LD端面泵浦的全固态被动连续锁模激光器实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二极管端面泵浦的全固态被动锁模激光器具有结构紧凑、效率高、可靠性好、寿命长等优点。随着激光技术的发展,全固态皮秒被动锁模激光器在工业加工,非线性频率变换,光生物学,光谱学,医疗诊断等领域具有广泛的应用。
     本论文的主要内容和创新之处可以概括为:
     1.双路输出SESAM锁模激光器。采用表面态SESAM,实现5.3W,83MHz的连续锁模(CWML)Nd:YVO_4激光器。在Nd:GdVO_4激光器中,实验验证了调制深度越小,脉宽越宽。在Nd:YLF激光器中加入布儒斯特片,分别实现了1047nm和1053nm的连续锁模,功率分别为1.1W和900mW。
     2.输出功率超过5W的单路输出SESAM连续锁模激光器。在激光腔内,插入KTP晶体,实现了激光器锁模泵浦阈值的减小,并首次观测到了双脉冲锁模现象。利用偏振旋转锁模和SESAM锁模相结合,实现了SESAM锁模激光器泵浦阈值的降低,增加了脉冲序列的稳定度。
     3.联合四分之一波片和薄膜偏振器(TFP)实现SESAM锁模激光器的单路输出且输出透过率可调。增益介质为Nd:YVO_4时,实现了4.8W的锁模输出,光-光转换效率34.3%,激光器最佳输出透过率约16.5%。采用Nd:YAG时,利用其退偏损耗作输出,获得2.3W的锁模输出。
     4.首次在国内实现了环行腔SESAM连续锁模激光器。激光器为六镜环行腔,具有较低的泵浦阈值,在3W的泵浦功率时,实现了2×200mW的锁模输出,脉冲重复频率117MHz,脉宽81ps(23ps)。
     5.首次提出一种新方法实现SESAM锁模激光器的频率翻倍。实现了3倍本征频率的输出,将本征频率83.8MHz提升到251.4MHz,激光器输出功率可达5W,光-光转换效率40%,激光器斜效率41%。
     6.设计了短腔和长腔两个非线性镜锁模(NLM)方案均实现CWML运转。在Nd:YVO_4晶体实现的NLM中,首次观测到双脉冲,多脉冲,四脉冲锁模现象。在9.3W注入泵浦功率时,输出功率4W,光-光效率43%,激光器斜效率52%。据我们所知,这是迄今为止在Nd掺杂的NLM激光器中,获得的最高光-光转换效率。首次研究了不同偏振入射角情况下的非线性镜锁模,偏振入射角在18 ~ 72之间均能实现连续锁模。
     7.利用Nd:YAG作增益介质,在注入泵浦功率15.9W时,获得2.6W1123nm连续输出。采用KTP腔内倍频,获得22.2mW 561nm黄光输出。
Diode end-pumped all-solid-state passively mode-locked lasers have many advantages, such as compactness, high efficiency, robustness and long lifetime et al. As the development of laser technology, they have been widely used in the fields of industry machining, nonlinear frequency conversion, optical biology, laser spectroscopy and medical diagnostic purposes et al.
     The main contents and key creation points of this dissertation are as follows:
     1. Double output beams mode-locked lasers with semiconductor saturable absorber mirror (SESAM). The continuous-wave mode-locked (CWML) Nd:YVO_4 used a surface-state SESAM as the self-starting device. The average output power was 5.3W and the pulses repetition rate was 83MHz. In Brewster-cut Nd:GdVO_4 laser, Experiment validated that the smaller the modulation depth of the SESAM, the broader the pulse width. Adding a Brewster plate to the Nd:YLF mode-locked lasers, the CWML pulses of 1047nm and 1053nm were obtained. And the average output power was 1.1W and 900mW, respectively.
     2. Output power >5W of single output beam CWML lasers with SESAM. Inserting a KTP crystal decreased the mode-locked incident pump power threshold. The double pulse splitting of the CWML pulses has been observed for the first time in the above laser. In addition, another laser by combining quadratic polarization switching and a SESAM was presented. The pump threshold was also decreased and the pulses trains stability was improved.
     3. The output transmission of the single beam SESAM laser could be adjusted by combining a quarter wave plate (QWP) and a thin-film polarizer (TFP). When the gain medium was Nd:YVO_4, the output power was 4.8W, optical-optical conversion efficiency 34.3%, and the optimum output transmission was about 16.5%. Using the degraded polarization losses as useful output, the CWML Nd:YAG laser has an average output power of 2.3W.
     4. Demonstrated a bi-directional picosecnd pulsed ring Nd:YVO_4 laser for the first time in China. The six mirrors ring laser cavity has a low threshold of <0.3-W of pump power, due to the low intra-cavity losses. The bi-directional pulse train has a repetition rate of 117.5-MHz and a pulse width 81-ps (23-ps). At the incident pump power of 3W, the output power was 2×200-mW and could be increased by increasing the transmission of the output mirror.
     5. By placing the SESAM in a special location in the laser cavity, we successfully demonstrated a mode-locking technique for multiplying the pulse repetition rate of a picosecond passively mode-locking Nd:YVO_4 laser for the first time. Optical pulses up to 250-MHz with average power 5-W were experimentally obtained with multiplying the fundamental mode-locking frequency, which is 3-times the fundamental mode-locked frequency determined by the master cavity length. The optical-optical conversion efficiency and the slope efficiency of the laser were 40% and 41%, respectively.
     6. Presented a short cavity and a long cavity CWML nonlinear mirror mode-locked laser. To the best of our knowledge, this is the first time that we observed double pulses splitting, multi-pulses and four pulses harmonic mode-locking in the nonlinear mirror mode-locked Nd:YVO_4 laser. At the incident pump power of 9.3W, the CWML laser average output power was 4W. The optical-optical conversion efficiency and the slope efficiency of the laser were 43% and 52%, respectively. So far, this is the highest conversion efficiency in the Nd doped NLM lasers to our knowledge. We researched the NLM laser operated in different polarization incident angles for the first time. When the polarization incident angle in the range of18 ~ 72 , the laser can be continuous-wave mode-locked.
     7. Presented a compact and high output power diode end-pumped Nd:YAG laser which operated at the wavelength of 1123nm. Continuous wave laser output power of 2.6W was achieved at the incident pump power of 15.9W. Intra-cavity doubled frequency by KTP, the output power of yellow laser at 561nm was 22.2mW.
引文
[1]G. J. Spühler, T. Südmeyer, R. Paschotta, et al. Passively mode-locked high-power Nd:YAG lasers with multiple laser heads[J]. Applied Physics B, 2000, 71: 19-25
    [2]G. J. Spühler, R. Paschotta, U. Keller, et al. Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam[J]. Optics Letters, 1999, 24(8): 528-530
    [3]R. Paschotta, J. A. d. Au, G. J. Spühler, et al. Diode-pumped passively mode-locked lasers with high average power[J]. Applied Physics B, 2000, 70: S25-S31
    [4]D. Burns, G. J. Valentine, W. Lubeigt, et al. Develoopment of High Average Power Picosecond Laser Systems[J]. Proceedings of SPIE, 2002, 4629: 129-143
    [5]Felix, B., I. Edith, V. M. Sergio, et al. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser[J]. Optics Letters, 2004, 29(16): 1921-1923
    [6]Liu, K.X., C.J. Flood, D.R. Walker, et al. Kerr lens mode locking of a diode-pumped Nd:YAG laser[J]. Optics Letters, 1992, 17(19): 1361-1363
    [7]Henrich, B., R. Beigang. Self-starting Kerr-lens mode locking of a Nd:YAG-laser[J]. Optics Communications, 1997, 135(4-6): 300-304
    [8]Larotonda, M.A., A.A. Hnilo, F.P. Diodati. Diode-pumped self-starting Kerr-lens mode locking Nd:YAG laser[J]. Optics Communications, 2000, 183(5-6): 485-491
    [9]Goodberlet, J., J. Jacobson, J.G. Fujimoto, et al. Self-starting additive-pulse mode-locking diode-pumped Nd:YAG laser[J]. Optics Letters, 1990, 15(9): 504-506
    [10]Liu, L.Y., J.M. Huxley, E.P. Ippen, et al. Self-starting additive-pulse mode locking of a Nd:YAG laser[J]. Optics Letters, 1990, 15(10): 553-555
    [11]Malcolm, G.P.A., P.F. Curley, A.I. Ferguson. Additive-pulse mode locking of a diode-pumped Nd:YLF laser[J]. Optics Letters, 1990, 15(22): 1303-1305
    [12]Liu, J.M., J.K. Chee. Passive mode locking of a cw Nd:YLF laser with a nonlinear external coupled cavity[J]. Optics Letters, 1990, 15(12): 685-687
    [13]Robertson, A., N. Langford, A.I. Ferguson. Pulse compression of the output from a diode pumped additive-pulse mode-locked Nd:YLF laser[J]. Optics Communications, 1995, 115(5-6): 516-522
    [14]王春, 沈小华, 陈绍和等. 二极管端面泵浦的附加脉冲锁模的Nd:YLF激光器[J]. 光学学报, 1999, 19(1): 23-27
    [15]Garcia, J.C., A.K. Newman, J.M. Liu, et al. Cw mode-locked deep UV pulses at an average power of 1.8 W[J]. Journal of Optics A: Pure and Applied Optics,2000, 2(6)
    [16]McConnell, G., A.I. Ferguson, N. Langford. Additive-pulse mode locking of a diode-pumped Nd~(3+):YVO_4 laser[J]. Applied Physics B: Lasers and Optics, 2002, 74(1): 7-9
    [17]Major, A., N. Langford, T. Graf, et al. Additive-pulse mode locking of a diode-pumped NdL:KGd(WO4)2 laser[J]. Applied Physics B: Lasers and Optics, 2002, 75(4-5): 467-469
    [18]Major, A., N. Langford, S.T. Lee, et al. Additive-pulse mode locking of a thin-disk Yb:YAG laser[J]. Applied Physics B: Lasers and Optics, 2003, 76(5): 505-508
    [19]Reuter, S., J. Kleinbauer, R. Knappe, et al. High average power 80 MHz repetition rate additive pulse mode-locked femtosecond Yb:YAG laser.Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest2002: 343-344
    [20]Dausinger, F., F. Lichtner, H. Lubatschowski. Femtosecond Technology for Technical and Medical Applications[J]. Topics Appl. Phys., 2004, 96: 17-34
    [21]Krennrich, D., R. Wallenstein, T. Herrmann, et al. Powerful red and blue laser radiation generated by frequency doubling and tripling the output of a mode locked 1342 nm Nd:YVO_4-laser in pp-KTP. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest2002: 167-168
    [22]U. Keller, D.A.B. Miller, G.D. Boyd, et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17 (7): 505-507
    [23]Weingarten, K.J., U. Keller, T.H. Chiu, et al. Passively mode-locked diode-pumped solid-state lasers that use an antiresonant Fabry-Perot saturable absorber[J]. Optics Letters, 1993, 18(8): 640-642
    [24]Au, J.A.d., G. J. Spühler, T. Südmeyer, et al. 16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser[J]. Optics Letters, 2000, 25(11): 859-861
    [25]Ursula, K. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(14): 831-838
    [26]S.W. Tsai, Y.P. Lan, S.C. Wang, et al. High-power diode-end-pumped passively mode-locked Nd:YVO_4 laser with a relaxed saturable Bragg reflector[J]. Proceedings of SPIE, 2002, 4630: 17-23
    [27]Spühler, G.J., R. Paschotta, U. Keller, et al. Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam[J]. Optics Letters, 1999, 24(8): 528-530
    [28]Graf, T., A.I. Ferguson, E. Bente, et al. Side-pumped multi-Watt Nd:YVO_4 laser, mode locked by a semiconductor saturable Bragg reflector[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3611: 279-285
    [29]Schlatter, A., L. Krainer, M. Golling, et al. Passively mode-locked 914-nmNd:YVO_4 laser[J]. Optics Letters, 2005, 30(1): 44-46
    [30]Shen, D.Y., D.Y. Tang,K. Ueda. Continuous wave and Q-switched mode-locking of a Nd:YVO_4 laser with a single crystal GaAs wafer[J]. Japanese Journal of Applied Physics, Part 2: Letters, 2002, 41(11 A)
    [31]Koehler, B., T. Andres, A. Nebel, et al. High-power, high-repetition-rate fourth and fifth harmonic generation of a cw mode locked Nd:YVO_4 laser[J]. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 2000: 142-143
    [32]Graf, T., A.I. Ferguson, E. Bente, et al. Multi-Watt Nd:YVO_4 laser, mode locked by a semiconductor saturable absorber mirror and side-pumped by a diode-laser bar[J]. Optics Communications, 1999, 159(1-3): 84-87
    [33]Kube?ek, V., K. Zvonicek, J.C. Diels, et al. Comparison of passively mode locked operation of diode pumped Nd:YAG laser using either second harmonic nonlinear mirror or semiconductor saturable absorber. H.J. Hoffman and R.K. Shori Proceedings of SPIE - The International Society for Optical Engineering. San Jose, CA: 2005, 5707: 287-294
    [34]He, J.L., J. Liu, J. Du, et al. Low-threshold and highly efficient diode-pumped cw passively mode-locked Nd: YVO_4 laser with a saturable Bragg reflector[J]. Optical Engineering, 2005, 44(9)
    [35]Wang, Y., X. Ma, Y. Liu, et al. Passively mode-locked Nd:YVO_4 laser using semiconductor saturable absorption mirrors of interface states relaxation region[J]. Optik - International Journal for Light and Electron Optics, 2006, 117(10): 474-476
    [36]Cai, Z., W. Wen, X. Ding, et al. 5.3-W Nd:YVO_4 passively mode-locked laser by a novel semiconductor saturable absorber mirror[J]. Chinese Optics Letters, 2005, 3(6): 342-344
    [37]Fan, Y.X., J.L. He, Y.G. Wang, et al. 2-ps passively mode-locked Nd:YVO_4 laser using an output-coupling-type semiconductor saturable absorber mirror[J]. Applied Physics Letters, 2005, 86(10): 1-3
    [38]Lederer, M.J., V. Kolev, B. Luther-Davies, et al. Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking[J]. Journal of Physics D: Applied Physics, 2001, 34(16): 2455-2464
    [39]E. Innerhofer, T. Südmeyer, F. Brunner, et al. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser[J]. Optics Letters, 2003, 28(5): 367-369
    [40]Brunner, F., E. Innerhofer, S.V. Marchese, et al. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser[J]. Optics Letters, 2004, 29(16): 1921-1923
    [41]V. Marchese, S., T. Südmeyer, M. Golling, et al. Pulse energy scaling to 5 μJ from a femtosecond thin disk laser[J]. Optics Letters, 2006, 31(18): 2728-2730
    [42]Kolev, V.Z., M.J. Lederer, B. Luter Davies, et al. Passive mode locking of a Nd:YVO_4 laser with an extra-long optical resonator[J]. Optics Letters, 2003, 28(14): 1275-1277
    [43]Papadopoulos, D.N., S. Forget, M. Delaigue, et al. Passively mode-locked diode-pumped Nd:YVO_4 oscillator operating at an ultralow repetition rate[J]. Optics Letters, 2003, 28 (19): 1838-1840
    [44]Lukas, K., P. Rudiger, L. Steve, et al. Compact Nd:YVO_4 Lasers With Pulse Repetition Rates up to 160 GHz[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 38(10): 1331-1338
    [45]Brunner, F., G.J. Spühler, J. Aus Der Au, et al. Diode-pumped femtosecond Yb:KGd(WO_4)_2 laser with 1.1-W average power[J]. Optics Letters, 2000, 25(15): 1119-1121
    [46]Gary, R.H. Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18): 2719-2721
    [47]Xu, B., J.M. Evans, V. Petri?evi?, et al. Continuous-wave and passively mode-locked operation of a cunyite (Cr4+:Ca2GeO4) laser[J]. Applied Optics, 2000, 39(27): 4975-4978
    [48]Klopp, P., V. Petrov, U. Griebner. Passively mode-locked Yb:KYW laser pumped by a tapered diode laser[J]. Optics Express, 2002, 10 (2): 108-113
    [49]Brunner, F., T. Südmeyer, E. Innerhofer, et al. 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO_4)_2 laser[J]. Optics Letters, 2002, 27(13): 1162-1164
    [50]Druon, F., S. Chenais, F. Balembois, et al. High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime[J]. Optical Materials, 2002, 19(1): 73-80
    [51]Major, A., N. Langford, T. Graf, et al. Diode-pumped passively mode-locked Nd:KGd(WO_4)_2 laser with 1-W average output power[J]. Optics Letters, 2002, 27 (16): 1478-1480
    [52]Klopp, P., V. Petrov, U. Griebner, et al. Highly efficient mode-locked Yb:Sc_2O_3 laser[J]. Optics Letters, 2004, 29(4): 391-393
    [53]Shirakawa, A., K. Takaichi, H. Yagi, et al. Diode-pumped mode-locked Yb~(3+):Y_2O_3 ceramic laser[J]. Optics Express, 2003, 11(22): 2911-2916
    [54]Agnesi, A., A. Guandalini, A. Tomaselli, et al. Diode-pumped passively mode-locked and passively stabilized Nd~(3+):BaY_2F_8 laser[J]. Optics Letters, 2004, 29(14): 1638-1640
    [55]Paunescu, G., J. Hein, R. Wallenstein. 100-fs diode-pumped Yb:KGW mode-locked laser[J]. Applied Physics B, 2004, 79: 555-558
    [56]Griebner, U., V. Petrov, K. Petermann, et al. Passively mode-locked Yb:Lu2O3 laser[J]. Optics Express, 2004, 12(14): 3125-3130
    [57]Jing-Liang, H., L. Chao-Kuei, Y.J.H. Jung, et al. Diode-pumped passively mode-locked multiwatt Nd:GdVO_4 laser with a saturable Bragg reflector[J]. Applied Optics, 2003, 42 (27): 5496-5499
    [58]Zhang, S., E. Wu, H. Pan, et al. Passive mode locking in a diode-pumpedNd:GdVO_4 laser with a semiconductor saturable absorber mirror[J]. IEEE Journal of Quantum Electronics, 2004, 40(5): 505-508
    [59]张三军, 半导体泵浦 Nd3+:GdVO_4 激光中的调 Q 锁模技术: [硕士学位论文], 上海; 华东师范大学, 2004
    [60]Du, J., J. He, J. Liu, et al. Q-switched mode-locked diode-pumped Nd:YVO_4 laser with a saturable Bragg reflector[J]. Chinese Optics Letters, 2004, 2(5): 275-277
    [61]杜鹃, 全固态 SESAM 连续波 1064nm 被动锁模激光器的研究: [硕士学位论文], 济南; 山东师范大学, 2004
    [62]Zhang, B.Y., G. Li, M. Chen, et al. Comparative study of the mode-locking of Nd:GdVO_4 and Nd:YAG lasers with semiconductor saturable absorber mirrors [J]. Chinese Optics Letters, 2003, 1 (8): 477-478
    [63]Zhang, B., G. Li, M. Chen, et al. Passive mode locking of a diode-end-pumped Nd:GdVO_4 laser with a semiconductor saturable absorber mirror[J]. Optics Letters, 2003, 28(19): 1829-1831
    [64]Wang, Y.G., X.Y. Ma, C.Y. Li, et al. A Passively Mode-Locked Diode-End-Pumped Nd:YAG Laser with a Semiconductor Saturable Absorber Mirror Grown by Metal Organic Chemical Vapour Deposition[J]. Chinese Physics Letters, 2003, 20(11): 1960-1962
    [65]张丙元, LD 泵浦 SESAM 锁模腔倒空激光器的研究: [硕士学位论文], 北京; 北京工业大学, 2004
    [66]Ju, G., L. Chai, Q.Y. Wang, et al. Stable mode-locking in an Yb:YAG laser with a fast SESAM[J]. Chinese Optics Letters, 2003, 1 (12): 695-696
    [67]He, J.-L., Y.-X. Fan, J. Du, et al. 4-ps passively mode-locked Nd:Gd0.5Y0.5VO_4 laser with a semiconductor saturable-absorber mirror[J]. Optics Letters, 2004, 29 (23): 1-3
    [68]Xue, Y., Q. Wang, Z. Zhang, et al. Passive mode locking of an Yb:YAB laser with a low modulation depth SESAM[J]. Chinese Optics Letters, 2004, 2(8): 466-467
    [69]Jia, Y.L., Z.Y. Wei, J.A. Zheng, et al. Diode-pumped self-starting mode-locked Nd:YVO_4 laser with semiconductor saturable absorber output coupler[J]. Chinese Physics Letters, 2004, 21(11): 2209-2211
    [70]Stankov, K.A. MIRROR WITH AN INTENSITY-DEPENDENT REFLECTION COEFFICIENT[J]. Applied physics. B, Photophysics and laser chemistry, 1988, B45(3): 191-195
    [71]Stankov, K.A., J. Jethwa. A new mode-locking technique using a nonlinear mirror[J]. Optics Communications, 1988, 66(1): 41-46
    [72]Stankov, K. Mode locking by a frequency-doubling crystal: generation of transfor-limited ultrashort light pulses[J]. Optics Letters, 1989, 14(7): 359-361
    [73]Stankov, K.A. Mode locking of a Nd:YAlO_3 laser at the 1.34-μm transition by a second-harmonic nonlinear mirror[J]. Optics Letters, 1991, 16(7): 505-507
    [74]Stankov, K.A. 25 ps pulses from a Nd:YAG laser mode locked by a frequency doubling β-B?aB2O4 crystal[J]. Appl. Phys. Lett., 1991, 58(20): 2203-2204
    [75]Danailov, M.B., G. Cerullo, V. Magni, et al. Nonlinear mirror mode locking of a cw Nd:YLF laser[J]. Optics Letters, 1994, 19(11): 792-794
    [76]Cerullo, G., M.B. Danailov, S. De Silvestri, et al. A Diode-pumped nonlinear mirror mode-locked Nd:YAG laser[J]. Applied Physics Letters, 1994, 65(19): 2392-2394
    [77]Cerullo, G., V. Magni, A. Monguzzi. Group-velocity mismatch compensation in continuous-wavelasers mode locked by second-order nonlinearities[J]. Optics Letters, 1995, 20(17): 1785-1787
    [78]Agnesi, A., E. Piccinini, G.C. Reali, et al. All-solid-state picosecond tunable source of near-infrared radiation[J]. Optics Letters, 1997, 22(18): 1415-1417
    [79]Agnesi, A., C. Pennacchio, G.C. Reali, et al. High-power diode-pumped picosecond Nd3+:YVO_4 laser[J]. Optics Letters, 1997, 22(21): 1645-1647
    [80]Agnesi, A., G.C. Reali, V. Kube?ek. Nonlinear mirror operation of a diode-pumped quasi-cw picosecond Nd:YAG laser[J]. Applied Physics B: Lasers and Optics, 1998, 66(3): 283-285
    [81]Mani, A.A., P. Hollander, P.A. Thiry, et al. All-solid-state 12 ps actively passively mode-locked pulsed Nd:YAG laser using a nonlinear mirror[J]. Applied Physics Letters, 1999, 75(20): 3066-3068
    [82]Agnesi, A., S. Dell'Acqua, G. Reali. Nonlinear mirror mode-locking of efficiently diode-pumped pulsed neodymium lasers[J]. Journal of the Optical Society of America B: Optical Physics, 1999, 16(8): 1236-1242
    [83]Yang, P.K., J.Y. Huang. An Inexpensive diode-pumped mode-locked Nd:YVO_4 laser for nonlinear optical microscopy[J]. Optics Communications, 2000, 173(1-6): 315-321
    [84]Agnesi, A., A. Lucca, G. Reali, et al. All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration[J]. Journal of the Optical Society of America B: Optical Physics, 2001, 18(3): 286-290
    [85]Chen, Y.F., S.W. Tsai, S.C. Wang. High-power diode-pumped nonlinear mirror mode-locked Nd:YVO_4 laser with periodically-poled KTP[J]. Applied Physics B: Lasers and Optics, 2001, 72(4): 395-397
    [86]Saikawa, J., T. Taira. Second-harmonic nonlinear mirror CW mode locking in Yb:YAG microchip lasers[J]. Japanese Journal of Applied Physics, Part 2: Letters, 2003, 42(6 B)
    [87]Saikawa, J., T. Taira. Mode-locked Yb:YAG lasers by using SHG nonlinear mirror[J]. 2003: 759
    [88]Datta, P.K., Shivanand, S. Mukhopadhyay, et al. Picosecond pulse generation and its simulation in a nonlinear optical mirror mode-locked laser[J]. Applied Optics, 2004, 43(11): 2347-2352
    [89]Datta, P.K., S. Mukhopadhyay, A. Agnesi. Stability regime study of a nonlinear mirror mode-locked laser[J]. Optics Communications, 2004, 230(4-6): 411-418
    [90]Datta, P.K., C. Basu, S. Mukhopadhyay, et al. Diode array pumped, non-linearmirror Q-switched and mode-locked Nd: YVO_4 laser - A good tool for powder SHG measurement[J]. Pramana - Journal of Physics, 2004, 63(5): 1003-1010
    [91]Datta, P.K., S. Mukhopadyay, S.K. Das, et al. Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO_4 oscillator by an active Q-switch[J]. Optics Express, 2004, 12(17): 4041-4046
    [92]Petrov, G.I., V.V. Yakovlev, N.I. Minkovski. Broadband nonlinear optical conversion of a high-energy diode-pumped picosecond laser[J]. OPT COMMUN, 2004, 229: 441-445
    [93]Petrov, G.I., N.I. Minkovski, V.V. Yakovlev. High-energy ultrashort laser pulses from a simple oscillator and their efficient frequency conversion. Proceedings of SPIE - The International Society for Optical Engineering2004, 5332: 55-62
    [94]Petrov, G.I., V.V. Yakovlev. Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy[J]. Optics Express, 2005, 13(4): 1299-1306
    [95]Lin, J.H., W.H. Yang, W.F. Hsieh, et al. Low threshold and high power output of a diode-pumped nonlinear mirror mode-locked Nd:GdVO_4 laser[J]. Optics Express, 2005, 13(17): 6323-6329
    [96]Cerullo, G., S. De Silvestri, A. Monguzzi, et al. Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities[J]. Optics Letters, 1995, 20(7): 746-748
    [97]Holmgren, S.J., V. Pasiskevicius, F. Laurell. Generation of 2.8 ps pulses by mode-locking a Nd:GdVO_4 laser with defocusing cascaded Kerr lensing in periodically poled KTP[J]. Optics Express, 2005, 13(14): 5270-5278
    [98]Lefort, L., A. Barthelemy. Intensity-dependent polarization rotation associated with type II phase-matched second-harmonic generation: application to self-induced transparency[J]. Optics Letters, 1995, 20(17): 1749-1751
    [99]Saltiel, S., K. Koynov, I. Buchvarov. Self-induced transparency and self-induced darkening with a nonlinear frequency-doubling polarization interferometer[J]. Applied Physics B: Lasers and Optics, 1997, 63(4): 371-374
    [100]Couderc, V., O. Guy, E. Roisse, et al. Modelocking of CW Nd:YAG laser using nonlinear polarisation evolution in type II frequency doubling crystal[J]. Electronics Letters, 1998, 34(7): 672-673
    [101]Kube?ek, V., V. Couderc, B. Bourliaguet, et al. 4-W and 23-ps pulses from a lamp-pumped Nd:YAG laser passively mode-locked by polarization switching in a KTP crystal[J]. Applied Physics B: Lasers and Optics, 1999, 69(2): 99-102
    [102]Couderc, V., F. Louradour, A. Barthélémy. 2.8 ps pulses from a mode-locked diode pumped Nd:YVO_4 laser using quadratic polarization switching[J]. Optics Communications, 1999, 166(1): 103-111
    [103]Louis, S., V. Couderc, F. Louradour, et al. Nonlinear polarization evolution in type I and type II second-harmonic-generation crystals applied to the mode locking of a pulsed Nd:YAG laser[J]. Journal of Optics A: Pure and AppliedOptics, 2001, 3(2): 139-143
    [104]Louradour, F., A. Mugnier, A. Albert, et al. Numerical study of quadratic polarization switching mode locking applied to femtosecond pulse generation[J]. Optics Communications, 2001, 188(5-6): 333-344
    [105]Couderc, V., A. Albert, A. Barthelemy. Low repetition rate of a mode locked Nd:YAG laser using quadratic polarization switching[J]. Optics Communications, 2003, 220(4-6): 413-417
    [106]Kleinbauer, J., R. Knappe, R. Wallenstein. A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet[J]. Applied Physics B: Lasers and Optics, 2005, 80(3): 315-320
    [107]Kleinbauer, J., R. Knappe, R. Wallenstein. 13-W picosecond Nd:GdVO_4 regenerative amplifier with 200-kHz repetition rate[J]. Applied Physics B: Lasers and Optics, 2005, 81(2-3): 163-166
    [108]www.coherent.com.cn.
    [109]www.time-bandwidth.com.
    [110]www.lumera-laser.com.
    [111]www.highq-us.com.
    [112]www.alphalas.com.
    [113]Haiml, M., R. Grange, U. Keller. Optical characterization of semiconductor saturable absorbers[J]. Applied Physics B: Lasers and Optics, 2004, 79(3): 331-339
    [114]Keller, U., W.H. Knox, G.W. tHooft. Ultrafast solid-state mode-locked lasers using resonant nonlinearities[J]. IEEE Journal of Quantum Electronics, 1992, 28(10): 2123-2133
    [115]Keller, U., D.A.B. Miller, G.D. Boyd, et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17 (7): 505-507
    [116]Ursula, K., J.W. Kurt, X.K. Franz, et al. Semiconductor Saturable Absorber Mirrors (SESAM's) for Femtosecond to Nanosecond Pulse Generation in Solid-State Lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2: 435-452
    [117]周建勇, 1319nm-Nd:YAG 激光器及 SESAM 被动锁模技术研究: [硕士学位论文], 天津; 天津大学, 2004
    [118]H?nninger, C., R. Paschotta, F. Morier-Genoud, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B: Optical Physics, 1999, 16(1): 46-56
    [119]Paschotta, R., U. Keller. Passive mode locing with slow saturable absorbers[J]. Applied Physics B: Lasers and Optics, 2001, 73: 653-662
    [120]Spühler, G.J., T. Südmeyer, R. Paschotta, et al. Passively mode-locked high-power Nd:YAG lasers with multiple laser heads[J]. Applied Physics B, 2000, 71: 19-25
    [121]Tsai, S.W., Y.P. Lan, S.C. Wang, et al. High-power diode-end-pumped passively mode-locked Nd:YVO_4 laser with a relaxed saturable Bragg reflector[J]. Proceedings of SPIE, 2002, 4630: 17-23
    [122]Paschotta, R., J. Aus der Au, G.J. Spühler, et al. Diode-pumped passively mode-locked lasers with high average power[J]. Applied Physics B, 2000, 70: S25-S31
    [123]Belostotsky, A.L., A.S. Leonov, A.V. Meleshko. Nonlinear phase change in type II second-harmonic generation under exact phase-matched conditions[J]. Optics Letters, 1994, 19(12): 856-858
    [124]Kim, D.W., G.Y. Xiao, G.B. Ma. Temporal properties of the second-harmonic generation of a short pulse[J]. Applied Optics, 1997, 36(27): 6788-6793
    [125]Faugeras, P., F. Diblanc, S. Louis, et al. Polarization effects in second harmonic generation for nonlinear mirror. Application to laser mode-locking. V.I. Pustovoy Proceedings of SPIE - The International Society for Optical Engineering.Limoges: 1997, 3404: 289-294
    [126]Imeshev, G., M. Proctor, M.M. Fejer. Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal[J]. Optics Letters, 1998, 23(3): 165-167
    [127]C. H?nninger, R. Paschotta, F.M. Genoud, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J.Opt.Soc.Am.B, 1999, 16(1): 46-56
    [128]A. Agnesi, C. Pennacchio, G.C. Reali, et al. High-power diode-pumped picoecond Nd3+:YVO_4 laser [J]. Optics Letters, 1997, 22 (21): 1645-1647
    [129]Datta, P.K., C. Basu, S. Mukhopadhyay, et al. Diode array pumped, non-linear mirror Q-switched and mode-locked Nd:YVO_4 laser-a good tool for powder SHG measurement[J]. Pramana - Journal of Physics, 2004, 63(5): 1003-1010
    [130]T. R. Schibli, E. R. Thoen, F. X. K?rtner, et al. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption[J]. Applied Physics B, 2000, 70 : S41-S49
    [131]Pavel, C., V. Gareth, B. David, et al. Passive stabilization of a passively mode-locked laser by nonlinear absorption in indium phosphide[J]. Optics Letters, 2004, 29(12): 1387-1389
    [132]Agnesi, A., A. Guandalini, G. Reali. Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser[J]. Applied Physics Letters, 2005, 86(17): 1-3
    [133]Schieffer, S.L., D. Brajkovic, A.I. Cornea, et al. Low-threshold, dual-passive mode locking of a large mode area Nd:GdVO_4 laser[J]. Optics Express, 2006, 14(15): 6694-6704
    [134]Datta, P.K., S. Mukhopadhyay, G.K. Samanta, et al. Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking[J]. Applied Physics Letters, 2005, 86(15): 1-3
    [135]Stankov, K.A., J. Jethwa. NEW MODE-LOCKING TECHNIQUE USING ANONLINEAR MIRROR[J]. Optics Communications, 1988, 66(1): 41-46
    [136]Gerhard, C., F. Druon, P. Georges, et al. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO_4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror[J]. Optics Express, 2006, 14(16): 7093-7098
    [137]A. Garnache, S. Hoogland, A.C. Tropper, et al. Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100mW average power[J]. Applied Physics Letters, 2002, 80 (21): 3892-3894
    [138]Yonggang, W., M. Xiaoyu, J. Guifang. Passive mode locking Diode-end-pumped Yb:YAG Laser with Surface-state type of Semiconductor Saturable Absorption Mirror[J]. Chinese Journal of semiconductors, 2004, 8: 1000
    [139]James, E.M. Pulsed Gain and Thermal Lensing of Nd:LiYF4[J]. IEEE of Quantum Electronics, 1983, 19(4): 488-491
    [140]Auerbach, J.M., R.L. Schmitt. Diode-laser-pumped monolithic Nd:YLF lasr operating at 1.053μm[J]. optics Letters, 1991, 16(15): 1171-1173
    [141]Lam, S.Y., M.J. Damzen. Self-adaptive Nd:YLF holographic laser with selectable wavelength operation[J]. Applied Physics B: Lasers and Optics, 2003, 76(3): 237-240
    [142]张大勇, 赵伟, 赵鸿. LD 泵浦的 Cr4+:YAG/Nd:YLF 激光器[J]. 激光与红外, 2004, 34(3): 172-173
    [143]庄大奎, 立群, 周翠萍等. 调 Q 锁模 YLF 激光器在 ICF 中的应用[J]. 激光与光电子进展, 2001(8): 1-6
    [144]闫平, 吴克瑛, 何斌等. LD 泵浦 Nd:YLF 激光器研究[J]. 大连理工大学学报, 1997, 37(增刊 2): S183-S185
    [145]Selker, M.D., R.S. Afzal, P. Reichert. Pulse transmission mode Q-switched Nd:YLF laser pumped by cylindrical microlens-collimated diode bars[J]. IEEE Journal of Quantum Electronics, 1994, 30(7): 1616-1622
    [146]蔡志强, 温午麒, 王勇刚等. 大功率连续锁模皮秒激光器单端输出超过5W[J]. 中国激光, 2005, 32(5): 693
    [147]Qian, L.J., X. Liu, F.W. Wise. Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts[J]. Optics Letters, 1999, 24(3): 166-168
    [148]Pelouch, W.S., P.E. Powers, C.L. Tang. Self-starting mode-locked ring-cavity Ti:Sapphire laser[J]. Optics Letters, 1992, 17(22): 1581-1583
    [149]Beddard, T., W. Sibbett, D.T. Reid, et al. High-average-power, 1-MW peak-power self-mode-locked Ti:sapphire oscillator[J]. Optics Letters, 1999, 24(3): 163-165
    [150]Gardu?o-Mejía, J., M. Mohebi, N. Jamasbi. Direction of propagation of the beam in a unidirectional Kerr lens mode locked Ti:Sapphire ring laser[J]. Optics Communications, 1999, 171(4): 263-269
    [151]Kube?ek, V., J.C. Diels, A. Stintz. Bidirectional operation of a ring diode pumped mode-locked Nd:YVO_4 laser.Proceedings of SPIE - The InternationalSociety for Optical Engineering 2004, 5460: 309-314
    [152]Dennis, M.L., J.C.M. Diels, M. Lai. Femtosecond ring dye laser: a potential new laser gyro[J]. Optics Letters, 1991, 16(7): 529-531
    [153]Zavadilova, A., V. Kube?ek, M. ?ech, et al. Mode locked Nd:YVO_4 laser with intracavity synchronously pumped optical parametric oscillator. Proceedings of SPIE - The International Society for Optical Engineering, 2006, 6100: 61001G-1-61001G-7
    [154]Dennis, M.L., J.-C.M. Diels. Analysis of a ring-laser gyroscope with intracavity phase-conjugate coupling[J]. Applied Optics, 1994, 33(9): 1659-1672
    [155]Atherton, B., S. Diddams, J.-C. Diels. Stabilization of a mode-locked ring laser gyroscope.Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1996: 201-202
    [156]Bohn, M.J., J.C. Diels. Bidirectional Kerr-lens mode-locked femtosecond ring laser[J]. Optics Communications, 1997, 141(1-2): 53-58
    [157]Bohn, M.J., J.-C. Diels. Bidirectional Kerr-lens modelocked femtosecond ring laser.Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1997, 11: 322
    [158]Jones, R.J., M.J. Bohn, J.-C. Diels. Solid-state laser gyro using ZnS for Kerr-lens mode locking. Conference on Lasers and Electro-Optics Europe - Technical Digest, 1998: 434
    [159]Diels, J.-C., D. Kuehlke, J. Jones, et al. Progress towards a compact, solid state, active laser gyroscope. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3616: 136-142
    [160]Dang, T.T., A. Stintz, J.-C. Diels, et al. Active Solid State Short Pulse Laser Gyroscope. ION 57th Annual Meeting-Session D4. Albuquerque, New Mexico: 2001
    [161]Meng, X., J.C. Diels, D. Kuehlke, et al. Bidirectional, synchronously pumped, ring optical parametric oscillator[J]. Optics Letters, 2001, 26(5): 265-267
    [162]Bohn, M.J., J.C. Diels. Optimizing the frequency in dithered laser gyroscopes[J]. Optics Communications, 2002, 213(4-6): 331-337
    [163]Meng, X., R. Quintero-Torres, J.C. Diels. Intracavity pumped optical parametric oscillator bidirectional ring laser as a differential interferometer[J]. Optics Communications, 2004, 233(1-3): 167-172
    [164]Zavadilova, A., V. Kube?ek, J.C. Diels, et al. Passively mode locked operation of diode pumped Nd:YVO_4 laser using either second harmonic nonlinear mirror or semiconductor saturable absorber. P. Tomanek, et al. Proceedings of SPIE - The International Society for Optical Engineering. Prague: 2006, 6180
    [165]付文羽, 彭世林. Sagnac 效应与激光陀螺[J]. 青海师专学报(自然科学), 2001(6): 17-19
    [166]王轲, 陈效真, 杨雨. 激光陀螺及其发展[J]. 导航与控制, 2004, 3(4): 28-31
    [167]万顺平, 毛献辉, 孙利群等. 半导体泵浦固体激光陀螺的研究进展[J]. 应用光学, 2002, 23(2): 22-25
    [168]毛献辉, 章燕申, 滕云鹤等. 无闭锁固态激光陀螺仪的探讨[J]. 导航与控制, 2003, 2(1): 36-42
    [169]万顺平, 孙利群, 田芊等. LD 侧泵固态激光陀螺仪方案[J]. 光电子· 激光, 2004, 15(11): 1324-1328
    [170]Diels, J.-C., D. Kuehlke, J. Jones, et al. Progress towards a compact, solid state, active laser gyroscope[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3616: 136-142
    [171]陈宇星, 杜丽辉, 陆俊军等. 光纤激光陀螺系统的优化设计[J]. 光学技术, 2004, 30(5): 596-599
    [172]Kasper, A., K.J. Witte. 10-fs pulse generation from a unidirectional Kerr-lens mode-locked Ti:sapphire ring laser[J]. Optics Letters, 1996, 21(5): 360-362
    [173]柴路, 张伟力, 王清月等. 可单向和双向运转的自锁模掺钛蓝宝石环行激光器[J]. 光学学报, 1997, 17(8): 1080-1082
    [174]Krainer, L., R. Paschotta, G.J. Spühler, et al. 29 GHz modelocked miniature Nd:YVO_4 laser[J]. Electronics Letters, 1999, 35(14): 1160-1161
    [175]Krainer, L., R. Paschotta, M. Moser, et al. 77 GHz soliton modelocked Nd:YVO_4 laser[J]. Electronics Letters, 2000, 36(22): 1846-1848
    [176]Krainer, L., R. Paschotta, U. Keller, et al. Passively mode-locked picosecond lasers with up to 59 GHz repetition rate[J]. Applied Physics Letters, 2000, 77(14): 2104-2105
    [177]Krainer, L., R. Paschotta, G.J. Spühler, et al. Tunable picosecond pulse-generating laser with repetition rate exceeding 10 GHz[J]. Electronics Letters, 2002, 38(5): 225-227
    [178]Zeller, S.C., R. Paschotta, U. Keller, et al. Passively mode-locked 40-GHz Er:Yb:glass laser[J]. Applied Physics B: Lasers and Optics, 2003, 76(7): 787-788
    [179]Krainer, L., D. Nodop, G.J. Spühler, et al. Compact 10-GHz Nd:GdVO_4 laser with 0.5-W average output power and low timing jitter[J]. Optics Letters, 2004, 29(22): 2629-2631
    [180]Lecomte, S., R. Paschotta, U. Keller, et al. Synchronously pumped optical parametric oscillator with a repetition rate of 81.8 GHz[J]. IEEE Photonics Technology Letters, 2005, 17(2): 483-485
    [181]Lecomte, S., R. Paschotta, U. Keller, et al. Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1-W signal average output power in the spectral region near 1.5μm[J]. Optics Letters, 2005, 30(3): 290-292
    [182]Lecomte, S., M. Kalisch, L. Krainer, et al. Diode-pumped passively mode-locked Nd: YVO_4 lasers with 40-GHz repetition rate[J]. IEEE Journal of Quantum Electronics, 2005, 41(1): 45-52
    [183]Kong, M.N., J.K. Chee, J.M. Liu. Passive mode locking with a nonlinear external coupled cavity at high pulse repetition rates[J]. Optics Letters, 1991,16(2): 73-75
    [184]U. Keller, W.H. Knox, H. Roskos. Coupled-cavity resonant passively mode-locked Ti:sapphire laser[J]. Optics Letters, 1990, 15 (23): 1377-1379
    [185]Liu, T.M., F.X. K?rtner, J.G. Fujimoto, et al. Multiplying the repetition rate of passive mode-locked femtosecond lasers by an intracavity flat surface with low reflectivity[J]. Optics Letters, 2005, 30(4): 439-441
    [186]Lin, J.H., W.H. Yang, W.F. Hsieh, et al. Nonlinear mirror mode-locked Nd:GdVO_4 laser with splitting double pulses[J]. Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on 30-02 Aug. 2005, 2005: 617-618
    [187]Innerhofer, E., T. Südmeyer, F. Brunner, et al. 60-W average power in 810-fs pulses from a thin-disk YB:YAG laser[J]. Optics Letters, 2003, 28(5): 367-369
    [188]Au, J.A.d., S.F. Schaer, R. Paschotta, et al. High-power diode-pumped passively mode-locked Yb:YAG lasers[J]. Optics Letters, 1999, 24(18): 1281-1283
    [189]Chen, Y.F., K.F. Huang, S.W. Tsai, et al. Diode-end-pumped passively mode-locked high-power Nd:YVO_4 laser with a relaxed saturable Bragg reflector[J]. Optics Letters, 2001, 26(4): 199-201
    [190]D. Burns, M. Hetterich, A.I. Ferguson, et al. 20W Average Power All-solid-state Nd:YVO_4 Laser Passively Mode-locked Using a Low-loss Saturable Bragg Reflector[J]. Proceedings of SPIE, 2000, 3929: 34-41
    [191]He, J.L., Y.X. Fan, J. Du, et al. 4-ps passively mode-locked Nd:Gd0.5Y0.5VO_4 laser with a semiconductor saturable-absorber mirror[J]. Optics Letters, 2004, 29(23): 2803-2805
    [192]Zhang, B., G. Li, M. Chen, et al. Passive mode locking of diode-end-pumped Nd:GdVO_4 laser with an In0.25Ga0.75As output coupler[J]. Optics Communications, 2005, 244(1-6): 311-314
    [193]Fluck, R., G. Zhang, U. Keller, et al. Diode-pumped passively mode-locked 1.3-μm Nd:YVO_4 and Nd:YLF lasers by use of semiconductor saturable absorbers[J]. Optics Letters, 1996, 21(17): 1378-1380
    [194]Roth, U., J.E. Balmer. Neodymium:YLF lasers at 1053 nm passively mode locked with a saturable Bragg reflector[J]. Applied Optics, 2002, 41(3): 459-463
    [195]Kellner, T., F. Heine, G. Huber, et al. Soliton mode-locked Nd:YAlO3 laser at 930 nm[J]. Journal of the Optical Society of America B: Optical Physics, 1998, 15(6): 1663-1666
    [196]Moore, N., W.A. Clarkson, D.C. Hanna, et al. Efficient operation of a diode-bar-pumped Nd:YAG laser on the low-gain 1123-nm line[J]. Applied Optics, 1999, 38(27): 5761-5764
    [197]Guo, X., M. Chen, G. Li, et al. Diode-pumped 1123-nm Nd:YAG laser[J]. Chinese Optics Letters, 2004, 2(7): 402-404
    [198]Chen, Y.F., Y.P. Lan, S.W. Tsai. High-power diode-pumped actively Q-switched Nd:YAG laser at 1123 nm[J]. Optics Communications, 2004, 234(1-6): 309-313
    [199]Chen, Y.F., Y.P. Lan. Diode-pumped passively Q-switched ND: YAG laser at 1123 nm[J]. Applied Physics B: Lasers and Optics, 2004, 79(1): 29-31
    [200]Paschotta, R., N. Moore, W.A. Clarkson, et al. 230 mW of blue light from a thulium-doped upconversion fiber laser[J]. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(4): 1100-1102
    [201]S. Singh, R.G. Smith, L.G.V. Uitert. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, 1974, 10 (6): 2566-2572
    [202]Cai, Z., M. Chen, Z. Zhang, et al. Diode end-pumped 1123-nm Nd:YAG laser with 2.6-W output power[J]. Chinese Optics Letters, 2005, 3(5): 281-282
    [203]Moore, N., W.A. Clarkson, D.C. Hanna, et al. High power 1123 nm Nd:YAG laser longitudinally pumped by a 7 W diode bar. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 1997,11: 480-481
    [204]Xiaoping, G., C. Meng, L. Gang, et al. Diode-pumped 1123-nm Nd:YAG laser[J]. Chinese Optics Letters, 2004, 2 (7): 402-404

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700