重型商用车液压互联悬架系统特性分析及设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压互联悬架系统作为一种新型悬架系统,具备独立配置悬架系统模式刚度和阻尼的能力。安装液压互联悬架系统的车辆可以获得更好的乘坐舒适性和操纵稳定性,因而有着广泛的应用前景。在液压互联悬架系统为数不多的研究成果中,关于三轴重型商用车液压互联悬架系统的基础理论研究较少。对装有液压互联悬架系统的车辆而言,现今基于非线性微分方程的传统机械液压耦合系统的数值计算方法,只能获得车辆系统评价指标关于液压系统关键性能参数的隐式关系,因而只能对液压系统参数进行定性分析。该方法对研究液压互联悬架系统的附加特性关于液压系统参数的显式定量关系带来困难,同时也影响了对该类悬架系统设计方法研究的开展。
     本文针对液压互联悬架特性开展系统深入研究,力求在液压互联悬架系统基础理论研究和工程理论计算方面开展一些尝试和探索。本文研究内容主要包括以下几个方面:
     (1)提出基于阻抗传递矩阵的机械液压耦合系统建模方法。该方法通过将液压系统的液压回路按流体元件进行离散化,离散后回路中各节点之间的状态量通过流体单元的传递矩阵关联,流体单元传递矩阵连乘获得流量呈连续变化油路的通路矩阵。通过在流量跳变处状态量之间的关系,获得液压系统回路在机械液压耦合边界处压力相对于流量的阻抗矩阵。结合机械液压耦合边界处压力和流量与机械运动之间的关系,将由边界处压力所产生的液压力作为外力引入至机械系统动力学方程,最终建立机械液压耦合系统动力学方程。
     (2)针对三轴重型商用车,提出基于独立悬架运动模式的液压缸互联方式。根据机械系统建模需要,建立并验证具有俯仰运动模式的平衡悬架系统简化模型。通过对双液压缸同向和反向互联方式的研究,获取同向和反向互联对附加刚度和阻尼特性的影响规律。根据该规律,使用阻抗传递矩阵方法,结合液压缸的互联方式,推导独立运动模式下液压系统的阻抗矩阵。
     (3)开展独立运动模式下液压互联悬架系统特性研究。结合H2评价方法,推导悬架性能响应均值关于液压系统关键参数的显式定量描述。通过引入无量纲算子,获取悬架性能的无量纲表达形式。根据悬架性能关于等效刚度和阻尼的等值关系,获取液压系统关键参数的设计范围。研究抗俯仰液压互联悬架系统的刚度/阻尼矩阵与俯仰平面内传统悬架系统的刚度/阻尼矩阵表达结构的相似性。研究抗侧倾液压互联悬架系统车体和轮组垂向/俯仰、侧倾/翘曲运动模式解耦的必要条件,从理论上验证液压互联悬架具备独立配置刚度/阻尼特性的功能。同时开展液压系统物理参数对上述性能影响的定量分析。
     (4)基于获得的独立运动模式下装有液压互联悬架系统车辆的动力学方程,研究液压互联悬架系统的稳态振动特性。针对该动力学方程特征矩阵的频域依赖特性,提出用于求解该类矩阵特征值的方法。通过对比求解非频率依赖特征矩阵的特征值问题,验证该方法的正确性。基于辨识获得的特征值和特征向量,结合复模态的“实”运动分析方法,研究抗俯仰液压互联悬架系统和抗侧倾液压互联悬架系统对原车辆系统振动固有频率、模态振型以及车体振荡中心位置的影响,并开展随机路面下的功率谱密度响应分析。
     (5)对基于显式表达的液压互联悬架系统的参数设计方法进行研究。围绕液压互联悬架性能,开展液压系统关键物理参数的参数化分析。将参数化分析获得的相悖评价指标作为悬架设计的目标函数,采用基于离散变量的悬架设计方法,获得满足性能指标要求的悬架参数组合,并结合无量纲方法和多指标雷达图,对相悖的多个指标性能进行折衷,从而获得最优参数组合。
     综上所述,本文以液压互联悬架系统为研究对象,研究液压互联悬架系统建模、互联方式和振动特性、参数设计和主观评价方法。本研究为机械液压耦合系统提供新的建模方法,并为液压互联悬架系统的基础理论研究提供新思路,具有较好的学术价值和工程实用价值。
The hydraulically interconnected suspension (HIS), as one of the advancedsuspensions, is able to independently adjust the spring/damping rates for eachsuspension mode. The vehicle, equipped with the HIS, has better ride and handlingperformance than that with the conventional suspension. Hence, This suspension hasthe extensively applied foreground. However, few research study has been carried outto explore the theory and mechanism of the HIS system for the tri-axle straight truck.The nonlinear differential equations developed by the conventional method, which isemployed to model the dynamics equations of the mechanical and hydraulic couplingsystem, can only implicitly describe the relationships between the evaluation indicesand the key physical parameters of the hydraulic system, which make it is difficult toinvestigate the explicit quantitative relationships between the additional characteristicsand the key physical parameters, and also affects the development study of the designmethodologies for the HIS system.
     Therefore, this dissertation systematically investigates the characteristics of theHIS system, and aims at contributing some useful researches and trials on theoreticalanalysis and computation for the HIS system. The main research works of thisdissertation are as follows:
     (1) A modeling methodology has been proposed based on the impedance transfermatrix method. It discretizes the fluid circuits according to the fluid components, andthe state vector of the adjacent nodes for each fluid component are related to each otherby the transfer matrix of the fluid component. The relationships between the nodes, inwhich the flow changes continuously, are described with the connectivity matrix,which is obtained by production of every individual component transmission matrix.By applying the continuity equation at the nodes, where the flow fluctuates, theimpedance matrix between the flow and pressure at the boundaries can be obtained.The hydraulic strut forces are incorporated into the equations of motion of themechanical system as externally applied forces, which are obtained by therelationships between the boundary flows/pressures and the motions of the mechanicalsystem. Finally, the equations of motion of the mechanical and hydraulic couplingsystem have been derived.
     (2) The interconnection arrangements have been developed for the tri-axle straighttruck based on the independent mode of the suspension. Based on the requirements forthe modeling of the mechanical system, a simplified model, which is characterized aspitch mode, for the rear tandem axle bogie suspension of the tri-axle straight truck hasbeen developed and evaluated. According to the research of the synchronous andopposite interconnection arrangements between two double-acting cylinders, therelationships between additional characteristics and the interconnection arrangementsare obtained. Based on the obtained results, three new HIS systems have been proposedto implement control for the independent suspension mode. The impedance matrices ofthese hydraulic systems have been derived based on the impedance transfer matrixmethod.
     (3) The characteristics and mechanism research has been carried out for the HISsystem based on the independent mode of the suspension. The H2performances of theHIS system for the quarter-car have been obtained. The dimensionless expressions forthe H2performances of the HIS system has been derived and explicitly described interms of the dimensionless parameters. Then the feasible design region for the stiffnessand damping parameters is figured out from the contour plot of the suspensionperformances with respect to the stiffness and damping parameters. The analogousexpression for the conventional suspension and pitch resitant HIS systems is alsoinvestigated in the pitch plane. Furthermore, the conditions for the roll resistant HISsystem to decouple the heave and pitch modes, as well as roll and warp modes, for thebody and wheel stations have been studied based on the additional stiffness/dampingmode matrix. It is theoretically proved that the HIS is able to independently adjust thespring/damping rate. Meanwhile, the quantitative analysis of the key physicalparameters on the additional mode stiffness/damping has been made in this thesis.
     (4) Based on the equations of motion of the mechanical and hydraulic couplingsystem for the independent mode, the steady vibration characteristics have beenstudied. An identification method is proposed to find out the eigenvalues of thefrequency dependent characteristic matrix. This method is evaluated by comparison ofthe eigenvalues of the frequency independent characteristic matrix, which are obtainedwith the conventional method. Based on the identified eigenvalues and eigenvectors,the impacts of the pitch and roll resistant HIS systems on the natural frequencies, modeshapes and the truck body oscillation centers have been studied using the ‘real’ motionanalysis method based on the complex modal theory. The power spectral density responses of the coupling system under stochastic road excitation are also investigated.
     (5) A parameter design method is presented to optimize the performances of theHIS system. A parametric study has been carried out to analysis the effects of the keyphysical parameters of hydraulic system on the performances. Based on the results ofthe parametric study, the conflict performance indices are assembled as the objectivefunctions. The optimized parameter sets, which satisfy the requirements from theobjective functions, can be found by employing optimum design based on the discretevariables. And the parameter set corresponding to the better compromisingperformances is chosen from the optimized sets in terms of the dimensionless factors,which are displayed by the radar-type chart.
     In summary, this dissertation, whose research objective is the hydraulicallyinterconnected suspension, has investigated into the dynamics of this proposedsuspension, which involve in modeling, interconnection arrangements and vibrationmechanism, parameter design and subjective evaluation methods. This dissertationpresents a new modeling approach for the mechanical and hydraulic coupling system,and provided a new resolution to the theoretical investigation for the HIS system. As aresult, this dissertation is with rather good academic merits and practical value.
引文
[1] Heisler H. Advanced vehicle technology. London: Edward Arnold,1993
    [2]公安部交通管理科学研究所.中华人民共和国道路交通事故统计资料汇编(2009年度).北京:公安部交通管理局,2009
    [3] Jarossi L, Matteson A, Woodrooffe J. Trucks involved in fatal accidents fact book2007. Ann Arbor: The University of Michigan Transportation Research Institute,2010
    [4] Ervin R D. The dependence of truck roll stability on size and weight variables.International Journal of Vehicle Design,1986,7(5-6):192-208
    [5] Winkler C B, Blower D, Ervin R D, et al. Rollover of heavy commercial vehicles.PA: Society of Automotive Engineers,2000
    [6] Gillespie T D. Fundamentals of vehicle dynamics. PA: Society of AutomotiveEngineers,1992
    [7] Fancher J, Paul S. Pitching and bouncing dynamics excited during antilock brakingof heavy trucks. Vehicle System Dynamics,1977,6(2-3):129-137
    [8] Gillespie T D. Heavy truck ride. SAE Technical Paper850001,1985
    [9] Appleyard M, Wellstead P E. Active suspensions: some background. IEEEProceedings-Control Theory and Applications,1995,142(2):123-128
    [10]Ortiz M. Principle of interconnected suspensions part1: Modal suspensionanalysis. Race Car Engineering,1997,7(7):56–59
    [11]Williams R A. Automotive active suspensions part1: Basic principles. ProcIMechE, Part D: Journal of Automobile Engineering,1997,211(6):415-426
    [12]Williams D E, Haddad W M. Active suspension control to improve vehicle rideand handling. Vehicle System Dynamics,1997,28(1):1-24
    [13]Ahmadian M, Blanchard E. Non-dimensionalised closedform parametric analysisof semi-active vehicle suspensions using a quarter-car model. Vehicle SystemDynamics,2011,49(1-2):219-235
    [14]Cooke R, Crolla D A, Abe M. Modelling combined ride and handling manoeuvresfor a vehicle with slow-active suspension. Vehicle System Dynamics,1997,27(5-6):457–476
    [15]Williams R A. Automotive active suspensions part2: Practical considerations. ProcIMechE, Part D: Journal of Automobile Engineering,1997,211(6):427-444
    [16]Smith M C, Walker G W. Interconnected vehicle suspension. Proc IMechE, Part D:Journal of Automobile Engineering,2005,219(3):295-307
    [17]Ortiz M. Principle of interconnected suspensions part2: Methods of Non-RigidInterconnection&Their Effects. Race Car Eng.,1997,7(8):76–81
    [18]Tenneco Inc. Products and technologies. http://www.tenneco.com/OriginalEquipment/RideControl/ProductsandTechnologies/,2013-06-26
    [19]Pevsner J M. Equalizing types of suspension. Automobile Engineer,1957,1:10-16
    [20]Bhave S Y. Effect of connecting the front and rear air suspensions of a vehicle onthe transmissibility of road undulation inputs. Vehicle System Dynamics,1992,21(1):225-245
    [21]Liu P J, Rakheja S, Ahmed A K. Properties of an interconnected hydro-pneumaticsuspension system. Transactions of the Canadian Society for MechanicalEngineering,1995,19(4):383-396
    [22]Cebon D. Handbook of vehicle-road interactions. Abingdon: Swets&Zeitlinger,1999
    [23]Campbell C. Automobile suspensions. London: Chapman and Hall,1981
    [24]王平.机械消扭悬架应用设计与研究:[吉林大学硕士学位论文].长春:吉林大学,2007
    [25]Fontdecaba J. Integral suspension system for motor vehicles based on passivecomponents. SAE Technical Paper,2002, Paper No:2002-01-3105
    [26]Kat C J, Els P S. Interconnected air spring model. Mathematical and ComputerModelling of Dynamical Systems,2009,15(4):353-370
    [27]Wolf-Monheim D I, Schrüllkamp D I, Loos D I. Interlinked air suspension systems.ATZ autotechnology,2009,9(3):58-61
    [28]Hirose M, Matsushige S, Buma S, et al. Toyota electronic modulated airsuspension system for the1986Soarer. IEEE Transactions on IndustrialElectronics,1988,35(2):193-200
    [29]王凯.空气消扭悬架仿真与实验研究:[吉林大学硕士学位论文].长春:吉林大学,2007
    [30]Moulton A E, Best A. Rubber springs and inter-connected suspension systems. In:Proceedings of Engineering Design Show Conference,1970,15a
    [31]Moulton A E, Best A. Hydragas suspension. SAE Technical Paper,1979, Paper No:790374
    [32]陈国椿.基于ADAMS的油气消扭悬架系统仿真分析:[吉林大学硕士学位论文].长春:吉林大学,2005
    [33]陈禹行.油气耦连悬架系统的建模与仿真分析:[吉林大学硕士学位论文].长春:吉林大学,2010
    [34]童伟.整体耦合式消扭悬架系统原理及其运动学和动力学研究:[华南理工大学博士士学位论文].广州:华南理工大学,2010
    [35]郭孔辉,陈禹行,庄晔等.油气耦连悬架系统的建模与仿真研究.湖南大学学报(自然科学版),2011,38(3):29-33
    [36]徐文立.油气悬架对整车动力学性能的影响:[吉林大学硕士学位论文].长春:吉林大学,2011
    [37]吴仁智.油气悬架系统动力学仿真和试验研究:[浙江大学博士学位论文].浙江:浙江大学,2000
    [38]李春艳,谢东升,陈轶杰等.论油气悬挂的性能特点及研究现状.机械制造,2008,46(10):59-62
    [39]孙建民.油气悬架的应用及性能控制研究进展.起重运输机械,2007,6:7-10
    [40]甄龙信,张文明,王国彪.国内油气悬架的研究方法现状与发展.矿山机械,2004,32(8):19-21
    [41]Hawley J B. Shock absorber and the like for vehicles. U.S. patent.1647518,1927-11-01
    [42]Bastow D, Howard G, Whitehead J P. Car suspension and handling. PA: Society ofAutomotive Engineers,2004
    [43]Pitcher R H. Vehicle suspension. U.S. patent.3885809,1975-03-27
    [44]Pitcher R H. Technology showcase: Active ride control system. Journal ofterremechanics,1986,22(4):237-243
    [45]Packer M B. Active ride control–A logical step from static vehicle attitude control.SAE Technical Paper,1978, Paper No:780050
    [46]Zapletal E. Balanced suspension. SAE Technical Paper,2000, Paper No:2000-01-3572
    [47]Zapletal E. Balanced suspension system. U.S. patent.6702265,2004-03-09
    [48]Creuat Company. Creuat Technology. http://www.creuat.com/Technology.html,2013-06-26
    [49]Wilde J R, Heydinger G J, Guenther D A, et al. Experimental evaluation offishhook maneuver performance of a kinetic suspension system. SAE TechnicalPaper,2005, Paper No:2005-01-0392
    [50]Cotterell M. Theoretical analysis of an active suspension fitted to a londontransport bus. In: Chapter14of "Stress, Vibration and Noise Analysis in Vehicles",Gibbs H G, Richards T H, Applied Science Publications, London,1975
    [51]Horton D N, Crolla D A. Theoretical analysis of a semi active suspension fitted toan off-road vehicle. Vehicle System Dynamics,1986,15(6):351-372
    [52]Crolla D A, Horton D N, Pitcher R H, et al. Active suspension control for anoff-road vehicle. Proc IMechE, Part D: Journal of Automobile Engineering,1987,201(1):1-10
    [53]Rosam N, Darling J. Modelling and testing of the interconnected hydragassuspension. In: Proc.6th Int. Congress on Hydraulic Engineering in the Vehicle.1994
    [54]Joo F R. Dynamic analysis of a hydropneumatic suspension system:[dissertation].Montreal: Concordia University,1991
    [55]Gay F, Coudert N, Rifqi I, et al. Development of hydraulic active suspension withfeedforward and feedback design. SAE Technical Paper,2000, Paper No:2000-01-0104
    [56]Garrott W, Howe J, Forkenbrock G. Results from nhtsa's experimental examinationof selected maneuvers that may induce on-road untripped, light vehicle rollover.SAE Technical Paper,2001, Paper No:2001-01-0131
    [57]Forkenbrock G, Garrott W, Heitz M, et al. An experimental examination of j-turnand fishhook maneuvers that may induce on-road, untripped, light vehicle rollover.SAE Technical Paper,2003, Paper No:2003-01-1008
    [58]Mace N. Analysis and synthesis of passive interconnected vehicle suspensions:
    [dissertation]. Cambridge: University of Cambridge,2004
    [59]Mavroudakis B, Eberhard P. Mode decoupling in vehicle suspensions applied torace cars. In: III European Conference on Computational Mechanics: Solids,Structures and Coupled Problems in Engineering. Lisbon.2006
    [60]Zhang N, Smith W A, Jeyakumaran J. Hydraulically interconnected vehiclesuspension: background and modelling. Vehicle System Dynamics,2010,48(1):17-40
    [61]Iijima T, Akatsu Y, Takahashi K, et al. Development of a hydraulic activesuspension. SAE Technical Paper,1993, Paper No:931971
    [62]Rosam N, Darling J. Development and simulation of a novel roll control systemfor the Interconnected Hydragas Suspension. Vehicle System Dynamics,1997,27(1):1-18
    [63]Liu P J. Analysis study of ride and handling performance of an interconnectedvehicle suspension:[dissertation]. Montreal: Concordia University,1995
    [64]Cao D, Rakheja S, Su C Y. Pitch plane analysis of a twin-gaschamber strutsuspension. Proc IMechE, Part D: Journal of Automobile Engineering,2008,222(8):1313–1335
    [65]Cao D, Rakheja S, Su C Y. Property analysis of an X-coupled suspension for sportutility vehicles. SAE Technical Paper,2008, Paper No:2008-01-1149
    [66]Cao D, Rakheja S, Su C Y. Roll-and pitch-plane coupled hydro-pneumaticsuspension part1: Feasibility analysis and suspension properties. Vehicle systemdynamics,2010,48(3):361-386
    [67]Cao D, Rakheja S, Su C Y. Pitch attitude control and braking performance analysisof heavy vehicle with interconnected suspensions. SAE Technical Paper,2007,Paper No:2007-01-1347
    [68]Cao D, Rakheja S, Su C Y. Comparison of roll properties of hydraulically andpneumatically interconnected suspensions for heavy vehicles. SAE TechnicalPaper,2005, Paper No:2005-01-3593
    [69]Smith W A, Zhang N, Hu W. Hydraulically interconnected vehicle suspension:handling performance. Vehicle System Dynamics,2011,49(1-2):87-106
    [70]陶又同.液压悬挂系统的示功图法模型辨识.武汉理工大学学报(交通科学与工程版),1985,4:95-103
    [71]王璋.重型挂车油气弹簧平衡悬架系统设计问题的探讨.专用汽车,1990,1:14-18
    [72]安兰存,王保业.重型车辆油气弹簧多轴平衡悬架系统.导弹与航天运载技术,1993,5:45-52
    [73]高凌风.连通式油气悬架刚度分析及发射车行车振动响应计算:[北京理工大学博士学位论文].北京:北京理工大学,1994
    [74]段飞.一种抗侧倾汽车油气悬架的阻尼特性分析.见:四川省汽车工程学会二届二次学术年会论文集.北京:中国知网出版社,1996,142-147
    [75]赵春明.油气悬架系统动力学理论及其相关控制技术研究:[大连理工大学博士学位论文].大连:大连理工大学,1998
    [76]刘汉光,吴仁智,吕文泉.双气室连通油气悬架车辆的侧倾特性分析.建筑机械化,2003,8:19-21
    [77]马国清,檀润华,吴仁智.油气悬挂系统非线性数学模型的建立及其计算机仿真.机械工程学报,2002,38(5):95-99
    [78]赵登峰.自卸汽车油气悬挂系统动态特性仿真与试验研究:[吉林大学博士学位论文].长春:吉林大学,2003
    [79]过学迅,吴涛.多轴油气平衡悬架振动性能研究.华中科技大学学报,2001,29(1):30-32
    [80]王汉平,张聘义,邵自然.混合连通式油气悬挂重型车辆的振动性能研究.导弹与航天运载技术,2003,264(4):7-11
    [81]庄德军,柳江,喻凡等.汽车油气弹簧非线性数学模型及特性.上海交通大学学报,2005,39(9):1441-1444
    [82]孙涛,喻凡,张振东等.重载车辆油气悬架不确定分析及H∞控制器设计.振动与冲击,2007,26(9):51-54
    [83]刘凤国,王晓燕,封士彩.连通式油气悬挂车辆三种行驶状况下数学模型的建立.机械制造与自动化,2006,35(3):36-40
    [84]周德成.矿用自卸汽车油气悬挂系统动力学仿真及试验研究:[吉林大学博士学位论文].长春:吉林大学,2005
    [85]郭孔辉,卢荡,宋杰等.油气消扭悬架的试验与仿真.吉林大学学报(工学版),2008,38(4):753-757
    [86]陈思忠,王勋,杨波.一种新型油气平衡悬架的平顺性仿真研究.北京理工大学学报,2009,29(5):394-397
    [87]杨杰,陈思忠,吴志成等.可调阻尼阀参数对油气悬架阻尼特性的影响.农业机械学报,2009,40(2):12-17
    [88]张生,万芳.多轴连通油气悬架特种车动力学分析.见:2009中国汽车工程学会年会论文集.北京:机械工业出版社,2009,1662-1667
    [89]杜恒.大型轮式车辆油气悬架及电液伺服转向系统研究:[浙江大学博士学位论文].浙江:浙江大学,2011
    [90]王增全,申焱华,杨珏.可控参数对连通式油气悬架性能影响.液压与气动2011,10:8-11
    [91]刘志强.车辆油气悬挂系统动力学研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2011
    [92]王增全,申焱华,杨珏.连通式油气悬架数学模型及特性分析.农业工程学报,2012,28(5):60-65
    [93]寇伟光,周惠群,杨静.液压系统建模方法研究.机械与电子,2010,5:24-27
    [94]蔡廷文.液压系统现代建模方法.北京:中国标准出版社,2002
    [95]王中双.键合图理论及其在系统动力学中的应用.哈尔滨:哈尔滨工程大学出版社,2007
    [96]蒋书运,陈照波.用整体传递矩阵法计算航空发动机整机临界转速特性.哈尔滨工业大学学报,1998,30(1):32-35
    [97]刘忠族,孙玉东,吴有生.空间管路振动频率计算的精确传递矩阵法.计算力学学报,2002,19(2):93-96
    [98]芮筱亭,刘亚飞.梁系统振动的传递矩阵法.力学与实践,1993,15(5):66-67
    [99]芮筱亭,何斌,陆毓琪等.刚柔多体系统动力学离散时间传递矩阵法.南京理工大学学报,2006,30(4):390-394
    [100]左鹤声.机械阻抗方法与应用.北京:机械工业出版社,1987
    [101] Smith W A, Zhang N, Jeyakumaran J. Hydraulically interconnected vehiclesuspension: theoretical and experimental ride analysis. Vehicle System Dynamics,2010,48(1):41-64
    [102] Stecki J S, Davis D C. Fluid transmission lines—distributed parameter models,part2: Comparison of models. Proc IMechE, Part A: Journal of Power andEnergy,1986,200(4):229-236
    [103] Nguyen D L, Winter E R, Greiner M. Sonic velocity in two-phase systems.International Journal of Multiphase Flow,1981,7(3):311-320
    [104] Merritt H E. Hydraulic control systems. New York: John Wiely,1967
    [105] Johansen F C. Flow through pipe orifices at low Reynolds numbers. Proceedingsof the Royal Society of London. Series A,1930,126(801):231-245
    [106] Sahin B, Akilli H. Finite element solution of laminar flow through square-edgedorifice with a variable thickness. International Journal of Computational FluidDynamics,1998,9(1):85-88
    [107]盛敬超.工程流体力学.北京:机械工业出版社,1988
    [108] Johnston D N, Edge K A. The impedance characteristics of fluid powercomponents: restrictor and flow control valves. Proc IMechE, Part I: Journal ofSystems and Control Engineering,1991,205(1):3-10
    [109] Lau K K, Edge K A, Johnston D N. Impedance characteristics of hydraulicorifices. Proc IMechE, Part I: Journal of Systems and Control Engineering,1995,209(4):241-253
    [110] Edge K A, Johnston D N. The impedance characteristics of fluid powercomponents: relief valves and accumulators. Proc IMechE, Part I: Journal ofSystems and Control Engineering,1991,205(1):11-22
    [111] Johnston D N, Edge K A, Brunelli M. Impedance and stability characteristics of arelief valve. Proc IMechE, Part I: Journal of Systems and Control Engineering,2002,216(5):371-382
    [112] Johnston D N, Drew J E. Measurement of positive displacement pump flowripple and impedance. Proc IMechE, Part I: Journal of Systems and ControlEngineering,1996,210(1):65-74
    [113]殷智宏.双气室空气悬架系统理论及实验:[湖南大学博士学位论文].长沙:湖南大学,2012
    [114] Watton J, Holford K M, Surawattanawan P. Electrohydraulic effects on themodelling of a vehicle active suspension. Proc IMechE, Part D: Journal ofAutomobile Engineering,2001,215(10):1077-1092
    [115] MSC Software. ADAMS User's Reference Manual,2003
    [116] GB/T6323.2-94中华人民共和国国家标准.汽车操纵稳定性试验方法:转向瞬态响应试验(转向盘角阶跃输入)
    [117] International Organization for Standardization. Passenger cars-test track for asevere lane-change manoeuvre part2: Obstacle avoidance, No.2. InternationalOrganization for Standardization,2002
    [118] Ding F, Zhang N, Han X, et al. Modelling and dynamic analysis of a heavy dutytruck with rear tandem axle bogie suspension system. In:6th AustralasianCongress on Applied Mechanics. Perth,2010, Paper No:1189
    [119] Ding F, Zhang N, Han X, et al. Dynamic characteristic analysis of heavy dutytruck using simplified tandem suspension model. In: The First IFToMM AsianConference on Mechanism and Machine Science. Taipei,2010
    [120] Milliken W F, Milliken D L, Olley M. Chassis design: principles and analysis. PA:Society of Automotive Engineers,2002
    [121] Sharp R, Crolla D. Road vehicle suspension system design—a review, VehicleSystem Dynamics1987,16(3):167-192
    [122] Asami T, Nishihara O. H2optimization of the three-element type dynamicvibration absorbers, ASME Journal of Vibration and Acoustics2002,124(4):583–592
    [123] Newton G C. Analytical design of linear feedback controls. New York: JohnWiely,1957
    [124] Mercier P E. Theory of vehicle suspensions. Journal of Applied Physics,1942,13(8):484-495
    [125] Malek K M, Hedrick J K. Decoupled active suspension design for improvedautomotive ride quality/handling performance. Vehicle System Dynamics,1986,15(sup1):383-398
    [126] Smith M C, Walker G W. Performance limitations and constraints for active andpassive suspensions: A mechanical multi-port approach. Vehicle SystemDynamics,2000,33(3):137-168
    [127]于德介,程军圣,杨宇.机械振动学.长沙:湖南大学出版社,2010
    [128] Hatch M R. Vibration Simulation Using MATLAB and ANSYS. Boca Raton:Chapman and Hall/CRC,2001
    [129] Cole D J. Fundamental issues in suspension design for heavy road vehicles.Vehicle System Dynamics,2001,35(4-5):319-360
    [130]丁玉庆,马幼鸣.货车振动系统频率响应的模拟.振动与冲击,2000,19(1):61-63
    [131] International Organization for Standardization. Mechanical Vibration and Shock:Evaluation of Human Exposure to Whole-body Vibration. Part1, GeneralRequirements: International Standard ISO2631-1:1997(E). InternationalOrganization for Standardization,1997
    [132] Rexroth Bosch group. Diaphragam-type accumulator: Component series1X and2X, nomial capacity0.075to3.5liters, maximum operating pressure350bar.http://www.boschrexroth-us.com/country_units/america/united_states/sub_websites/brus_brh_i/en/products_ss/01_accumulators/a_downloads/re50150_2007-11.pdf,2013-06-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700