-变电站内主要干扰源及其特性.电网技术, 1997, 21(3):72-75
    [5]贺景亮.电力系统电磁兼容.北京:水利水电出版社,2003
    [6]何彬.电力系统二次设备的电磁兼容问题.中国电力, 1998, 31(4): 46-50
    [7] F.M.Tesche, M.I.Ianoz, T.Karlsson. EMC Analysis Methods and Computational Models.New York: John Wiley & Sons Ltd, 1997
    [8] M.DAmore, M.S.SAarto, A.Scarlatti. Modeling of Magnetic-Fields Coupling With Cable Bundle Harnesses. IEEE Transactions on Electromagnetic Compatibility, 2003, 45(3):520-530
    [9]王淑凤,卢铁兵,崔翔.电力系统电磁兼容分析方法及数学模型综述.电力情报, 1998, 4: 1-5
    [10] M.V.Matveyev, M.K.Kostin, S.Zhivodernikov, et al. Some Results of EMC Investigations in Russian Substations. In: CIGRE, Paris (France): 2002, 36-103
    [11] C.Imposimato, J.Hoeffelman, A.Eriksson, et al. EMI Characterization of HVAC Substations-Updated Data. In: CIGRE, Paris (France): 2002, 36-108
    [12] C.M.Wiggins, S.E.Wright. Switching Transient Fields in Substations. IEEE Transactions on Power Delivery, 1991, 6(2): 591-600
    [13] C.M.Wiggins, S.E.Wright. Summary of Switching Transient Fields in AIS and GIS.IEEE Power Engineering Review, 1991, 61-62
    [14] N.Fujimoto, S.A.Boggs. Characteristics of GIS disconnector induced short risetime transient incident on externally connected power system components. IEEE transaction on Power Delivery, 1988, 3(3):961-970
    [15] J.Meppelink, K.Diederich and K.Feser, et al. Very fast transients in GIS.IEEE Transaction on Power Delivery, 1989, 4(1):223-233
    [16] G.Aponte, H.Cadavid and R.Perez, et al. Electric and Magnetic Fields Measurement in Colombian Lines and Substations.IEEE International Symposium on Electromagnetic Compatibility, 2003, 2:1195-1198
    [17]崔翔. 2002年国际大电网会议系列报道-电力系统电磁兼容研究进展.电力系统自动化,2003,27(4):1-5
    [18]王泽忠,李成榕,李鹏,等.用球形三维电场探头测量变电站瞬态电场.华北电力大学学报, 2002, 29(3):16-19
    [19]张卫东,崔翔.光纤瞬态磁场传感器的研究及其应用.中国电机工程学报, 2003, 23(1):88-92
    [20]卢斌先,王泽忠,李成榕,等. 500kV变电站开关操作瞬态电场测量与研究.中国电机工程学报, 2004,24(4):133-138
    [21] N.Ari, W.Blumer. Transient Electromagnetic Fields Due to Switching Operations in Electric Power Systems.IEEE Transactions on Electro-magnetic Compatibility, 1987, 29(3):233-237
    [22] E.T.Pereira, D.W.P.Thomas, A.F.Howe, et al. Computation of Electromag-netic Switching Transients in a Substation. International Conference on Computation in Electromagnetics, 1991: 331-334
    [23] R.S.Shi, A.Darcherif, J.C.Sabonnadiere. Computation of Transient Electromagnetic Fields Radiated by a Transmission Line: An Exact Model.IEEE Transactions on Magnetics, 1995, 31(4):2423-2431
    [24] D.Povh, H.Schmitt, O.Volcker, et al. Modeling and Analysis Guidelines for Very Fast Transients. IEEE Transactions on Power Delivery, 1996, 11(4):2028-2035
    [25] Tiebing Lu,Xiang Cui,Haoliu Yin,et al. Time-Domain Analysis of Tran-sient Electromagnetic Field Generated by Aerial Busbars Above Lossy Soil. IEEE Transactions on Magnetics, 2002, 38(2):773-776
    [26] LU Tiebing, CUI Xiang, M.Ianoz. Prediction of Switching Transient Electromagnetic Fields in Gas-insulated Substations. 3rd International Symposium on Electromagnetic Compatibility, 2002: 182-185
    [27] M.M.Rao, M.J.Thomas, B.P.Singh. Computation of EMI Fields in a High Voltage Gas Insulated Substation during Switching Operation. IEEE International Symposium on Electromagnetic Compatibility, 2003, 2: 743-748
    [28] Liang Guishu, Ran Huijuan, Dong Huaying, et al. Calculation of Transient Radiation Field from Metallic Enclosure of GIS Based on Surface-Patch Model. IEEE Transactions on Magnetics, 2006, 42(4):855-858
    [29] A.Orlandi. On the Inclusion of Switching Arc Restrikes and Lossy Ground in EMI Analysis for HV Substations. Ninth International Conference on Electromagnetic Compatibility, 1994: 92-98
    [30]卢铁兵,崔翔.变电站空载母线波过程的数值分析.中国电机工程学报, 2000, 20(6):39-42
    [31]赵志斌,崔翔,张波,等.应用矩量法计算变电站内的空间电磁场.中国电机工程学报, 2004, 24(11):148-153
    [32]聂定珍,陈守聚,郭志红,等.隔离刀闸操作旁路母线的模拟计算与分析.高电压技术, 2000, 26(3):60-62
    [33]史保壮,张文元,顾温国,等.GIS中快速暂态过电压的计算及其影响因素分析.高电压技术,1997, 23(4):19-22
    [34] S.Ahmed, D.Raju, S.Chaturvedi, et al. Modal Analysis for a Bounded-Wave EMP Simulator-PartⅠ: Effect of Test Object. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1):171-182
    [35] S.Ahmed, D.Raju, S.Chaturvedi, et al. Modal Analysis for a Bounded-Wave EMP Simulator-PartⅡ: Radiation Leakage and Mode Suppression. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1):183-191
    [36]潘晓东,魏光辉,张希军,等.有界波模拟器频率特性研究.军械工程学院学报. 2005, 17(6):25-28
    [37]刘顺坤,郑振兴,焦杰,等.电磁脉冲模拟器空间场分布的数值模拟.强激光与粒子束, 1998, 10(3): 399-402
    [38]周璧华,陈彬,石立华.电磁脉冲及其工程防护.国防工业出版社, 2003.1
    [39]侯民胜,王书平.核电磁脉冲模拟装置.高电压技术, 2002, 28(1): 35-37
    [40]陈亚洲,刘尚合,魏光杰,等.雷电电磁脉冲脉冲模拟.电波科学学报, 2000, 15(3):265-268
    [41] C.R.Paul. A SPICE Model for Multiconductor Transmission Lines Excited by an Incident Electromagnetic Field.IEEE Transaction on Electromag-netic compatibility, 1994, 36(4):342-354
    [42] G.Antonini, A.Orlandi. Spice Equivalent Circuit of a Two Parallel-Wires Shielded Cable for Evaluation of the RF Induced Voltages at the Termina-tions.IEEE Transactions on Electromagnetic Compatibility, 2004, 46(2): 189-198
    [43] Y.Bayram, J.L.Volakis. A Generalized MoM-SPICE Iterative Technique for Field Coupling to Multiconductor Transmission Lines in Presence of Com-plex Structures. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(2):234-246
    [44] Qingjian Yu, Omar Wing. SPICE Simulation of VLSI Interconnects Modeled by Transmission Lines with Skin Effects. Electrical Performance of Electronic Packaging, 1993: 89-91
    [45] I.Maio, F.G.Canavero, and B.Dilecce. Analysis of Crosstalk and Field Coupling to Lossy MTL’s in a SPICE Environment. IEEE Transactions on Electromagnetic Compatibility, 1996, 38(3):221-229
    [46] C.D.Taylor, R.S.Satterwhite, C.W.Harrison et al. The Response of a Terminated Two-Wire Transmission Line Excited by a Nonuniform Electro-magnetic Field. IEEE Transactions on Antennas and Propagation, 1965, 11:987-989
    [47] A.K.Agrawal H.J.Price, S.H.Gurbaxani. Transient Response of Multi-conductor Transmission Lines Excited by a Nonuniform Electromagnetic Field. IEEE Transactions on Electromagnetic Compatibility, 1980, 22(2): 119-129
    [48] F.Rachidi. Formulation of the Field-to-Transmission Line Coupling Equ- ations in Terms of Magnetic Excitation Field. IEEE Transactions on Electromagnetic Compatibility, 1993, 35(3):404-407
    [49]谢彦召,王赞基,王群书.地面附近架高线缆HEMP响应计算的Agrawal和Taylor模型比较.强激光与粒子束,2005, 17(4):575-580
    [50]孟庆翔,朱守正,赵姚同.外部电磁场对屏蔽多导体电缆系统耦合影响的分析.微波学报, 1998, 14(2): 95-101
    [51]付继伟,侯朝桢,窦丽华.瞬态电磁波对多层电缆耦合的数值分析[J].系统工程与电子技术, 2004, 26(2): 170-173
    [52] M.Damore, M.Felizianl. EMP Coupling to Coaxial Shielding Cables. IEEE International Symposium on Electromagnetic Compatibility, 1998, 37-44
    [53] S.Tkatchenko, F.Rachidi, and M.Ianoz. Electromagnetic Fields Coupling to a Line of Finite Length: Theory and Fast Iterative Solutions in Frequency and Time Domains. IEEE Transactions on Electromagnetic Comp- atibility, 1995, 37(4):509-518
    [54] C.A.Nucci, F.Rachidi. On the Contribution of the Electromagnetic Field Components in Field-to-Transmission Line Interaction. IEEE Transac-tions on Electromagnetic Compatibility, 1995, 37(4):505-508
    [55] M.Ianoz, D.Orzan, F.Rachidi. Validation of Field-to-Transmission Line Coupling Models.IEEE International Symposium on Electromagnetic Com-patibility, 1997, 231-234
    [56] F.Rachidi, C.A.Cucci, M.Ianoz, et al. Influence of a Lossy Ground on Lighting-Induced Voltages on Overhead Lines.IEEE Transactions on Elec- tromagnetic Compatibility, 1996, 38(3):250-264
    [57] D.Poljak,V.Roje.Time Domain Modeling of Electromagnetic Field Coupling to Transmission Lines.IEEE International Symposium on Electromagnetic Compatibility, 1998, 2:1010-1013
    [58] V.N.Greetsai, A.H.Kozlovsky, V.M.Kuvshinnikov, et al. Response of Long Lines to Nuclear High-Altitude Electromagnetic Pulse (HEMP).IEEE Tran- sactions on Electromagnetic Compatibility, 1998, 40(4):348-354
    [59] F.Rachidi, C.A.Nucci, and M.Ianoz. Transient Analysis of Multiconductor Lines above a Lossy Ground. IEEE Transactions on Power Delivery, 1999, 14(1):294-302
    [60] S.Tkatchenko, F.Rachidi, M.Ianoz. High-Frequency Electromagnetic Fie- ld Coupling to Long Terminated Lines.IEEE Transactions on Electromag-netic Compatibility, 2001, 43(2):117-129
    [61] H.K.Hoidalen. Analytical Formulation of Lightning-Induced Voltages on Multiconductor Overhead Lines above Lossy Ground.IEEE Transactions on Electromagnetic Compatibility, 2003, 45(1):92-100
    [62] F.M.Tesche. Comparison of the Transmission Line and Scattering Models for Computing the HEMP Response of Overhead Cables.IEEE Transactions on Electromagnetic Compatibility, 1992, 34(2):93-99
    [63] F.Schlagenhaufer, H.Singer. Investigations of Field-Excited Multiconductor Lines with Nonlinear Loads.IEEE International Symposium on Electromagnetic Compatibility, 1990, 95-99
    [64] Y.Kami, R.Sato. Transient Response of a Transmission Line Excited by an Electromagnetic Pulse. IEEE Transactions on Electromagnetic Compat- ibility, 1988, 30(4):457-462
    [65] G.Antonini, G.Ferri. A New Approach for Closed-Form Transient Analysis of Multiconductor Transmission Lines.IEEE Transactions on Electromagnetic Compatibility, 2004, 46(4):529-543
    [66] A.Shoory,R.Moini,S.H.Hesam,et al. Analysis of Lighting-Radiated Elec- tromagnetic Fields in the Vicinity of Lossy Ground.IEEE Transactions on Electromagnetic Compatibility, 2005, 47(1):131-145
    [67]卢斌先.变电站开关瞬态场干扰耦合机理研究:[博士学位论文].北京:华北电力大学,2007
    [68]齐磊.变电站瞬态电磁场对二次电缆的电磁耦合机理研究:[博士学位论文].北京:华北电力大学,2006
    [69] G.J.Bridges, L.Shafai. Plane Wave Coupling to Multiple Conductor Trans-mission Lines above a Lossy Earth. IEEE Transactions on Electromagnetic Compatibility, 1989, 31(1):21-33
    [70] H.N.Jr, D.Reed. The Effect of Secondary Scattering on the Induced Curre- nt in a Long Wire over an Imperfect Ground from an Incident EMP.IEEE Transactions on Antenna and Propagation, 1989, 37(12):1154-1158
    [71]程引会,周辉,李宝忠,等.不同电磁脉冲对细导线的耦合.强激光与粒子束, 2000, 12(1):91-93
    [72]陈彬,王延永,高成,等.电磁脉冲作用下近地电缆外皮感应电流的全波分析.微波学报,2000, 16(5):549-554
    [73] M.Feliziani, F.Maradei. Full-Wave Analysis of Shield Cable Configura-tions by the FDTD Method.IEEE Transactions on Magnetics, 2002, 38(2): 761-764
    [74] M.Feliziani, F.Maradci. Field-to-Wire Coupling Using the Finite Ele-ment-time Domain (FE-TD) Method.IEEE Transactions on Magnetics, 1995, 31(3):1586-1589
    [75] P.Sewell, Y.K.Choong, C.Christopoulos. An Accurate Thin-Wire Model for 3-D TLM Simulations.IEEE Transactions on Electromagnetic Compatibil-ity, 2003, 45(2):207-307
    [76] Y.Baba, N.Tanabe, N.Nagaoka et al. Transient Analysis of a Cable with Low-Conducting Layers by a Finite-Difference Time-Domain Method. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3):488-493
    [77] Y.Baba, N.Nagaoka, A.Ametani. Modeling of Thin Wires in a Lossy Medium for FDTD Simulations. IEEE Transactions on Electromagnetic Compati-bility, 2005, 47(1):54-60
    [78] J.A.Roden, C.R.Paul, W.T.Smith, et al. Finite-Difference Time-Domain Analysis of Lossy Transmission Lines. IEEE Transactions on Electro-magnetic Compatibility, 1996, 38(1):15-24
    [79] A.Orlandi, C.R.Paul.FDTD Analysis of Lossy Multiconductor Transmission Lines Terminated in Arbitrary Loads. IEEE Transactions on Electromag-netic Compatibility, 1996, 38(3):388-399
    [80] G.Antonini, A.Orlandi, C.R.Paul. An Improved Method of Modeling Lossy Transmission Lines in Finite-Difference Time-Domain Analysis. IEEE International Symposium on Electromagnetic Compatibility, 1991, 1:435 -439
    [81]卢铁兵,崔翔.变电站空载母线波过程的数值分析.中国电机工程学报, 2000, 20(6):39-42
    [82]李莉,万里兮,高莜纲.不等长多导体传输线瞬态响应的FDTD模拟.北京邮电大学学报, 1999, 22(1):1-4
    [83]齐磊,卢铁兵,崔翔.端接非线性负载的非均匀传输线瞬态分析.电波科学学报, 2003, 18(2):153-156
    [84]孙蓓云,周辉,田吉波,等.多导体屏蔽电缆EMP耦合响应研究.核电子学与探测技术, 2003, 23(3):246-249
    [85]齐磊,卢铁兵,崔翔.基于时域有限差分法的非均匀多导体传输线瞬态分析.中国电机工程学报, 2003, 23(7):102-104
    [86]齐磊,卢铁兵,张重远,等.考虑多层土壤时架空线的瞬态分析.中国电机工程学报, 2003, 23(5):66-69
    [87]卢铁兵,崔翔.有损土壤上的多导体传输线的时域分析.电波科学学报, 2000, 15(3):269-274
    [88] K.S.Yee. Numerical Solution of Initial Boundary Value Problems Involv-ing Maxwell Equations in Isotropic media.IEEE Transactions on Antenna and Propagation, 1966, 14(3):302-307
    [89]葛德彪,闫玉波.电磁波时域有限差分方法.西安:西安电子科技大学出版社, 2002.4
    [90]高本庆.时域有限差分法-FDTD Method.北京:国防工业出版社,1995.3
    [91]闫玉波,葛德彪,柴玫. FDTD-SBIC混合方法计算近地导线表面电流.电波科学学报, 2001, 16(4):848-487
    [92]王长清,祝西里.电磁场计算中的时域有限差分方法.北京:北京大学出版社,1994.
    [93] B.Engquist, A.Majda. Absorbing boundary conditions for the numerical simulation of waves. Math. Comput., 1977, 31(139):629-651
    [94] J.P.Berenger. A perfectly matched layer for the absorption of electro-magnetic waves. J.Comput. phys., 1994, 114(2): 185-200
    [95] W. Sui, D.A.Christensen and C.H.Durney. Extending the dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements. IEEE Trans. Microwave Theory Tech., 1992, MTT-40(4):724-730
    [96] A.Taflove,K.R.Umashankar,B.Berke,et al. Detailed FD-TD Analysis of Electromagnetic Fields Penetrating Narrow Slots and Lapped Joints in Thick Conducting Screens.IEEE Transactions on Antenna and Propagation, 1988, 36(2):247-257
    [97] J.P.Berenger. A Multiwire Formalism for the FDTD Method. IEEE Trans-actions on Electromagnetic Compatibility, 2000, 42(3):257-265
    [98] R.M.Makinen, J.S.Juntunen, M.A.Kivikoski. An Improved Thin-Wire Model for FDTD.IEEE Transactions on Microwave theory and Techniques, 2002, 50(5):1245-1255
    [99] P.T.Trakadas, N.K.kouveliotis, P.G.Babalis, et al. Computation of Transmission-Line Immunity Level in the Presence of a Direct-Sequence Spread-Spectrum Electromagnetic Signal by Using CE-FDTD Method.IEEE Transactions on Electromagnetic Compatibility, 2003, 45(1):2-9
    [100] N.V.kantartzis, T.D.Tsiboukis. A High Order Nonstandard FDTD-PML Meth- od for the Advanced Modeling of Complex EMC Problems in Generalized 3-D Curvilinear Coordinates.IEEE Transactions on Electromagnetic Compatibility, 2004, 46(1):2-11
    [101] M.Y.Koledintseva, J.L.Drewniak, D.J.Pommerenke. Wide-Band Lorentzian Media in the FDTD Algorithm.IEEE Transactions on Electromagnetic Comp- atibility, 2005, 47(2):392-399
    [102] J.Fang, J.Ren. A Locally Conformed Finite-Difference Time-Domain Algorithm of Modeling Arbitrary Shape Planar Metal Strips. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(5):830-838
    [103] T.G.Jurgens, A.Taflove, K.Umashankar. Finite-Difference Time-Domain Modeling of Curved Surfaces.IEEE Transactions on Antenna and Propa-gation, 1992, 40(4):357-366
    [104]刘顺坤,陈雨生,孙蓓云,等.电磁脉冲作用下地面铺设屏蔽电缆蒙皮电流分布的时域计算方法研究.强激光与粒子束, 2005, 17(2):283-286
    [105]刘顺坤,傅君眉,陈雨生,等.基于细线散射的时域有限差分方法.微波学报, 2000, 16(5):607-611
    [106]米夏兹.大功率毫微秒脉冲的产生.北京:原子能出版社,1982.6
    [107]刘锡三.高功率脉冲技术.北京:国防工业出版社,2005.8
    [108]洪伟,孙连友,尹雷,等.电磁场边值问题的区域分解算法.北京:科学出版社,2005.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700