重型静压推力轴承力学性能及油膜态数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静压推力轴承是重型数控加工设备的主要部件,它的性能优劣直接影响设备的加工质量和运行效率。随着各种先进制造技术的快速发展,特别是高速切削技术的出现,对于加工设备的主轴转速要求越来越高。国产重型数控加工设备目前存在的主要问题是工作台转盘的旋转速度较国外同类产品低,生产效率低,加工精度差。如何提高大型数控加工设备工作台的转速、旋转精度、加工效率和加工精度,提高国际市场竞争力是目前非常迫切的任务之一。工作台转盘旋转速度和精度是由静压推力轴承性能的理论计算、设计、加工和装配等多种因素决定的。对于静压推力轴承多采取类比设计,没有进行系统的和较精确的数值计算,没有一个完整具有自主知识产权的优化设计程序和关键技术。由于国内大型零件机械加工精度达不到要求,使得静压轴承工作时摩擦副间的间隙不均匀,在高速重载的工况下局部产生干摩擦或边界润滑,导致静压轴承局部温升,油膜破裂,进而产生局部变形,使油垫的实际结构偏离理论设计模型,限制了转速。
     为了探明大尺度恒流多油垫开式静压支承盘轴承的力学性能和油膜的压力状态、流动状态和温度分布情况,在黑龙江省科技攻关项目(GC05A512)“重型立式数控车床工作台静压支承轴承研究”和教育部博士点基金项目(20050214001)“重型数控机床自适应推力轴承的研究”的资助下,本文以大尺度(回转直径D>10m)恒流多油垫开式静压支承盘为研究对象,基于计算流体动力学和润滑理论,对于扇形油腔的研究提出将该模型简化为环形平面间隙和矩形平面平板流动的假设,使得理论计算结果更符合实际流动情况,减小了理论计算结果的误差,对于圆形油腔的研究,提出等面积当量半径的概念,利用等面积圆的面积替代油垫大扇形的面积,简化了模型力学性能参数的推导。利用流体力学计算软件FLUENT对油膜的压力状态、流动状态和温度场进行三维综合数值模拟分析,揭示了恒流和恒转速情况下圆形腔和扇形腔的腔面积和腔深对摩擦副的力学性能和油膜的压力状态、流动状态和温度场的影响规律。在10米立式数控车床上实测了油膜压力、油膜厚度和温度分布,通过试验验证理论计算和数值模拟所得结论的正确性,进而通过理论与试验相结合的方式探明了此类支承的摩擦学行为和失效机理,为此类支承的模型预报、仿真、设计和计算提供了一种行之有效的方法。
Hydrostatic thrust bearing is critical component in heavy type numerical control processes equipment, the capability of which directly impact the quality and operational efficiency of the processes equipment. With the development of advanced manufacturing technology, especially the appearance of quick-cutting technology, the requirement of the main shaft rotation speed is much higher. The problem, which is existed in the domestic heavy numerical control process equipment at present, is that the rotation speed of the working table is lower than that of abroad and it has low efficiency and precision. How to improve the rotation speed, running accuracy, equipment efficiency and process precision of the working table of heavy type numerical control process equipment, and how to enhance its competition in international market is one of the most urgent missions at present. The rotation speed and precision of working table are determined by many factors of thrust bearing, such as theoretical arithmetic, design, process and assembly, etc. hydrostatic thrust bearing is mostly adopts analogy design without systematical and accurate calculation. It doesn't have integral optimization and key technology of independent intellectual property right. Due to the low precision of large scale parts, the gap between friction joints is asymmetric when thrust bearing is working. The temperature of the bearings will rise locally and the oil film will be damaged because of friction or the border lubrication under high speed and heavy-duty conditions, and then the local deformation will occurred, the oil pads will deflect the theoretical design models, and the rotation speed will be restricted.
     In order to discover the mechanics property, pressure state and flow state of large scale constant current multi-pad open static pressure support pan bearing, under the support of two fund items, one of which is Key R&D Project of Heilongjiang Province (GC05A512)" Research on Hydrostatic Support Bearing of Heavy Vertical Numerical Lathe Working Label, the other is Ministry of Education doctor station fund item(20050214001)" Research on Self-adapting Thrust Bearing of Heavy Numerical Machine", this paper, aiming at the large scale bearing(diameter D>10m), based on the computational hydrodynamics and lubrication theory, presents the hypothesis for the research of the sector cavity that the model is simplified for the annular plane gap and the rectangular plane flat flow, which can make theory calculation result accord with actual flow condition and diminish the error of theory calculation result. For the research of circular oil cavity, the concept of homalographic equivalent radius is proposed, which can simplify the mechanical property parameter derivation with making use of the homalographic circle area to replace the area of oil pad big sector. By using the hydromechanics calculation software FLUENT, the three-dimensional synthetic numerical value simulation analysis on the pressure state, flow state and the temperature field of the oil film is carried out. It reveals the influence law of friction joint mechanical property, oil film pressure state, flow state and the temperature field, which is caused by the cavity area and deep of the circular cavity and sector cavity under constant current and rotational speed condition. The oil film pressure, oil film thickness and the temperature distribution are measured on 10 meter vertical numerical control lathe, and the correctness of the result made by theory calculation and numerical simulation is verified by experiments. Then, the tribology action and failure mechanism of the support is explored by combining theory with experiment. And one of the feasible methods is provided for predicting, simulating, designing and calculating the model of the support.
引文
[1] 周桂茹.流体润滑理论.北京:机械工业出版社,1986
    [2] 杨建玺,孟心斋,孟昭焱.液体静压支承静态性能新表达式及应用.洛阳工学院学报,1998,4(12):25~28
    [3] 刘基博,刘浪飞.球摩机开式静压轴承的液压参数计算和油腔结构优化探讨.矿山机械,2000,4(4):33~36
    [4] 张永宇,岑少起,杨金锋.缝隙节流浮环动静压推力轴承紊流有限元分析.郑州大学学报(工学版),2002,23(3):56~59
    [5] 丁叙生,陈斌武.液体静压轴承液阻可调式节流器的设计与应用.机床与液压,2003,2(2):151
    [6] 丁叙生.以主轴系统刚度与总功耗之比值为目标函数的液体静压轴承优化设计方法.南昌航空工业学院学报(自然科学版),2000,14(3):26~29
    [7] 刘伟,陈大融,普拉卡宾卡VA,吴秀江.静压轴承自控系统动态品质的优化方法.机械工程学报,2000,6(6):75~78
    [8] 齐乃明,刘暾,谭久彬.自主式静压气体轴承实现无穷刚度的条件分析.南京理工大学学报,2001,25(2):147~151
    [9] 孙爽,孟兆晶,王健民.薄膜反馈节流液体静压轴承模糊优化设计.天津轻工业学院学报,2002,3(9):38~40
    [10] 王雯,原大宁等.雷达天线座静压轴承的可视化设计.机床与液压,2003,6:118~119
    [11] 常家东,万玉琼,邹武.摩机动静压轴承系统的虚拟设计.洛阳工业高等专科学校学报,2004,14(1):17~18
    [12] 岑少起,崔岩,郭红,张少林,尉迟铁业.圆锥浮环动静压轴承动态特性实验研究.润滑与密封,2004,4(7):22~24
    [13] 赵恒华,宫国毫,冯宝富,赵杰,蔡光起.超高速摩削实验台主轴系统的精密调整.石油化工高等学校学报,2003,16(2):55~58
    [14] 郭力,盛晓敏,刘建宁.阶梯浅油腔动静压轴承动特性分析.润滑与密封,1999,3:58~61
    [15] 郭力,李波.不同油腔形状的高速动静压轴承研究.2000,2:39~42
    [16] 郭力等.液体静压轴承原理与应用.磨床与磨削,2000,2:61~63
    [17] 马文琦,姜继海,赵克定.变粘度条件下静压支承出油液阻研究.中国机械工程,2001,7(7):818~820
    [18] 马文琦,姜继海,赵克定.变粘度条件下静压支承温升研究.中国机械工程,2001,12(8):953~955
    [19] 马文琦,姜继海,曹健,赵克定.基于变粘度和油流惯性条件下静压滑环间隙流场特性的研究.机械工程学报,2001,8(8):33~36
    [20] 陈燕生.静压支承原理和设计.国防工业出版社,1980,12
    [21] 田原久崎.米切尔推力轴承的变形问题.东方电机,1989,61(4):41~44
    [22] J. F. Osterle and W. F. Hughes. The Effect of Lubricant Inertia in Hydrostatic Thrust-Beating Lubrication. Wear. Volume 1, Issue 6, June 1958, P 465~471
    [23] J. F. Osterle and W. F. Hughes. Inertia-Induced Cavitation in Hydrostatic Thrust Bearings. Wear. Volume 4, Issue 3, May-June 1961, P 228~233
    [24] V. K. Kapur and Kamlesh Verma. The Simultaneous Effects of Inertia and Temperature on the Performance of a Hydrostatic Thrust Bearing. Wear. Volume 54, Issue 1, May 1979, P113~122
    [25] Z. S. Safar and C. D. Mote, Jr. Analysis of Hydrostatic Thrust Bearings under Non-Axisymmetric Operation. Wear. Volume 61, Issue 1, 2 June 1980, P9~20
    [26] T. Jayachandra Prabhu and N. Ganesan. Analysis of Multirecess Conical Hydrostatic Thrust Beatings under Rotation. Wear. Volume89, Issue 2, August 1983, P 29~40
    [27] C. K. Singh and D. V. Singh. Stiffness Optimization of a Variable Restrictor-Compensated Hydrostatic Thrust Bearing. Wear. Volume44, Issue 2, September 1977, P 223~230
    [28] T. Jayachandra Prabhu and N. Ganesan. Finite Element Application to the Study of Hydrostatic Thrust Beatings. Wear. Volume97, Issue 2, August 1984, P 139~154
    [29] T. Jayachandra Prabhu and N. Ganesan. Behaviour of Multirecess Plane Hydrostatic Thrust Bearings under Conditions of Tilt and Rotation. Wear. Volume92, Issue 2 , December 1983, P 243~251
    [30] T. Jayachandra Prabhu and N. Ganesan. Characteristics of Multipad Hydrostatic Thrust Bearings under Rotation. Wear. Volume93, Issue 2, January 1984, P 219~231
    [31] T. Jayachandra Prabhu and N. Ganesan Effect of Tilt on the Characteristics of Multirecess Hydrostatic Thrust Bearings under Conditions of no Rotation. Wear. Volume 92, Issue 2, December 1983, P 269~277
    [32] 徐华,吕长春,朱均.复合材料轴瓦的力学性能研究.西安交通大学学报,1999,33(6):55~59
    [33] 张静文,张君安,刘波.空气静压止推轴承性能的数值模拟.西安工业学院学报,2002,22(1):6~10
    [34] 李岚.圆锥动静压轴承计入轴瓦弹性变形的静态性能分析.磨床与磨削,2000,4:48~50
    [35] 李健,程先华.动静压支承滑动轴承性能分析.上海交通大学学报,2006,12:26~29
    [36] 冯丽,谢沛霖.变粘条件下有限长滑动轴承的性能分析.机械制造,2007,45(509):32~35
    [37] Paranjpe R S, H an T. A Transient Thermohydrodynamic AnalysisIncluding Mass Conserving Cavitationf or Dynamically Load JournalBeafings [J]. ASME Journal of Tribology, 1995, 117(3): 368~378
    [38] Fillon M, Monmousseau P. Transient ThermoelastohydrodynamicBehavior of Tilting-pad Journal Bearings[J]. Revue Generale de Thermique, 1997, 36 (6): 433~441
    [39] Monmousseaup, Fillon M. Frequency Efects on the TEHD Behaviorof a Tilting-pad Journal Bearing under Dynamic Loading[J]. Journal of Tribology, Transactions of the ASME, 1999, 121 (2): 321~329
    [40] 郅刚锁,马希直,朱均.推力轴承油膜温度场的可视化研究.重型机械,2003,2:11~14
    [41] 富彦丽,马希直,朱均.圆轴承三维温度场的研究.机械科学与技术,2002,21(5):711~713
    [42] 张国渊,袁小阳.水润滑动静压轴承三维压力及温度场分布理论研究.润滑与密封,2006,8:4~7
    [43] 潘依森.液体动压滑动轴承温度场的分析与计算.第四届华东地区流体力学学术会议论文集,89~95
    [44] 张建斌,池长青.浅腔阶梯液体动静压混合轴承温度场分析.北京航空航天大学学报,1997,23(3):390~394
    [45] 李健,杨成仁,王优强,沈健坤.动静压支承轧辊轧机滑动轴承油膜温度场的分析与计算.铸造技术,2004,25(11):828~833
    [46] 孟凡明,张优云.活塞裙润滑油膜温度场有限元分析.内燃机学报,2004,22(6):543~548
    [47] 王锐昌,黄秋波,段志达.用有限元法计算新型可逆式动压推力轴承的温度场.重型机械,2000,6:38~41
    [48] 刘莹,任宝平,郭溪泉.高速重载径向油膜轴承的温度场计算与试验研究.润滑与密封,1999,1:8~10
    [49] Zhang C, Jason X and Cheng H S. Study of Dynamically Loaded Finite Journal Bearings in Mixed Lubrication Using a Transient Thermohydrodynamic Analysis. Tribology Transactions Tribol Lubr Eng, 2000, 43(3): 459~464
    [50] 王晓力,温诗铸,桂长林.动载轴承的非稳态热流体动力润滑分析.清华大学学报自然科学版1999,39(8):1~8
    [51] 马希直.滑动轴承瞬态热弹性流体动力润滑性能分析及实验研究.博士论文.西安交通大学,2002(8)
    [52] J. S. Yapur and V. K. Kapur. Variable Viscosity and Density Effects in a Porous Hydrostatic Thrust Bearing. Wear. Volume 69, Issue 3, 1 July 1981, P 261~275
    [53] Zeinab S. Safar. Adiabatic Solution of a Tilted Hydrostatic Thrust Beating. Wear. Volume 86, Issue 1, 1 April 1983, P 133~138
    [54] Agrodzki P, Lam K B, Bahkali E. A. Nonlinear Transient Behavior of a Sliding System With Frictionally Excited Thermoelastic Instability [J]. ASME Trans Journal of Tribology, 2001, 123(5): 699~708
    [55] J. D. Jackson and G. R. Symmos. Characteristics of Multipad Hydrostatic under Rotation. Wear. Volume 93, Issue 2, 16 Junuary 1984, P 219~231
    [56] T. Jayachandra Prabhu and N. Ganesan. Finite Element Application to the Study of Hydrostatic Thrust Bearings. Wear. Volume97, Issue 2, August 1984, P 139~154
    [57] T. A. Osman, M. Dorid, Z. S. Safar and M. O. A. Mokhtar. Experimental Assessment of Hydrostatic Thrust Bearing Formance. Tribology International. Volume29, Issue 3, May 1996, P 233~239
    [58] 程耕国,程平,李受人.液流通过节流孔的压力场的仿真研究.计算机工程与科学,2005,27(11):102~103
    [59] 刘宾,刘波.径向空气轴承压力场的数值分析.功能部件,2006,2:93~95
    [60] 宋俊,王庆玮,吴玉娟.液压摩擦副压力场分布参数计算方法.洛阳工业大学学报,2004,26(4):364~366
    [61] 王锐昌.热流状态下新型动压推力轴承压力场的计算.鞍山钢铁学院学报,2000,23(2):99~102
    [62] 朱希玲.静压推力轴承压力场的有限元数值模拟.上海工程技术大学学报,2002,16(2):92~95
    [63] Johnson, Robert E.; Manring, Noah D. Sensitivity Studies for the Shallow-Pocket Geometry of a Hydrostatic Thrust Bearing. American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division (Publication) FPST, v 10, 2003, p 231~238
    [64] T. A. Osman, M. Dorid, Z. S. Safar and M. O. Mokhtar. Experimental Assessment of Hydrostatic Thrust Bearing Performance. Tribology International Volume 29, Issue3, May 1996, P 233~239
    [65] T. A. Osman, Z. S. Safar and M. O. A. Mokhtar. Design of Annular Recess Hydrostatic Thrust Bearing under Dynamic Loading. Tribology International Volume 24, Issue3, June 1991, P137~141
    [66] Satish C. Sharama , S. C. Jain and D. K. Bharuka. Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing. Tribology International Volume 35, Issue6, June 2002, P 347~356
    [67] J. D. Jackson and G. R. Symmons. The Pressure Distribution in a Hydrostatic Thrust Bearing. International Journal of Mechanical Sciences. Volume 7, Issue 4, April 1965, P239~242
    [68] T. Jayachandra Prabhu and N. Ganesan. Analysis of Multirecess Conical Hydrostatic Thrust Bearings under Rotation. Wear. Volume89, Issue 2, August 1983, P 29~40
    [69] T. Jayachandra Prabhu and N. Ganesan. Finite Element Application to the Study of Hydrostatic Thrust Bearings. Wear, 1984, 97(2): 139~154
    [70] T. Jayachandra, Prabhu and N. Ganesan. Behaviour of Multirecess Plane Hydrostatic Thrust Bearings under Conditions of Tilt and Rotation. Wear, 1983, 92(2): 243~251
    [71] T.Jayachandra, Prabhu and N.Ganesan. Analysis of Multirecess Conical Hydrostatic Thrust Bearings under Rotation. Wear, 1983,89(2): 29~40
    [71] T.Jayachandra, Prabhu and N.Ganesan. Effect of Tilt on the Characteristics of Multirecess Hydrostatic Thrust Bearings under Conditions of no Rotation. Wear, 1983,92(2): 269~277
    [73] Ghosh MK, Mujumdar BC. Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearing. ASME J. Of Lub. Tech, 1982:104~491
    [74] V.K.Kapur and Kamlesh Verma. The Simultaneous Effects of Inertia and Temperature on the Performance of a Hydrostatic Thrust Bearing. Wear. Volume 54, Issue 1 , May 1979, P113~122
    [75] J.F.Osterle and W.F.Hughes . The Effect of Lubricant Inertia in Hydrostatic Thrust- Bearing Lubrication. Wear. Volume 1, Issue 6, June 1958, P 465~471
    [76] J.F.Osterle and W.F.Hughes. Inertia-Induced Cavitation in Hydrostatic Thrust Bearings. Wear. Volume 4, Issue 3, May-June 1961, P 228~233
    [77] Ghosh MK, Mujumdar BC. Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearing. ASME J. of Lub. Tech. 1982; 104:491~496
    [78] Ting LL, Mayer JE. The Effects of Temperature and Inertia in Hydrostatic Thrust Bearing. ASME J. ofLub. Tech. 1971;93(2):307~312
    [79] J.S.Yadav and V.K.Kapur. Variable Viscosity and Density Effects in a Porous Hydrostatic Thrust Bearing. Wear. Volume 69, Issue 3, July 1981, P 261~275
    [80] Zeinab S.Safar. Adiabatic Solution of a Tilted Hydrostatic Thrust Beating. Wear. Volume 86, Issue 1,April 1983, P 133~138
    [81] Jaw-Ren Lin Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings . International Journal of Machine Tools and Manufacture. Volume 40, Issue 11, September 2000, P 1671~1689
    [82] Canbulut, Fazil; Sinanoglu, Cem; Yildirim, Sahin. Neural Network Analysis of Leakage oil Quantity in the Design of Partially Hydrostatic Slipper Bearings. Industrial Lubrication and Tribology, v 56, n 4, 2004, 231~243
    [83] Howarth RB. Effects of Tilt on the Performance of Hydrostatic Thrust Pads. Proc.IMechE(London) 1970-71; 185 (51/71):717~723
    [84] Safar ZS. Design of Tilted Hydrostatic Thrust Bearing .Wear 1981;70:243~248
    [85] Safar ZS. Design of an Offset Hydrostatic Thrust Bearing under Dynamic Loading Conditionss .Wear 1983;84:87~96
    [86] Van Beek A, Van Ostayen RAJ. Analysis Solution for Tilted Hydrostatic Multu-Pad Thrust Beatings of Infinite Length. Tribo.Int. 1997;30(1):33~39
    [87] Van Beek A,Segal A. Rubber Supported Hydrostatic Thrust Bearing with Rigid Bearing Surfaces. Tribo. Int. 1997; 30(1): 41-9
    [88] Koc E, Hooke CJ. Considerations in the Design of Partially Hydrostatic Slipper Bearings. Tribo. Int. 1997; 30(11): 815~825
    [89] Sinhaasan R, Jain SC, sharma SC. Elastohydrostatic Lubrication of Capillary Compensated Circular Pad Thrust Bearings. Wear 1983; 91: 131~147
    [90] Sinhasan R, Jain SC. Lubrication of Orifice Compensated Flexible Thrust Pad Bearing. Tribo. Int. 1984; 17(4): 215~221
    [91] Sinhaasan R, Jain SC, sharma SC. Orifice-Compensated Flexible Thrust Pad Bearings of Different Configuration. Tribo. Int. 1986; 19(5): 244~252
    [92] Pang Z, Gou Z. Theory of Holographic Photoelastic Experiment and Application of Elastohydrostatic Lubrication. Wear 1991; 146: 99~105
    [93] Sinhaasan R, Jain SC, sharma SC. Elastic Considerations in the Hydrostatic Lubrication of Capillary Compensated Thrust Bearing of Different Configuration. Wear 1986; 111: 41~62
    [94] Sinhaasan R, Jain SC, sharma SC. A Comparative Study of Flexible Thrust Pad Hydrostatic Bearings with Different Restrictors. Wear 1988; 121: 53~70
    [95] Peterson J, Finn WE, Dareing DW. Non-Newtonina Temperature and Pressure Effects of a Lubricant Slurry in a Rotating Hydrostatic Step Bearing. STLE Tribo. Trans. 1994; 37(4): 857~863
    [96] 李冰茹.静压轴承在球摩机中的应用研究及优化设计分析.鞍山科技大学硕士论文,2003
    [97] 广州机床研究所编.液体静压技术原理及应用.北京:机械工业出版社,1978
    [98] 温诗铸.摩擦学原理.清华大学出版社,1990
    [99] 陈燕生.静压支承原理和设计.国防工业出版社,1980,1
    [100] ReynoldsO. Theory of Lubrication and Its Application Mr.Beauchamp Tower's Experiments Including an Experimental Determination of the Viscosity of Olive Oil. Phil TransRoySoc, 1886, 17 7(1): 157~234
    [101] 张直明.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1986
    [102] 陈伯贤.流体润滑理论及其应用.北京:机械工业出版社,1991
    [103] 张本照.流体力学中的有限元法.北京:机械工业出版社,1986
    [104] 杨沛然.流体润滑数值分析.北京:国防工业出版社,1998
    [105] 朱均,虞烈.流体润滑理论.西安交通大学润滑理论及轴承研究所,1991
    [106] 马铁犹.计算流体动力学.北京航空航天大学出版社,1986
    [107] 苏铭得,黄素逸.计算流体力学基础.北京清华大学出版社,1997
    [108] Rogers S E and Kwak D. Upwind Differencing Scheme for the Time-Accurate Incompressible Navier-Stokes Equations. AIAA J, 1990, (28): 253~262
    [109] Rogers S E and Kwak D and Kiris C. Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations. AIAA J, 1991, (29): 603~610
    [110] Merkle C L Althavale M. Times Accurate Unsteady Incompressible Algorithms Based on Artificial Compressibility. AIAA J, 1987, (87): 125~132
    [111] 朱自强等编著.应用计算流体力学.北京航空航天大学出版社,1998
    [112] 姚征,陈康民.FLUENT通用软件综述[J].上海理工大学学报,2002,24(20):137~144
    [113] 刘星,卞思荣,朱金福.非结构网格生成技术.南京航空航天大学学报,1999,12,(6):696~700
    [114] 王福军.计算流体动力学分析——FLUENT软件原理与应用.北京清华大学出版社,2004
    [115] 周天孝,白文.FLUENT多块网格生成新进展.力学进展,1999,29(8):344~368
    [116] VERSTEEG H K,MALALASEKERA W.Computational Fluid Dynamics.北京:世界图书出版公司,1995
    [117] 韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京理工大学出版社,2004,6
    [118] Fluent Inc. GAMBIT Modeling Guide. Fluent Inc, 2003
    [119] H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics, The Finite Volume Method. Wiley, New York, 1995
    [120] 刘霞,葛新峰.FLUENT软件及其在我国的应用[J].能源研究与应用,2003,2(2):33~35
    [121] 陶文铨编著.数值传热学.西安交通大学出版社,2001:347~353,136~138
    [122] 章梓雄,董曾南.粘性流体力学.清华大学出版社,1998
    [123] 陈克栋.液体静压支承的发展趋势及商品化过程中有待进一步解决的问题.机床与液压,1995,2(2):23~25
    [124] 张京平.液压缸内动边界流场的数值分析.博士论文.浙江大学,2001(1)
    [125] 庞志成.液体气体静压技术.黑龙江人民出版社,1981,4
    [126] 于晓东,陆怀民.圆形可倾瓦推力轴承润滑性能的计算机仿真.润滑与密封.2006,3:84~87
    [127] 于晓东,陆怀民,郭秀荣,李永海,邵俊鹏.扇形推力轴瓦润滑性能的数值分析.润滑与密封.2007,1:123~125
    [128] 于晓东,陆怀民,郭秀荣,李永海,邵俊鹏.速度对扇形可倾瓦推力轴承润滑性能的影响研究.润滑与密封.2007,3:136~138
    [129] 于晓东,陆怀民,郭秀荣,李永海,邵俊鹏.速度对扇形可倾瓦推力轴承润滑性能的影响研究.润滑与密封.2007,3:136~138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700