等离子体臭氧产生的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在保证效率、满足日益严格的环保标准的前提下,取得更好的经济性和系统与操作的简化,国际上提出了燃煤污染物联合脱除的思路,期望用较少的设备脱除尽可能多的污染物。最新的商业和工艺发展成就显示了臭氧氧化技术,除了脱除NOx外,还提供了更好的灵活性,能作为一个独立的工艺或者与其他技术结合开发经济的多污染物控制工艺。本文就臭氧氧化结合化学吸收联合脱除烟气多种污染物工艺中臭氧产生能耗大这一关键性问题进行深入研究。
     对高频高压介质阻挡放电产生臭氧进行实验研究并整理了各种情况下低温等离子体化学反应机理.氧气源时,在臭氧产率相当的情况下,臭氧浓度和产量均为商用产品的2倍左右。对于惰性气体为He的情况,O_2→O_3转化率随O_2的比例增大而增大;对于惰性气体为Ar的情况,空气源时O_2→O_3转化率随O_2的比例增大而增大,氧气源时O_2→O_3转化率随O_2的比例增大而减小。对于惰性气体为Kr的情况,O_2→O_3转化率随O_2的比例增大而减小。对于干空气中添加少量的SF_6有利于臭氧产生,在流量为200l/h、输入电压为250V、SF_6/干空气=2.04×10~(-2)时,臭氧浓度提高到2.35倍(11.3 g/m~3)。为获得高浓度、大产量、性价比低的臭氧发生器开辟一条新途径。
     对脉冲放电进行实验研究。研究发现正脉冲有利于臭氧产生,因为正脉冲比负脉冲流光传播更长的距离,产生更多的分支和更多的流光通道,因此反应区域更大,从而促使更多的臭氧产生。正脉冲降低接地极附件(电场强度较低)二次电离发生,推迟了击穿的发生。另不同的电压输入方式也造成不同的起火电压.实验中氧气源和干空气源臭氧浓度最高分别为83.6 g/m~3和40.9 g/m~3,臭氧产率最高分别达到985.03 g/kWh和288.26 g/kWh,臭氧产量最高分别为19.15 g/h和5.33 g/h。研究结果表明:脉冲放电是一种比较有前途的臭氧发生形式。
     在Buntat研究基础上对量纲分析方法在脉冲等离子体臭氧产生领域进行深入试探和修正。依据∏定理推导出臭氧浓度和主要影响参数之间的关系式(参数包括峰值电压、电晕起始电压,间隙宽度,介电常数、压力、气体流速和放电室长度或脉宽)。该理论可以用来预测臭氧浓度和调查影响脉冲流光放电各参数的重要性。正、负脉冲导致不同的电压起始电压,该理论也可以确定极性对臭氧产生的影响。
     对各臭氧发生技术进行对比,对比发现我们研究的高频高压放电臭氧发生技术以及脉冲放电臭氧发生技术都能有效的大幅度地提高臭氧浓度和臭氧产率。在利用高频高压放电产生臭氧时,空气源中添加SF_6臭氧发生的能耗占总的发电比例1.68%。而利用第3章的研究成果,在干空气源的情况下单通道和双通道的能耗分别占总发电比例的0.42%和0.64%.臭氧氧化技术在达到同等脱硫率和脱硝率,且脱汞率远大于电子束的同时,高频高压放电干空气源(SF_6)和脉冲放电单通道干空气源的耗电成本比电子束分别节省71.1%和92.7%。
Changes in the structure of the electric utility industry are driving additional reductions of multiple pollutants. Control technologies that are capable of simultaneously reducing emissions of multiple pollutants may offer the potential to achieve this at lower cost and reduced footprint when compared to conventional controls. Recent commercialization and process development efforts have revealed that the ozone oxidation process offers additional benefits beyond its ability to simply remove NOx. These benefits result from the variety of ways the process can be installed and operated, and as consequence, ozone oxidation offers a degree of flexibility not available with processes such as SCR. This paper explores the key question for the simultaneous removal of multiple pollutants by combined ozone oxidation and chemical scrubbing: the high energy consumption of ozone.
     This paper experimental research on high frequency dielectric barrier discharge ozone generation, and collect the chemical reaction mechanism for different conditions. There are twice as many ozone concentration and ozone yield as business ozone generator. The effect of adding different admixtures to the feed gas were key-point investigated. The addition of impurities He to the oxygen feed gas and the dry air feed gas is shown to inhibit ozone generation. The O_2→O_3 global rate coefficient increases with increasing dry air proportion using mixture of dry air with Ar. In contrast, the O_2→O_3 global rate coefficient decrease with increasing O_2 proportion using mixture of oxygen with Ar. Using Kr as admixture, an increase in the O_2→O_3 global rate coefficient for ozone generation has been observed for increasing concentrations of added gaseous impurity into oxygen or dry air. The addition of even a small amount of impurity SF_6 has been shown to increase the energy yield of ozone, the ozone concentration improve by 2.35 times (11.3 g/m3) at 200 l/h, SF_6/dry air=2.04×10~(-2). It offers a new way to obtain high concentration, large yield, high performance-price ratio ozonizer.
     Ozone synthesis by employing a short duration (-400 ns) of pulsed power with a dielectric barrier employing parallel plates was discussed. The positive pulse has been shown to be very effective for pulsed ozone production, as the streamers propagate to longer distances, and hence, the volume of the reaction zone will be larger, leading to more production of O_3 with more streamer channels per length than using the negative pulse, positive-negative pulse and negative-positive pulse. The positive polarity also trends to postpone the development of the breakdown of the gap due to lower secondary ionization emission from the negative electrode, where the electric field is lower. The difference input voltage waves induce difference corona inception voltage, too. The highest ozone concentration, ozone output and ozone production yield are 83.6 g/m~3,19.15 g/h, 985.03 g/kWh in oxygen, and 40.9 g/m~3,5.33 g/h, 288.26g/kWh in dry air, respectively. The experiment results show that ozone production by pulsed streamer non-thermal discharges is very effective without significantly raising the gas temperature or inducing arc breakdown between the electrodes at room temperature and atmospheric pressure.
     This paper put forward the application of dimensional analysis to ozone production by pulse streamer discharge, and dealt with the relation between ozone concentration and most prominent parameters. In this study, the influence on the ozone concentration of the pulse repetition frequency, difference of the peak pulse voltage and the corona inception voltage, gap length, relative permittivity, pressure, gas flow rate and reactor length (or pulse width) have been investigated by means of dimensional analysis. Positive and negative voltages are known to lead to different corona inception voltages, and the formula may be an applicable approximation method for the estimation of the effects of polarity on the ozone concentration through inserting the appropriate voltage into formula. The general trend of the concentration of ozone on parameters that are of importance in its design agrees with the experimental results to confirm the validity of the model.
     According the research results in chapter 2, the power requirement for ozone generation using dry air with admixture SF_6 is projected to be approximately 1.68 percent of the gross power output. According the research achievements in chapter 3, using single channel mode and double channel mode in dry air, the power requirement are 0.42 and 0.64 percent of the gross power output, respectively. The low temperature ozone oxidation technology can achieve the same NOx and SO_2 removal as electron beam technology, and high efficiency removal of HCl, HF, Hg and some other pollutants. Energy consumption by high frequency and high voltage in dry air with admixture SF_6 and pulsed discharge in dry air are 71.1% and 92.7% less.
引文
1. 国家环保总局文件-关于发布《燃煤二氧化硫排放污染防治技术政策》的通知.[cited 2002; Available from:http://www.sepa.gov.cn/eic/649086798147878912/20031008/1041859.shtml.
    
    2. MARIKA.R.,ILARI E..一项高性价比的烟气脱硫技术.电力环境保护,2001,17(2):8-10.
    
    3. Graff R.E., Seitz A., and Gao X.F.. Advanced, large-capacity, commercial technology for multi-pollutant control. in Combined Power Plant Air Pollutant Control Mega Symposium. 2003. Washington, DC.
    
    4. Richter R., Gottschlich J.M., Nakatsuji T., Miyamoto A.. Removal technology for nitrogen oxides and sulfur oxides from exhaust gases. Catalysis Today, 1991,10:21-31.
    
    5. 孙德荣,吴星五,我国氮氧化物烟气治理技术现状及发展趋势.云南环境科学2003,22(3):47-50.
    
    6. Furrer J., Deuber H., Hunsinger H., et al.. Balance of NH3 and behavior of polychlorinated dioxins and furans in the course of selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant. Waste Management, 1998,18(6-8):417-422.
    
    7. Ljungdahl B., Larfeldt J.. Optimised NH_3 injection in CFB boilers. Powder Technology, 2001,120(l-2):55-62.
    
    8. Edgardo Coda Zabetta, Mikko Hupa, and Kari Saviharju., Reducing NOx Emissions Using Fuel Staging, Air Staging, and Selective Noncatalytic Reduction in Synergy. Ind. Eng. Chem. Res., 2005,44(13):4552-4561.
    
    9. Oliva M., Alzueta M.U., Millera A., Bilbao R.. Theoretical study of the influence of mixing in the SNCR process: Comparison with pilot scale data. Chemical Engineering Science, 2000,55(22):5321-5332.
    
    10. Srivastava R.K., Hall R.E., Khan S., et al.. Nitrogen oxides emission control options for coal-fired electric utility boilers. J Air Waste Manag Assoc, 2005, 55(9): 1367-1388.
    
    11. Radojevic M.. Reduction of nitrogen oxides in flue gases. Environmental Pollution, 1998, 102(1):685-689.
    
    12.叶代启.,烟气中氮氧化物污染的治理.环境保护科学,1999,26(4):1-4.
    
    13.刘晶,郑楚光,曾汉才等.,固体吸附剂控制燃煤重金属排放的实验研究.环境科学,2003,24(5):23-27.
    
    14. Chu P., Rochelle GT. Removal of SO_2 and NOx form Stack Gas by Reaction with Calcium Hydroxide Solids. JAPCA, 1989,39(2): 175-179.
    
    15. Nelli C.H., Rochelle GT. Simultaneous Sulfur Dioxide and Nitrogen Dioxide Removal by Calcium Hydroxide and Calcium Silicate Solids. J. Air & Waste Manage. Assoc., 1998, 48:819-828.
    
    16. Sakai M., Su C, Sasaoka E.. Simultaneous removal of SOx and NOx using slaked lime at low temperature. Industrial & Engineering Chemistry Research, 2002,41(20):5029-5033.
    
    17. O'Dowd W.J., Markussen J.M., Pennline H.V.V., Resnik K.P.. Characterization of NO_2 and SO_2 Removals in a Spray Dryer/Baghouse System. Industrial & Engineering Chemistry Research, 1994,33:2749-2756.
    
    18.刘清雅.刘振宇.,蜂窝状堇青石基CuO/Al_2O_3催化剂用于烟气同时脱硫脱硝的研究.燃料化学学报,2004,32(3):257-262.
    
    19. Makansi J.. Will combined SO_2/NOx processes find a niche in the market? Power, 1990, (9):26-28.
    
    20. Evans A.P., Kudlac GA., Wolkinson J.M., Chang R.. SOx-NOx-Rox Box-High Temperature Baghouse Performance. in The 10th Paniculate Control Symposium. 1993. Washington, DC.
    
    21. Clean Coal Technology Demonstration Program: Update 2000; US DOE. 2001, National Energy Technology Laboratory: Pittsburgh, PA.
    
    22. Bruno L., Ricci R.. Application of SNOx technology at the Gela power plant in Sicily, in the PowerGen 2000 Europe. 2000. Helsinki, Finland.
    
    23. Andreasen J., Laursen J.K., Bendixen O.R.. SNOx plant in full-scale operation. Modern power systems, 1992,12(44):57-60.
    
    24. SNOx Flue Gas Cleaning Demonstration Project: A DOE Assessment; U.S. DOE/NETL-2000/1125.2000, National Energy Technology Laboratory: Pittsburgh, PA.
    
    25. Final Report for Niles Demonstration, Vol. I: Public Design; DOE/PC/8955-T21 (NTIS: DE96050312). 1996, U.S. DOE: Washington, DC.
    
    26. Final Report for Niles Demonstration, Vol. II: Project Performance and Economics; DE-FC22-90PC8955.1996, U.S. DOE: Washington, DC.
    
    27. A Study of Toxic Emissions from a Coal-fired Power Plant Utilizing the SNOx Innovative Clean Coal Technology Demonstration, Vols. 1 and 2; DOE/PC/93251-T3. 1994, U.S. DOE: Washington, DC.
    
    28. Hunt T., Muzio L.J., Smith R.. Integrated dry NOx/SO_2 emissions control system performance. in Fifth Annual Clean Coal Technology Conference. 1997. Tampa, FL.
    
    29. Goran Moberg, Sven Wallin, Tore Fareid, Jack Ralston. Combined DeNOx/DeSOx and additional NOx reduction by cleaning flue gas condensate from ammonia, in POWER-GEN International. 1999. New Orleans.
    
    30. Haddad E., Ralston J., Green G, Castagnero S.. Full-Scale Evaluation of a Multi-Pollutant Reduction Technology: SO_2, Hg, and NOx. in Combined Power Plant Air Pollutant Control Mega Symposium. 2003. Washington, DC.
    
    31. Tsuji K., Shiraishi I.. Combined Desulfurization/Denitrification and Reduction of Air Toxics using Activated Coke. Fuel, 1997,76(6):549-559.
    
    32. Ghorishi S.B., Singer C.F., Jozewicz W.S., et al.. Simultaneous control of Hg~0, SO_2, and NOx by novel oxidized calcium-based sorbents. J Air Waste Manag Assoc., 2002,52:273-278.
    
    33. Steciak J., Levendis Y.A., Wise D.L.. Effectiveness of calcium magnesium acetate as dual SO_2-NOx emission control agent. AIChE Journal, 1995,41(3):712-722.
    
    34. Ma W.T., Chang A.M., Haslbeck J.L., Neal L.G. NOXSO SO_2/NOx Flue Gas Treatment Process Adsorption Chemistry and Kinetics. AIChE Symposium Series, 1995, (309): 18-31.
    
    35. Doi Y, Nakanishi I., Konno Y.. Operational experience of a commercial scale plant of electron beam purification of flue gas. Radiation Physics and Chemistry, 2000, (57):495-499.
    
    36. Hadidi K., et al.. Commercial Possibilities for the Tunable Electron Beam Plasma Reactor for Volatile Organic compound treatment, in International Workshop on Plasma Technologies for Pollution Control and Waste Treatment. 1996. Beijing.
    
    37.刘书海,吴彦.,电晕等离子体活化法脱硫脱硝的研究进展.环境科学进展,1994,??2(5):75-81.
    
    38. FGD Handbook. International Energy Agency Coal Research. [cited 2004; Available from: http://www.caer.ukv.edu/iea/ieacr65.shtml.
    
    39. Dunster D., Girdin D., Hammerdorfer C, et al.. Technology Assessment of Clean Coal Technologies for China. Electric Power Production. 2001, World Bank ESMAP and AESEG Technical Paper Oil.
    
    40. Ighigeanu D., Martin D., Zissulescu E., et. al.. SO_2 and NOx removal by electron beam and electrical discharge induced non-thermal plasmas. Vacuum, 2005, 77:493-500.
    
    41. Masuda S., Nakao H.. Control of NOx by positive and negative pulsed corona discharge. IEEE/IAS Annu. Conf., 1986:1173-1182.
    
    42. Khacef A., Cormier J.M.. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: removal of SO_2 and NOx. J.Phys. D: Appl. Phys., 2006,39:1078-1083.
    
    43. Tokunage O., Suzuki N.. Radiation chemical reactions in NOx and SO_2 removals from flue gas. Phys. Chem., 1990,24(1): 145-165.
    
    44. McLarnon C.R.. Combined SO_2, NOx, PM, and Hg Removal from Coal Fired Boilers. in The Proceeding of the Mega Symposium. 2003. Washington DC.
    
    45. Chang J.S., Lawless P.A., Yamamoto T.. Corona discharge processes. IEEE Transactions on plasma science, 1991,19(6): 1152-1161.
    
    46. Yamamoto T., Lawless P.A., Sparks L.E.. Triangle-shaped DC corona discharge device for molecular decomposition. IEEE Transactions on Industry Applications, 1989,25(4):743-749.
    
    47. Dong L.M., Lan S., Yang J.X., Chi X.C.. Plasma chemical reaction for nitric oxide and sulfur dioxide removal in corona discharge reactor. in Annual Report conference on Electrical Insulation and Dielectric Phenomena. 2003. Albuquerque, NM.
    
    48. Hackam R., Akiyama H.. Air Pollution Control by Electrical Discharges. IEEE Transaction on Dielectrics and Electrical Insulation, 2000,7(5):654-683.
    
    49. Livengood C.D., Mendelsohn M.H.. Process for combined control of mercury and nitric oxide. in EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium. 1999. Atlanta, Georgia.
    
    50.邵德荣,韩宾兵.,电子束烟气脱硫技术工业示范工程进展.环境科学进展,1999,7(2):125-135.
    
    51. Ohkubo T., Kanazawa S., Nomoto Y, et al.. NOx removal by a pipe with nozzle-plate electrode corona discharge system. IEEE Transactions on Industry Applications, 1994, 30(4):856-861.
    
    52. Ohkubo T, Kanazawa S., Nomoto Y, et al.. Time dependence of NOx removal rate by a corona radical shower system. IEEE Transactions on Industry Applications, 1996, 32(5): 1058-1062.
    
    53.吴祖良,直流电晕自由基簇射烟气中多种污染物脱除的机理研究.[博士学位论文],杭州,浙江大学,2006.
    
    54. Yamamoto T, Okubo M., Hayakawa K., et al.. Towards ideal NOx control technology using a plasma-chemical hybrid process. IEEE Transactions on Industry Applications, 2002, 38(5): 11168-11173.
    
    55. Shi Y, Wang H., Chang S.G. Kinetics of NO absorption in aqueous iron(II) thiochelate solutions. ENVIRON PROG, 1997,16(44):301-306.
    
    56.钟秦,吕喆,陈迁乔.,可再生半胱氨酸亚铁溶液同时脱除SO_2和NOx.南京理工大学学报,2000,24(5):441-444.
    
    57.陈理.,脱除烟气中SO2和NOx的新技术.化工环保,1997,17(6):336-341.
    
    58. Okamoto M.. SO_2 separation by liquid reactive membranes. Separation Technology, 1994,(11):755-802.
    
    59. Nii S., Takeuchi H.. Removal of CO2 and/or SO2 from gas streams by a membrane absorption method. Gas Separation & Purification, 1994,8(2): 107-114.
    
    60. Shen C.H., Rochelle GT.. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite. Environmental Science and Technology, 1998,32(13): 1994-2003.
    
    61. Wang W.Y., Zhong Q., Ye Z.C., et al.. Simultaneous reduction of SO2 and NOX in an entrained-flow reactor. Fuel, 1995,74(2):267-272.
    
    62. Dry simultaneous desulfurization and denitrification. 2003: JP. 3052624A.
    
    63. Shuckerow J.I., Steciak J.A., Wise D.L., et al.. Control of air toxin paticulate and vaper emissions after coal combustion utilizing calcium magnesium acetate. Conservation and Recycling, 1996,16(1): 15-69.
    
    64. Baron E.S.. Clean coal project nears commercial operation. Power Engineering, 1995, 99(2):31-35.
    
    65. Kobayashi H., Takezawa N., Niki T.. Removal of nitrogen oxides with aqueous solutions of inorganic and organic reagents. Environmental Science and Technology, 1977,11(2): 190-192.
    
    66. Chien T.W., Chu H.. Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueous NaClO_2 solution. J Hazard Mater., 2000,80(1-3):43-57.
    
    67. Chien T. W, Chu H., Hsueh H.T.. Kinetic Study on Absorption of SO and NO with Acidic NaClO Solutions Using the Spraying Column. Journal of Environmental Engineering, 2003, 129(11):967-974.
    
    68. Chu H., Chien T.W., Li S.Y.. Simultaneous absorption of SO_2 and NO from flue gas with KMnO/NaOH solutions. Sci Total Environ., 2001,275(1-3): 127-35.
    
    69. Jethani K.R., Suchak N.J., Joshi J.B.. Selection of reactive solvent for pollution abatement of NOx. Gas Sep. Purif., 1990,4(11):8-28.
    
    70. Joshi J.B., Mahajani V.V., Juvekar V.A.. Absorption of NOx gases. Chemical engineering communications, 1985,33:1-5.
    
    71. Leading Edge Environmental Compliance & Energy Conservation Solutions; Thermal Energy International, Inc., Nepean, Ontario, Canada. [cited 2004; Available from: http ://www.thermalenergy.com.
    
    72. Hinke T.V.. Utility NOx Control with Elemental Phosphorus. in Proceedings of the U.S. EPA-DOE-EPRI Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium and The A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control. 2001. Chicago, IL.
    
    73. Graff R.E.. Operating experiences and measuring results of flue gas scrubbing plant for the removal of multi pollutants according to the principle of the Graf-Wulff technology. in the 8th International Conference on Circulating Fluidized Beds. 2005. Hangzhou, China.
    
    74.高翔,刘海蛟,滕斌等..多级增湿对半干法烟气脱硫影响的实验研究.浙江大学学报:工学版,2007,41(12):2082-2086.
    
    75.高翔,刘海蛟,滕斌等..循环悬浮式烟气半干法脱硫技术的实验研究.动力工程,2006,26(5):720-725.
    
    76. Control Technology Evaluation of MerCAPTM for Power Plant Mercury Control. [cited 2004; Available from: http://www.netl.doe.gov/coal/E&WR/inercurv/control-tech/mercap.html.
    
    77. Alderman J.K.. Western Coal Preparation - Meeting the Demands for Clean Energy. Coal Age, 2003,107(3):24-30.
    
    78. Altaian R., Buckley W., Ray I.. Multi-Pollutant Control with Dry-Wet Hybrid ESP Technology, in the Combined Utility Air Pollutant Control Symposium: The MEGA Symposium. 2003. Washington DC.
    
    79. Black and Veatch.. Effective Mercury Reduction Strategy for Western Coal/K-Fuel Technology. 2003, U.S. EPA.
    
    80. Buckley W.P., Altshuler B.. Sulfuric Acid Mist Generation in Utility Boiler Flue Gas. in the 1CAC Forum'03. 2003. Nashville, TN.
    
    81. Jansson S., Anderson J.. Progress ofABB's PFBC Projects, in 15th FBC Conference. 1999. Savannah, GA.
    
    82. Klett M.G, Rutkowski M.D.. The Cost of Mercury Removal in an IGCC Plant. 2001, U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA.
    
    83. Montgomery J.L., Battelson D.M., Whitworth C.G, et al.. Latest Developments of the Plasma-Enhanced Electrostatic Precipitator for Mercury Removal in Offgas. in the Combined Power Plant Air Pollutant Control Symposium: The MEGA Symposium. 2003. Washington, DC.
    
    84. Ratafia-Brown J.A., Manfredo L.M., Hoffmann J.W., Rameza M.. An Environmental Assessment of IGCC Power Systems. in 19th Annual Pittsburgh Coal Conference. 2002. Pittsburgh, PA.
    
    85. Sjostrom S., Chang R., Strohfus M., et al.. Development and Demonstration of Mercury Control by Adsorption Process (MerCAPTM). in the MEGA Symposium. 2003. Washington, DC.
    
    86. Staehle R.C., Triscori R.J., Ross G, et al.. Wet Electrostatic Precipitators for High Efficiency Control of Fine Particulates and Sulfuric Acid Mist, in the ICAC Forum'03. 2003. Nashville, TN.
    
    87.岑超平,尿素添加剂湿法烟气同时脱硫脱氮研究.[博士学位论文],广州,华南理工大学,2000.
    
    88. Jarvis J.B., Day A.T., Suchak N.J.. . LoTOx~(? Process Flexibility and Multi-Pollutant Control Capability, in The Mega Symposium and Air & Waste Management Association's Specialty Conference. 2003. Washington, DC.
    
    89. Blythe GM., Richardson C.F., Rhudy R.. Catalytic Oxidation of Mercury in Flue Gas for Enhanced Removal in Wet FGD Systems. in EPA-DOE-EPRI Combined Power Plant Air Pollutant Control Symposium: The Mega Symposium, and the affiliated A&WMA Specialty Conference on Mercury Emissions: Fate, Effects, and Control. 2001. Chicago, IL.
    
    90. McLarnon C.R.. Mercury Removal in a Multi-Pollutant Control Technology for Utility Boilers. in the International Conference on Air Quality Ill-Mercury, Trace Elements, and Particulate Matter. 2002. Arlington, VA.
    
    91. Terada Mitsuo, Arasuna Ritsuo, Daifukuji Tomoihiro, Electric discharge type ozone generator with point contact anode. 2003: JP. 191907.
    
    92.岳朝松,陈万金,储金宇等.,电晕放电法臭氧发生器电极的研究.高电压技术,2002,28(6):42-43.
    
    93. Gibalov V.I., Pietsch GJ.. Properties of dielectirc barrier discharge in extended??coplanar electrode systems. J. Phys. D: Appl. Phys., 2004,37:2093-2100.
    
    94. Gibalov V.I., Pietsch GJ.. Pietsch. Dynamics of Dielectric Barrier Discharges in Coplanar Arrangements. J. Phys. D: Appl. Phys., 2004,37:2082-2092.
    
    95. Boonseng C, Kinnares V., Apriratikul P.. . Harmonic analysis of corona discharge ozone generator using brushelectrode configuration. in IEEE. Power Engineering Society Winter Meeting. 2000. Singapore.
    
    96. Abdel-Salam M., Hashem A, Yehia A.. Characteristics of Corona and Silent Discharge as Influenced by Geometry of the Discharges Reactor. J. Phys. D: Appl. Phys., 2003,36:252-260.
    
    97. Yehia A., Abdel-Salam M., Mizuno A.. On assessment of Ozone Generation in DC Coronas. J. Phys. D: Appl. Phys., 2002,33:831-835.
    
    98. Yehia A., Mizuno A., Takashima K.. On the Characteristics of the Corona Discharge in a Wire-Duct Reactor. J. Phys. D: Appl. Phys., 2000,33:2807-2814.
    
    99. Akhmedzhanov R.A., Vikharev A.L, Gorbachev A.M, et al.. The Role of Atomic Oxygen O(~3P) in Decomposition of Freon in a Nanosecond Corona Discharge. Tech. Phys. Lett., 1996, 22(2):104-106.
    
    100. Cicman P., Pavlik M., Rahel J., et al.. Negative Corona Discharge in Air+CC1_2F_2 Mixture. in Proceedings of Contributed Papers ICPIG 97.1997. Toulouse France .
    
    101. Skalny J.D., Mason N.J.. The Effect of Halomethane Impurities on Ozone Generation from Oxygen in DC Negative Corona Discharge. Ozone Science & Engineering, 2002, 23:329-341.
    
    102. Skalny J.D., Rahel J., Holubcik L.. Ozone Generation in Oxygen-Fed Wire-To-Cylinder Ozonizer: Effect of CH_2CL_2, CHCL_3 and CCL_4 Diluents. Czechoslovak Journal of Physics, 1999, 49(3):335-348.
    
    103. Mikoviny T, Kocan M., Matejcik S., et al.. Experimental Study of Negative Corona Discharge in Pure Carbon Dioxide and Its Mixtures with Oxygen. J. Phys. D: Appl. Phys., 2004, 37:64-73.
    
    104. Skalny J.D., Matejcik S., Mikoviny T.. Ozone Generation in a Negative Corona Discharge Fed With N_2O and O_2. J. Phys. D: Appl. Phys., 2004,37:1052-1057.
    
    105. Stefanovic I., Bibinov N.K., Deryugin A.A., et al.. Kinetics of Ozone and Nitric Oxides in Dielectric Barrier Discharge in O_2/NOx andN_2/O_2/NOx Mixtures. Plasma Source Sci. Technol., 2001,10:406-416.
    
    106. Mason N.J., Skalny J.D., Hadj-ziane S.. Experimental Investigations and Modeling Studies of Ozone Producing Corona Discharges. Czechoslovak Journal of Physics, 2002, 52(1):85-94.
    
    107. Novoselov Y.N., Ryzhov W., Suslov A.l. Effect of Electronegative Impurities on the Generation of Ozone in Air. Technical Physics, 1999,44(1):44-47.
    
    108. Skalny J.D., Mikoviny T, Mason N.J., et al.. The Effect of Gaseous Diluents on Ozone Generation from Oxygen. Ozone Science & Engineering, 2002,23:29-37.
    
    109.储金字,吴春笃,陈万金等..臭氧技术及应用.北京:化学工业出版社,2002.
    
    110.刘维良,吴坚强,陈云霞等.,臭氧发生器用Al_2O_3陶瓷基板材料的改性研究.陶瓷学报,2001,22(3):175-179.
    
    111.张芝涛,白敏冬.,高浓度臭氧发生器成电特性实验研究.高电压技术,2003,29(5):33-35.
    
    112. Seminn M.A., Zelenehenkova E.. Insulating enamel for coating steel electrodesof ozone??generators.2003:RU.117622.
    
    113.赵纯,何正浩,李劲等.,气体放电臭氧发生器的研究进展.高电压技术,2002,28(11):44-46.
    
    114.王飞,朱天宇,姚河清等.,臭氧发生管的设计及其稳定研究.河海大学常州分校学报,2002,16(1):1-5.
    
    115.朱天宇,周宏伟,卞新高等.,有机高分子介电体臭氧发生管的特笥研究.高电压技术,2002,28(12):38-40.
    
    116. Haruo Kishida, Mitsunori Ishizaka, Yutaka Tanaka, et al.. Superposed Effect of UV Rays on Ozone Generation by Electrical Discharge. Electrical Engineering in Japan, 1999,123(4):8-14.
    
    117. Haruo Kishida, Masafumi Tamura, Yoshiyasu Ehara, et al.. Improvement in Ozone Yield Using Discharge Superposition Method. Electrical Engineering in Japan, 1999,126(1): 1-6.
    
    118. Kazunori Hakiai, Satoshi Ihara, Saburoh Satoh, et al.. Characteristics of Ozone Generation by a Diffuse Glow Discharge at Atmospheric Pressure Using a Double Discharge Method. Electrical Engineering in Japan, 1999,127(2):8-13.
    
    119. Senighi Masuda, Satoru Koizumi, Jun Inoue, et al.. Priduction of Ozone by Surface and Glow Discharge at Cryogentic Temperatures. IEEE Transactions on Industry Applications, 1988, 24(5):928-933.
    
    120. Toshikazu Nomura, Yoshiyasu Ehara, Tairo Ito, et al.. Effect of Applied Voltage Frequency on Nox Removal Rate for a Superimposing Discharge Reactor. Journal of Electrostatics, 2000,49:83-93.
    
    121. Yukiharu Nomoto, Toshikazu Ohkubo, Seiji Kanazawa, et al.. Improvement of Ozone Yield by a Silent-Surface Hybrid Discharge Ozonizer. IEEE Transactions on Industry Applications, 1995,31(6):1458-1462.
    
    122. Ma H.B., Qiu Y.C.. A Study of Ozone Synthesis in Coaxial Cylinder Pulsed Streamer Corona Discharge Reactors. Ozone Science & Engineering, 2003,25:127-135.
    
    123. Kazunori Hakiai, Daisaku Takazaki, Satoshi Ihara, et al.. Spatial Distribution and Characteristics of Ozone Generation with Glow Discharge Using a Double Discharge Method. Japanese Journal of Applied Physics, 1999,38:221-224.
    
    124. Hee-Sung Ahn, Nobuya Hayashi, Satoshi Ihara, et al.. Ozone Generation Characteristics by Superimposed Discharge in Oxygen-Fed Ozonizer. Jpn. J. Appl. Phys., 2003, 42:6578-6583.
    
    125. Hyun-Jig SONG, Byung-Joon CHUN, Kwang-Sik LEE.. Improvement of Ozone Yield by a Multi-Discharge Type Ozonizer Using Superposition of Silent Discharge Plasma. Journal of the Korean Physical Society, 2004,44(5): 1182-1188.
    
    126. Mitsuaki Shimosaki, Nobuya Hayashi, Satoshi Ihara, et al.. Effect of Trigger Electro des Configuration of a Double Discharge Ozonizer on Ozone Generation Characteristics. Vacuum, 2004,73:573-577.
    
    127. Shunichi Kaneda, Nobuya Hayashi, Satoshi Ihara.. Application of Delectric Material to double-Discharge-Type Ozonizer. Vacuum, 2004, 73:567-571.
    
    128. Buntat Z., Harry J.E., Smith I.R.. Application of Dimensional Analysis to Ozone Production by Pulsed Streamer Discharge in Oxygen. J. Phys. D: Appl. Phys., 2003, 36:1553-1557.
    
    129. Chalmers I.D., Zanella L., MacGregor S.J.. Ozone Synthesis in Oxygen in a Dielectric Barrier Free Configuration. in Pulsed Power Conference, Digest of Technical Papers. Tenth IEEE??International. 1995. Albuquerque, NM.
    
    130. Hidenori Akiyama, Yasuhiko Nishihashi, Shunsuke Tsukamoto, et al.. Streamer Discharge by Pulsed Power on a Spiral Transmission Line. in Pulsed Power Conference, Digest of Technical Papers. 199711th IEEE International. 1997. Baltimore, MD.
    
    131. Milan Simek, Martin Clupek.. Efficiency of Ozone Production by Pulsed Positive Corona Discharge in Synthetic Air. J. Phys. D: Appl. Phys., 2002,35:1171-1175.
    
    132. Motret O., Hibert C, Pouvesle J.M.. Ozone Production by an Ultra-Short Triggered Dielectric Barrier Discharge. Geometrical Considerations. Ozone: Science and Engineering, 2002,24:203-213.
    
    133. Samaranayake W.J.W., Hackam R., Akiama H.. Ozone Synthesis in a Cylindrical Dry Air-fed Ozonizer by Nonthermal Gas Discharges. in the 7th International Conference on Properties and Application of Dielectric Materials. 2003. Nagoya.
    
    134. Samaranayake W.J.W., Namihira T., Katsuki S.. Pulsed Power Production of Ozone Using Nonthermal Gas Discharges. IEEE Trans. Electrical Insulation Magazine, 2001, 17(4): 17-25.
    
    135. Namihira T., Shinozaki K., Katsuki S., et al.. Characteristics of Ozonizer Using Pulsed Power. in Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers. 2001. Las Vegas, Nevada, USA.
    
    136. Namihira T., Wang D.Y., Katsuki S., et al.. Propagation Velocity of Pulsed Streamer Discharges in Atmospheric Air. IEEE Trans. Plasma Science, 2003,31 (5): 1091 -1094.
    
    137. Tsukamoto S., Namihira T., Hori H., et al.. An Analysis of Pulsed Streamer Discharge Using a High-Speed Camera. in Pulsed Power Plasma Science, 2001. PPPS-2001. Digest of Technical Papers. 2001. Las Vegas, Nevada, USA.
    
    138. Shimonura N., Wakimoto M., Togo H., et al.. Production of Ozone Using Nanosecond Short Pulsed Power. in PPC-2003:14th IEEE International Pulsed Power Conference. 2003. Dallas, Texas, USA.
    
    139. Samaranayake W.J.W., Hackam R., Akiama H.. Ozone Synthesis in Oxygen Using a Pulsed Discharge. in Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference. 2001. Cincinnati, OH.
    
    140. Samaranayake W.J.W., Miyahara Y, Namihira T., et al.. Pulsed Streamer Discharge Characteristics of Ozone Production in Dry Air. IEEE Trans. Dielectrics and Electrical Insulation, 2000, 7(2):254-260.
    
    141. Ryo Ono, Tetsuji Oda.. Formation and Structure of Primary and Secondary Streamers in Positive Pulsed Corona Discharge-Effect of Oxygen Concentration and Applied Voltage. J. Phys. D: Appl. Phys., 2003,36:1952-1958.
    
    142. Ryo Ono, Tetsuji Oda.. Spatial Distribution of Ozone Density in Pulsed Corona Discharge Observed by Two-Dimensional Laser Absorption Method. J. Phys. D: Appl. Phys., 2004, 37:730-735.
    
    143. Chen J., Ozone Production in the Positive DC Corona Discharge: Model and Comparison to Experiments. Plasma Chemistry and Plasma Processing, 2002,22(4):495-522.
    
    144. Chen J., Effect of Relative Humidity on Electron Distribution and Ozone Production by DC Coronas in Air. IEEE Transactions on Plasma Science, 2005,32(2):808-812.
    
    145. Hegeler F., Akiyama H.. Ozone generation by position and negative wire-to-plate streamer discharges. Jpn. J. Appl. Phys., 1997,36:5335-5339.
    
    146. Abdel-Salam M., Mizuno A., Shimizu K.. Ozone generation as influenced by gas flow in??corona reactors. J.Phys. D: Appl. Phys., 1997,30:864-870.
    
    147. Held B.. Corona and their application, in 11th International Conference of Gas Discharge and Their Application. 1995: Tokyo.
    
    148. Masuda S., Sato M., Seki T.. High-efficiency ozonizer using travelling wave pulse voltage. in IEEE Transactions on Industry Application. 1986.
    
    149. Hackam R.. Total secondary ionization coeficients and breakdown potentials of hydrogen, methane, ethylene, carbon monoxide, nitrogen, oxygen and carbon dioxide between mild steel coaxial cylinders. i. Physics. B: Atom. Molec. Phys, 1969,2:216-233.
    
    150. Hackam R.. Total secondary ionization coefficient and breakdown potentials of monatomic gases between mild steel coaxial cylinders. J. Physics. B: Atom. Molec. Phys, 1969, 2:201-215.
    
    151.钱学森,写在前面.土岩爆破文集.北京:水利工业出版社,1980.
    
    152.谈庆明,量钢分析.合肥:中国科学技术大学出版社,2005.
    
    153. Fourier J.B.J., Analytic Theory of Heat. New York: Dover Publications, Inc, 1955.
    
    154. Reynolds O., An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water in Parallel Channel Shall Be Direct of Sinuous and of the Law of Resistance in Parallel Channels. Phil. Trans. Roy. Soc, 1883, A174:935.
    
    155. Rott N., Lord Rayleigh and Hydrodynamic Similarity. Phys. Fluids, 1992, 4(12):2595-2560.
    
    156. Buckingham E., On Physically Similar Systems:Illustrations of the Use of Dimensional Analysis. Physical Review, 1914,4(4):345-376.
    
    157. Bridgman P.W., dimensional Analysis. New Haven: Yale University Press, 1922.
    
    158. Langhaar H.L., Dimensional Analysis and Theory of Models. New York: Wiley, 1951.
    
    159. Szirtes T, Applied Dimensional Analysis and Modeling. New York: McGraw-Hill, 1997.
    
    160. Samaranayake W.J.W., Miyahara Y, Namihira T., et al.. Ozone Generation in Dry Air Using Pulsed Discharge with and without a Solid Dielectric Layer. IEEE Trans. Dielectrics and Electrical Insulation, 2001,8(4):687-697.
    
    161. Samaranayake W.J.W., Miyahara Y, Namihira T., et al.. Ozone Production Using Pulsed Dielectric Barrier Discharge in Oxygen. IEEE Trans. dielectrics and Electrical Insulation, 2000, 7(6):849-854.
    
    162.邰德荣,韩宾兵..电子束烟气脱硫技术工业示范工程进展.环境科学进展,1999,7(2):125-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700